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An example for the holomorphic sectional curvature
of the Bergman metric

by ZywoMIr DINEW (Krakow)

Abstract. We study the behaviour of the holomorphic sectional curvature (or Gaus-
sian curvature) of the Bergman metric of planar annuli. The results are then utilized to
construct a domain for which the curvature is divergent at one of its boundary points and
moreover the upper limit of the curvature at that point is maximal possible, equal to 2,
whereas the lower limit is —oo.

0. Introduction. Recall that the holomorphic sectional curvature of the

Bergman metric of a bounded pseudoconvex domain U C C" at the point
z € U in direction X € C" is defined as follows:

(01)  Ru(zX):= (Z ganqu) - > RiyaXiX;XeXi;

p,q=1 1,9,k,1=1
here
2, n
oo P9 3 rs 0957 9947
ikl 021,07, Oz 07

T,

where ¢g"* stands for the (r, s)th entry of the inverse matrix of g,z. The term in
brackets in the definition of Ry is introduced for the sake of normalization.
Finally g, stands for %ggqlog Ky (z, 2z), where Ky(z,2) is the Bergman
kernel (on the diagonal) of the domain U.

One can show that

~ Jow (205 X) o, (20; X)

0.2 R X)=2
( ) U(ZO, ) JI,U(zO;X)2 )
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where

(0.3)  Jou(z0:X) i= sup{|f(z0)*: f € O) N L2W), [ [f1* <1},

U
n 2
S X g pe o nzzw),
j=1 J

(04) Jopr(z0: X) = sup{

(/2 < 1, flz0) = o},

U
2
x| - 2
(0.5)  Jau(z0; X —sup{ P 82]821 X;X;| : feOoU)nL*U),
S’f‘QSla f(ZO):()? af(ZO):07.7:17 -’n}'
U aZj

We see that Jy (z0; X) = Ky(20, 20), which is independent of X, and
that the holomorphic sectional curvature of the Bergman metric is invariant
under biholomorphic mappings.

From it follows immediately that

(0.6) Ry(z,X) <2, zelU.

This was already established by Bergman. It was shown by Lebed’ (see [12])
that when n > 2 this estimate is optimal in the following weak sense: For
each € > 0 there exists a domain U, for which there exist z € U, and X € C"
such that Ry, (z,X) > 2 —e. In a very recent paper Chen and Lee ([5]) have
shown that the estimate is optimal in the strong sense, i.e., there exists a
domain U and zy € OU such that lim,_, Ry(z,, X(2,)) = 2 for suitably
chosen z, € U with z, — zp and X (z,). The question of the existence of a
lower bound is also answered (in the negative) in higher dimensions in the
paper of Herbort (see [9], where even an example with smooth boundary is
provided).
In dimension 1 the formula becomes

ITITHT
(0.7) Rue, ) = LYo _ ~(oBsiy,
(917)? 91
which is independent of X, and therefore we will use the shorter form Ry (z).
In fact this is exactly the Gaussian curvature of g.

Little is known about the holomorphic sectional curvature of the Bergman
metric in dimension one. This is mainly because for most of the planar do-
mains one cannot compute the Bergman kernel explicitly. The first nontrivial
(i.e., not biholomorphic to the unit disc) domain for which one can say more
is the circular annulus.
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The Bergman kernel of the annulus P, = {z € C:r < |z] < 1} is

1 & r2+2 r¥
K - - - - -
P, (2, 2) 722 log(r2) T jzo<(—r2+2j + |2]2)2 + (1— r23|z|2)2>

(see e.g. [10]). This will be denoted as K for short.
Because the annulus has smooth boundary, it follows by a theorem of
Klembeck (see [11]) that

li R = —1.
PrazlgaPr P (2)

When r — 0, the domains P, will exhaust the punctured unit disc and
therefore one can expect the corresponding holomorphic sectional curvatures
of the Bergman metric to be convergent to the curvature of the punctured
disc which is the same as for the whole disc (the constant —1). (In the case of
the Bergman kernel this is Ramadanov’s theorem.) This is indeed the case,
but the convergence is only locally uniform. Moreover, numerical experiments
of the author have shown that when r gets smaller, the global maximum of
the holomorphic sectional curvature of the Bergman metric becomes closer
to 2, and the global minimum tends to be unbounded.

The figures below present the behaviour of the curvature, when restricted
to the line segment (r,1) C R, for different choices of r. (Figures 3 and 4 are
for the same r = 0.001, but Figure 4 is scaled in order to focus on the global
maximum).
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Fig. 1. The curvature of Py.q restricted to (0.1,1)
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Fig. 2. The curvature of Py.o1 restricted to (0.01,1)
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Fig. 3. The curvature of Py.go1 restricted to (0.001,1)
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Fig. 4. The curvature of Py.go1 restricted to (0.001,1)

We will confirm these numerical experiments by analytically proving the
following result:

THEOREM 0.1. For the circular annuli P, one has
hI?% Rp.(v/r) = —o0, liH(l) Rp, (r3/1%) = 2.
r— T—

Section 1 is entirely devoted to the very technical but rigorous proof of
this theorem @

This shows that Lebed’s result can be extended to n = 1 and that one
cannot find a universal constant that would be a lower bound for any planar
domain.

In Section 2 the result of Section 1 is utilized to construct a planar
domain for which the holomorphic sectional curvature of the Bergman metric
is divergent at one of the boundary points of the domain. Namely one has

THEOREM 0.2. There exists a bounded planar domain {2 and a point
¢ € 012 such that

limsup Rp(z) =2 and liminf Rp(z) = —oo.
252—(¢ 252—(¢

(*) W. Zwonek obtained a considerably easier proof (see [I5]). He moreover obtained
a full characterization of the boundary behaviour of Rp,, for all exponents of r (not only
1/2 and 3/10 as above).
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This is done by using the known localization technique (in the style of
[4] or [8]) which heavily depends on the geometry of the domain.

This proves that the constant 2 is optimal in the strong sense even in
dimension 1 and that planar domains with unbounded holomorphic sectional
curvature of the Bergman metric do exist. Here of course the domain cannot
have smooth boundary (because of the aforementioned theorem of Klem-
beck), nor can it be finitely connected (because of the uniformization theo-
rem which essentially reduces the problem to the first case). On the other
hand the theory of Bergman invariants on nonsmooth domains is far less
clear, compared to the smooth case.

In the whole paper G (z, zo) will stand for the (negative) Green function
ie.,

Gal(z,20) :==sup{u(z) :uw € SH(2), u <0, u}m; (u(w) —log |w — 2zp|) < oo},
—Z0

where SH stands for subharmonic. Note that it is more common to call

—G(z, 2p) “Green function”, but we will stick to the above definition.

1. Behaviour of the curvature of circular annuli. Let
KiKi | Ky
K? K’
Using we expand explicitly Rp. by means of consecutive derivatives of
the Bergman kernel K as Rp, = 2511 Aj , where

S = —

o AKPKS Lo 2KiKaKS  8KPKPK
1= K683 5 2 = K5S3 5 3 = K583 5
o 2 2KnKPKn o KKK 6KPK
4= Kig3 ) 5= Kig3 J 6 = KigZ
2 Ky7 Ky 8 K7 Ki K1 2K;;”
=g AT e 0 M ee
4, 2KiKCKn o 2KiKiKan 2K Ko
10 — K4 83 ) 11 — — K3 S3 ) 12 — K2 82
A13 _ 2K13 Kl Kll A14 _ M A15 2K12 Kli Kll
K°s? K's? K's?
2K:?Kq; K1 Kyg K1 Kq11 K
A16 K3 82 ’ A17 - K2 82 ’ AIS - - K3 83 ’
A 2K1? K1 K1 Ao — - Kir Ko Kyt Ao — 2K K1 Kyt
19 K4 83 ) 20 — W? 21 — K3 83 ’
2Kq Ky LSTRILSETI STl
Agp = KIS Agg = —ib gttt AM:_KSZ.
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By direct computation one obtains

1 o0 2425 27
S T T
ER e AP e E A e
1 > 2r2t+2iz 2z
Ky = 2 2 _1Z<_ 2425 n3 T 2] 23)7
mz|2|*log(r?) e AN i o 1 O R € S i £
Ki = Kfl?
2 & 6 242552 6 67552
Kn=— oy 2y (R 6
w2 Plogr?) |\ A P (L )
Kiq = Kiy,
K 1 _1 > 6r2+27| 2|2 222
0= T Lleg(r?) T ]go ((_r2+2j TP (= L)
6157 |2|? ordi
(=21 " (= P )
Ko 2 _li 2472427 2|27 12r2+2%
T e log () SR LR (R
24787 | 2|2z 12757z
(=P = PR )
Kyi1 = Ky,
4 > 20| z[*
K17 = 71N 62t .
1111 7|26 1og(r2) Z [ —r2+2 4 [2]2)6
16\z|2 2 >
| (_T2+2j+|.z‘2)5 (—r2+2 —|—|z| )4
+ 605 20747 | 2|4 16727 |2|?
T - - .
(e oA e A e

For the special choice z = /7 € R one obtains

Ke ——
ﬂrlog (r?)

_1Z< T

27,,1/2+4]

25
1_ 7¢2j+1)2>’

_1Z<

—pl+2j + )

6T1+2]

2r—1/2+2j
)

—rl¥2 4 1)

6r2—1
* (1— T2j+1)4)
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o1 Z 6! +6s n 2rdi
T2 log (r2) —p 27 1) T (=12 4 1)3
6r2i—1 or2i—1
(1 —rH2)4 (1 — p2+1)3
2 N 2473/2+8] 12¢1/2+65
K =Kqq1 = r5/2 log(r?) Z ( —rl42j 4 1)5 + (—r1+27 4 1)4

K1 =

24T2j—3/2 127.2]'—3/2
(1= )5 T (1— T2j+1)4>’
4 . 1207107+2 961187
o Z ( —r14+2) 4 1)6 + (—r1+2i +1)5

1270 120722 96722 12r2—2
(—rl+27 1)4) ((1 — r2j+1)6 - (1 — r2i+1)5 + (1— T2j+1)4>

All of the above series are locally uniformly convergent in the unit disc
and the summands are of the form f(y/r) with f real-analytic (with excep-
tion of the very first summands which may contribute some singular terms).
Therefore each of the above expressions is of the form F'(1/r)+singular part,
with F' real-analytic, hence one can write:

1 1 2 3
SR 2 44
mrlog(r?) @+ Ar 48+ 00),
K =K = b (22 Ar — 832 L 0(r°/?) ),
7r3/2 log(r?) N
2 6
Ky =Kir= - 4712 104
1 1 7r2 log(r?) o (r e O(T)>’
Kij=-—— a2 420 +6ar+ 002
L mr2log(r?) o\ ’
K 2 12 72 1/2
Ky =Ky = 572 Tog(r?) +7 <_r3/2 BV +O0(r/7) ),
4 36 288
Kiip = ———s + 1 [ 2 4+
11 7r3log(r?) <r2 + r +O(C))’

where as usual O(r®) is a substitute for an expression which divided by r®
is bounded when r tends to 0, » > 0. Note that in each representation above
the powers of r in the terms Wg(ﬁ) and O(r?) satisfy

(1) a+ >3

Our first task is to show that one can get rid of the O’s in the expressions
representing A;(r), j = 1,...,24, in the above notation. Let A%(r) be A;(r)
with the O’s deleted.
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One has to show that lim, o+ (A;(r) — 45(r)) =0,j=1,...,24.
After some elementary algebraic manipulations one obtains

Aj(r) =
+1 Hznjl(ao + aijro‘ij log(r?) + -+ + ak( 3T 7o) log(r 2)0(7"7’?(1'3')))
(T lOg(’I“Q))pj H?il(bl] b'LJTﬂl log(TZ) bl]( ) S(u log(TQ)O(rél](ij)))

Here p; = 2 for j = 6,7,8,9,12,16,17,22,24, otherwise p; = 3, and the
numbers o’ and 3’ form ascending (with respect to ) sequences of k(ij),
respectively s(ij) positive rational numbers. The notation k(ij) and s(ij) is
to btrebb the fact that the length of each sequence depends on both 7 and j.
The a;” and b, 7 are some (rational) constants. Finally akm) + ’Yk(z]) > 3 and

ﬂz](ij) + 5;](1.].) > 3 (by (1), the reason why a+ f3 is 4, not 3 in the expansions

of K, Ky, K;7 is that the lowest power of r disappears when one manipulates

—KIT{IQQ + K”) In what follows we shorten k(ij) and s(ij) to just k and s

but keep in mind that they depend on both ¢ and j.
The numerator of A;(r) — Aj(r) is

m;

k—1 - . )
[T (af + 3" ari’ 10g(r?) + afr¥ 10g(1)0( V)
1=1 =1
" 5_1 ..
X H (béj + > A log(r2)>
i=1 =1
— H <b'L] + Z bJ 51 lOg _|_ bZ] ﬁs log( )O(T'(Sz])>

m el
g 4
X H (agj + Z ar log(rz))
i=1 =1

and we see that all the terms not containing an O kill each other. What
remains is O(r®log(r)) (by (1)).
The denominator is
T

(r log(rz)) H (bw + Z br o log(r ) + béjfrﬁ;j Iog(TQ)O(r‘Séj))

=1 =
n; s—1 B
.. Py
T+ S st
=1 =1

which is O((rlog(r?))?s) (no bgj is zero), and hence the ratio tends to 0.



Sectional curvature of the Bergman metric 155

The terms A; can be asymptotically evaluated as follows:

1 7 12 30

()™ 3 iog (DR T 2(log(D T (loglrD)E  rlog(r?)
o 1 6 12 22
211~ 5 logi®) ~ 2(log(B) (g | riog(r?)’
. N 1 11 12 18
20(r) = 2r3(log(r?))3 B 2r2(log(r?))? B r2(log(r?))3 * rlog(r?)’
o 1 5 12 14
907~ =5 5 og () T 2(log(r2)? T 2 (log(rDP  rlog(r?)’
e 1 11 12 18
15(r) 2r3(log(r2))3  2r2(log(r2))2  12(log(r2))3 + rlog(r2)’
o 1 9 12 13
500 ™ o i log (B T 2 (log(rD)? T 2 (log(r)F  rlog(r?)’
e 1 4 12 21
1(r) = 72r3(log(r2))3 + r2(log(r?))? + r2(log(r?))3 9 log(r2)’
o 1 7 12 8
13(r) ~ 2r3(log(r?))3 B 2r2(log(r?))? B r2(log(r?))3 * rlog(r?)’
s 1 6 12 22
1)~ 53 log(2)? ~ 2 (log(B)  r(log(r2)® T rlog(r?)
o 1 5 12 14
007) ~ =5 3 log(r?) e T 2 (log(?)? | 2(log(2)®  rlog(r?)’
o 1 5 12 16
B0~ 55102 T o7 T (P rlog(?)’
AZ(T) ~_ 1 n 9 n 12 B 13
2r3(log(r2))3 = 2r2(log(r?))?2 = r2(log(r?))?  rlog(r2)’
e L8 20
()~ Bliogr®P ~ P(log(DP  2(log(r)F | riog(r?)’
o 1 7 12 8
Ay(r) ~ 2r3(log(r?))3 B 2r2(log(r?))? B r2(log(r?))3 * rlog(r?)’
Ay o] L3 126
)~ = 5 ogr2)® T 72 0g(r D)2 T 2 (log(B))  rlog(r?)
where
R R SR RSN N
3 gD T (g2 T 2 (log(rD) T rlog(r?)

should be read as

a;

rli%1+ A;(r)r?’(log(TZ))?’ = a;, rlir(l)1+ (A;‘(T) — W>T2(log(7“2))2 = bj,
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. . a; b;
i (450~ Sy ~ i) 8

a; b Ci

(r)* = ¢j,

1 (450) ~ gt ~ gl P

and
1 11
A3 ~
5~ 2 10g ) rlog(r?)
1 8
Aj ~— -
201~ = 5 (i0gtr?) 2 ~ rlog(r?)’
“(r) ~ — 1 _ 6
T T2 (log (1)) rlog(r?)’
“ () 1 n 5
)~
16 2r2(log(r2))?2 ~ rlog(r?)’
()~ -
12\7) ™ 2r2(log(r2))?2  rlog(r?)’
1 4
Ad(r) ~ — —
o(r) 2r2(log(r2))2  rlog(r?)’
2 12
Ag(r) =~
31~ g2 T riog(r?)
1 5
Az (r) =~
1)~ 2 log( 2 T rlog(r?)’
3 6
Ag(r) = — -
(") 2r2(log(r2))?  rlog(r?)’
where
aj b;
A* ~ J J
1% o7 Tioa?)
should be read as
. * 2 2\\2 . woN a;
Jm Aj(rjr-(log(r)” = aj, - limy, (AJ‘ ") = 2log(r))

Hence

>r log(r?) = dj,

2>r10g(r2) =b;.

1

2 0 0 0
2450 ™ iy * gt + g

r—0t 4

This proves the first part of Theorem

24
lim > A;(r) = lim Y A%(r) = —o0.
J=1
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For the special choice z = 3/10 € R one has
2j+4/5
Ke_ L = Z Ly
r3/5 log 7«2 7“3/5"‘2] 4 1) (1 _ 7’2j+7/5)2 ’
1 o0 9y3/10+4j o 1/2+2j
Kl = 9— + 7T_1 ’ _ A
7r9/10 10g(7“2) = (—T3/5+2J + 1)3 (1 _ r2]+7/5)3
K37 =Kj,
) o 6r3/5+6j 6T1/5+2j
Kin=-—%7% 2 +7T_12< 3/512; i 2'754>
wr6/5 log(r?) = (—r3/5+25 4 1) (1 — r27+7/5)
Ki1 = Kia,
1 6r3/5+6i o4
Ky =-— 6/5 2 +7T_IZ[ 3/512; 1T T3 3
wr6/2log(r?) = (—r3/5+25 4 1)4  (—3/5+27 4 1)
6r-20+1/5 92i+1/5
(1—p7/5+20)4 (1 — r2j+7/5)3}
2 i [ 247971048 12¢3/10+65
Knt=—375 mtT Z 3/5+2) 5 T T 3/5435 1
7r3/2log(r?) = (—r 7 41) (—r 741)
24T2j—1/10 12T2j—1/10
(=T (1 — T2j+7/5)4}
Kir1 = Ky,
4 1207,10j+6/5 96T3/5+8j
K11 = 9/5 2) - Z [ 3/5125 6 T a2 5
/5 log(r —r 74 1) (—r i+ 1)
12767 120r2ﬂ—2/5 967212/ 12r21-2/5
- + - — - + -
_T‘ Ju— J— J—
+ (—r3/5+27 4 1) (1 — p247/5)6 (1 — p2it7/5)5 (1 T2j+7/5)4}

As above each sum is of the form G(r'/1°) + singular part, with G real-
analytic. Now

1 -1 3/5 , .4/5 6/5 9/5
~—37 Tog(r?) + (1420270 + %2 4+ 3r° + O(r7?)),
1 _
K1 =Ki= 17°9/10 log(2) +7 1(2T3/10 —2r!/% 4 6910 4 O(r3/2)),
e 2 1/ 1/5 3/5

K=K = 675 log(12) +a (607 + O(r”?)),

1
K= - 4 2 4r'/5 412035 4 0(r5/5)),

776/5 log(r?)
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_ _ 2 -1 12 3/10
Klli—Klﬁ—W—FW (_7«1/10+O(r/ ),
o 4 _1{ 36

This time the goal is to have

(t1) a+pB>9/5

for o and 3 being the powers of 7 in 1/(7r®log(r?)) and O(r?) respectively.
The argument with passing from A;(r) to Aj(r) is almost the same, one only

has to adjust the terms (r log(r?))Pi (the correct ones are now rPs log(TQ)%pf)
and consider new p;’s, namely p; = 6/5, for j = 6,7,8,9,12,16,17,22,24
and p; = 9/5 otherwise.

Now the asymptotic expansions of A%(r) are:

A1) 4 N 16 N 96 N 12
r)~ —
2 r/5(log(r?))3 ~ r6/5(log(r?))? = r%/5(log(r?))? = r(log(r?))?
_ 24 _ 376 _ 1212 _ 32
r3/51og(r2)  r3/5(log(r?))?  r3/5(log(r?))®  r2/>(log(r?))?
_ 384 _ 24 416
r2/5(log(r2))3  r1/5(log(r?))3 ’
N ( )N 4 _ 12 _ 96 _ 12
A= r9/5(log(r2))3  r6/5(log(r?))?  r9/5(log(r?))?  r(log(r?))?
n 12 n 288 n 1212 n 24
r3/51og(r?)  r3/5(log(r?))?  r3/5(log(r2))?  r2/5(log(r?))?
384 N 24 .
r2/5(log(r2))3 ~ r1/5(log(r?))3
s () ~ 4 B 12 B 96 12
2OV 95 (log(r2))3  76/5(log(r2))2  r6/5(log(r2))3  r(log(r?))?
n 12 n 296 n 1212 n 28
r3/51og(r2)  r3/5(log(r?))?  r3/5(log(r?))®  r2/>(log(r?))?
384 24
+ —4,
r2/5(log(r2))® ~ r1/5(log(r?))3
() 4 N 8 N 96 N 12
r)~R —
19 r9/5(log(r2))3  r6/5(log(r2))2 ' r6/5(log(r2))® = r(log(r2))3
_ 4 _ 224 _ 1212 _ 16
r3/51og(r2)  r3/5(log(r?))?  r3/5(log(r?))?  r2/>(log(r?))?
384 24

" log () 5 (log(r?))



1s(r) ~

15(r) ~

14(r) =

13(r) ~

n(r) =

10(7) ~
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4 12 96 12
r7(log(r?)® 195 (log(r?)?  r9/5(log(r?))®  r(log(r?))?
12 296 1212 28
T l0g(r?) 5 (log(r?))? | /5 (log ()P | 1275 (log ()
384 24
02 | (gD
4 8 96 12
(g T 0g( ) 193 (log (D) r(log(r)’
4 208 1212 20
Crlog(r2)  r¥(log(r2))2 5 (log(r2))F 125 (log(r2))?
384 24
- r?(log(r?)®  ri/(log(r?))?
4 8 96 12
(g T r0g( D) 19 (log (D) r(log(r)?
4 216 1212 24
T log(r?) B (og( ) r(log(r?)® 12 (log(r?))?
384 24
~ r?5(log(r2)?  r1/5(log(r?))?
4 4 96
P (log(r?)° 15 (log(r?)?  19/7(log(r2))?
12 144 1212 12
" r(log(®)? T 5(log(r?)? | r5(log(r2))? | r2/5(log(r?))?
384 24
5 (log ()" 717(10g(r )7
4 12 96 12
r9/5(log(r2))3  r6/5(log(r2))2  r6/5(log(r2))3  r(log(r2))3
12 288 1212 24
T log(r2) " R (og(r2) A (log(r ) 12/ (log(r?))?
384 24
TR og?)p T g2
4 8 96 12
75 (log(r2)) | 165 (log(r?))? | 19/5(log(1?))? | r{log(r?))?
4 224 1212 16
T log(r?) B (og( ) r(log(r?)? 1 (log(r?))?
384 24

(o)) A (log(r)"
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AL(r) ~ — 4 n 8 n 96 n 12
(05 o (log( D)2 | 1og(r2))?  r{log(r?))?
4 200 1212 16
T log(r?) (g2 r(log () 12/ (log(r?))?
384 24
- r(log(r2))F 1/ (log(r2))*
AL(r) ~ — 4 L 8 n 96 n 12
P og(r ) O (log(D)? T r(1og(r2))?  r(log(r?))?
4 208 1212 20
 r¥log(r2)  r35(log(r2))?  r¥(log(r?)? 12/ (log(r2))?
384 24
- r2(log(r2))*  r1/5(log(r2))*
AL(r) ~ 8 B 8 B 192
5(log (D) 1975 (log( )2 175(log(r))?
24 272 2424 16
" rllog()° A (log(r2)) (g () 12/ (log(r?))?
768 48
g (7)) 11 log(r)
AL(r) ~ 4 _ 4 _ 96
F5(og(r ) 1o/ (log( )2 15(1og(r))?
12 144 1212 12
oG T log(r2)) T (g () 12/ (log(r?))?
384 24
T log() T r1/log(r7))"
. 4 96
A 5 oa( 2 o)
n 12 _ 72 _ 1212
r(og(r?))* ~ 5 (log(r )2 1375 (log(r?))"
384 24
- r23(log(r2))*  r1/5(log(r2))*
Again
. a; b; Cj d;
R ) A T e e e T T
& . fj n 9j n h;
Plog(r?) T (log(?)P o (log(rD)* | 17(1og(r)?

+ 4 + i
2T (log(r?)° | 1 /(log(r7))?

+1

means that
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lim A% (r)r®(log(r?))® = aj,

r—0t

a;

2, (4500~ gy ) o) =

. win a; B bj B Cj
T e T
_ d; B €j B i B 9
) T e R R e R R
B hj B i B kj ):l-
P o(2)P R (og( ) st )

(to simplify the calculations one can put r = ¢! and then find limg_.g...).
The expansions of the other terms are:

£ () 4 n 12 n 64 n 8 19
r) R — -

2 r/5(log(r2))2 /5 log(r?) " r3/5(log(r?))? " 123 (log(r2))2
. 4 8 64 8

20(r) & - —— - +4,

r55(log(r?))2 135 1og(r?)  13/5(l0g(r2))?  r2/5(log(1?))?
. 4 8 64 8
17(r) = - - — +4,
r55(log(r?))2 35 1og(r?)  13/5(l0g(r2))?  r2/5(log(1?))?
“ () 4 n 4 4 64 n 8
r) R —

W T log(r2) 1 10g(r) 1977 (10g (7)) 12 (log(r2)7
“(r) ~ 4 B 8 B 64 B 8 44
P T log(r2))? 9 log(r2) 19 (1og(r2) r27(log(?))?
AL(r) ~ 2 B 4 B 32 B 4 49

P R log(r2))? 19 log(r?) 193 (1og(r2))?  r2/3(log ()2
AL(r) ~ — 8 N 8 4 128 N 16

S T (l0g(r2)2 T 3 log(r2) | 1375 (10g(r2))2 | 125 (log(r2))?
A (r) ~ — 4 n 4 4 64 . 8

T T log(r2))2 T B log(r2) 375 (log(r2))2 | 2/5(log(r2))?

6 96 12

A~ S log( ) (082 1 (log (1)

Finally one obtains

24
> Ax(r) 2.
j=1
Therefore
lim A;(r) = 2.

r—0+t
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OBSERVATION 1. One has
Rp.(€?2) = Rp.(2)  for all 6 € (0,2x],
Rp.(z) = Rp.(r/z).

One easily checks that both z + ez and z + r/z are holomorphic
automorphisms of P,.. Now everything follows from the invariance property
of the holomorphic sectional curvature of the Bergman metric. One moreover

0

sees that for the choice z = r7/10 = —/m0 the equality
lim Rpr(r7/10) =2
r—0t

is also true, which is also revealed by the figures.

OBSERVATION 2. One has
Z— 20
Ripi<ju—zol<p2}(2) = Bp, /. < P2 )

This is also a simple consequence of the fact that z — (z — 2¢)/p2 is
biholomorphic between the two domains.

2. An example. Let {R;}52,,{r;}32,{s;}52; be three sequences of
positive real numbers that obey the following conditions:

o0
(i) Z R; < oo,
j=1
(i) r1 < Ri/2, rj/R;is decreasing and lim r;/R; =0,
j—00

(i)  s; < min{2R;sin(0.077),2R; 1 sin(0.077),
Rj — (rj/Rj)*"%, Rj1 — (rj/Rj1) >0}

Consider the domain 2 = JiZ, £2;, where 1 = {z : 11 < |2| < Ri}, and
each (2; is an annulus with inner radius r; and outer radius R; which is
centred on the positive real axis, to the right of £2;_; and overlaps with
£2;_1 in such a way that the segment joining the two intersection points
of the circles with radii R; and R;_; has length s;_;. There are now two
possible choices for §2;: one for which most of {2; lies inside §2;_1, and one
when most of it lies outside. We consider the latter one. The choice of s;
ensures that the discs with radii r; and r;_1 do not overlap.

By (i), {2 is bounded.

Let 27 = £2;\ (K1 U K3), where K is a disc of radius s;_1/2, centred at
the midpoint of the segment joining the intersection points of the circles with
radii R; and R;j_; (the outer boundaries of the annuli £2; and (2;_1), while
K5 has radius s;/2 and is centred at the midpoint of the segment joining
the intersection points of the circles with radii R; and ;4.
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Fig. 5. Part of the domain 2

We begin with a lemma:

LEMMA 2.1. Let zy € Q; Then the sublevel set of the Green function
Ganl(z,20),
{GQ(Z7ZO) < _1}7

is entirely contained in §2; |(*)|

Proof. The Green function is obviously decreasing with respect to do-
main inclusions. Therefore it is enough to show that {Gy(z,20) < —1} C £2;
for some U D {2.

For simplicity one can translate {2 so that the upper intersection point
of the circles with radii Rj_1 and R; is 0. Choose two discs Uy and Us,
with radii p; and ps, whose boundaries intersect at 0 and —is;_1 such that
2 Cc Uy UU,. Clearly p1 > Rj_l and pg > Rj. The function GUluUz(ZaZO)
can be explicitly calculated as h o f, where

h(w) := log ‘fw—f(zo)
1 —w f(z0)

(?) Informally: the sublevel set cannot “escape” through the very narrow passage
between the annuli.
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and . . e ™
o B iy
(= ) T )7 41

is the mapping that transforms Uy U Us conformally into the unit disc. Here
a = arcsin 2p , 8 = arcsin 2p .

The image of Us under f is the intersection of the unit disc with a disc
centred at the negative imaginary axis, passing through {1} and {—1} and
such that the angle between its tangent line at {—1} and the line —1 + it

™

is exactly 5 ﬁ_aﬁ%. The image of U is exactly the conjugate of this set.
Now
w — f(20) < 6—1}7
1 —wf(z0)
e '(1—|f(20)%)
1—e2[f(20)[?

f({GU1UU2(szO) < _1}) = {U} : ‘
which is the disc
w — f(z0)

1—e 2
1L —e2|f(20)?

Now if
1M )P
L—e?[f(z0))” — 1—e?|f(20)]?
then this disc will stay in the lower halfdisc (and hence in f(Us)).
This inequality transforms easily into
1—e? 1 + 72
f(z0) - 2e=l |7 2e71 7
So this is the set enclosed by the arcs of the unit circle and a circle that
passes through {—1} and {1}, and the angle between the real axis and the
1+ €5 ~0.221 < 0.237.
On the other hand the image of the disc |z + i*5* 2-1(Ky) is the

set enclosed by two circular arcs joining {—1} with {1} characterized by the
T— ﬁJra T

20 € Uz,  [Im f(z0)

(2.1)

Im f(29) < 0.

tangent line at {—1} is (in absolute value) arccos

and

angle between the real axis and the tangent line at {—1} (&%=

2r—fB—a
(— )W+B S —5— respectively) and we see that if both « and B are smaller

than 0.077 then the slope of the lower arc is greater than 0.237 and hence
lies in the region defined by (2.1). Since z9 ¢ K1, f(z0) must lie below the
arc in question and hence in the desired region.

It remains to observe that the condition «, 8 < 0.077 is fulfilled by the
choice of s;_1 and that one can carry out the same argument for K. =

Let ¢ be the rightmost boundary point of 2 (the accumulation point of
the annuli). Now one can give the proof of the main theorem.

Proof. 1t is clear that J; o(2) < J; o,(2) for all z € £2;,7=0,1,2 and for

all j (see (03)-(05))-



Sectional curvature of the Bergman metric 165

Let zg € !2; and let f;(z) be the corresponding function that realizes the
supremum in the definition of J; o,. We have

filz) e 02N LX), VIfiP<1, fP2)=0, k=0,..i-1
12

Let x be a real smooth function of a real variable such that x(z) = 0
forx > —1, x(z) =1 forz < =2, 0 < x(x) <1 for =2 < 2z < —1, and
IX'(x)] < C globally for some positive constant C.

By Lemma the (0,1)-form d(x o Go(z, 20))fi(z) can be extended
(trivially) to a smooth (O-closed) form on the whole 2.

Note that ¢“2(#20) is a subharmonic function that satisfies

82 QGGQ(Z,ZO) ’
020Z 0z

in the weak sense. Therefore by the Donnelly—Fefferman estimate (see [I] and
especially [2], where the passing from smooth to nonsmooth data is presented
very clearly) one can find a solution v of the d problem

dv; = d(x 0 Gz, 20)) fi(2)

eGa(z:20) >

in 2, with

[ fos[2e 2GR0 < o | 0(x o GQ(Z,Zo))fi(z)fze-2(¢+1)GQ(z,zo)

- 9?2 Go(z,2
0 0 gop €02 (570)

<C |
{—2<Gq(z,20)<—1}

21 £.12 )
(2—%)2?]( 5 S 0/0262(21+3),
e(2i 2,2

where C’ is a universal constant.

Moreover v; is holomorphic in a neighbourhood of zp, and the above
inequality ensures that vz(k) (20) =0, k=0,...,1.

The function g; = (x o Go(z,20)) fi(z) — v; is holomorphic in (2, agrees
to the ¢th order with f; at zp and

(S \gz’|2>1/2 < (S \vi|2>1/2 + (S [(x o GQ(Z,ZO))fi(Z)|2>
Q Q

2

1/2

. 1/2
< (S ‘Ui|2€*2(l+1)GQ(Z,zo)) / 11 <14+ VO02e202i43)

0
The choice of the function HV% shows that
T
Jia(z) > 2,(2)
’ C'(C22(2i+3)

for all z € 2. We note that this gives us a lower bound for the expression
Ji2(2)/Ji,0;(2) which is independent of j.
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Hence for every z € {2 that lies in Q; for some 7,

_ Do(@)halz) _ (1+ V0002 o0,(2) a0, (2)

2 — RQ(Z) - Jl,Q(Z)Q = Jl,Qj (2)2
- C”(Q - RQ]‘ (z))
and
9_ RQ(Z) > JO,Q]’ (Z)JQ,QJ' (Z) _ 01/1(2 _ Rﬂj (z))

~ J10,(2)2(1+ VC'CZeM) (1 4 VC'C2eS)

Let z; be the point in 2; (and in 27, by (iii)) that corresponds to the
point R;+/Tj/R; + 0i in the annulus {r; < |z| < R;}. By analogy we define
zj to be the point that corresponds to R;(r;j/R;)310. Then

limsup Ro(z) = limsup Ro(z]) = 2,

2352—( j—o00
liminf Ro(z) = liminf Ro(2;) = —oo,
252—C j—00

by Theorem [0.1] and Observation [2] =
OBSERVATION 3. {2 defined as above is hyperconver.

Hyperconvexity is the same as regularity (with respect to the Dirichlet
problem) in dimension 1. One easily constructs barrier functions at each
boundary point of {2 and by Perron’s method {2 is regular.

This is quite unexpected since it is known that both the Bergman kernel
in arbitrary dimension (see [13]) and the Bergman metric in dimension 1
behave in a quite predictable way in hyperconvex domains (see [14]; in higher
dimensions it is rather B-regularity than hyperconvexity that one has to have
in mind, but the problems are not completely settled; see [3], [7], [6]).
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