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In [7], we demonstrate how to achieve the model completeness and o-
minimality of the real field with restricted quasianalytic functions (a result
due to Rolin–Speissegger–Wilkie [13]) by means of a technique of decompo-
sition into special cubes; see [8–11] for other applications of this method.
Therein we asked, inter alia, whether, given a polynomially bounded o-
minimal expansion R of the real field, the structure generated by global
smooth R-definable functions is model complete. We should note that this
follows immediately fromWilkie’s complement theorem [14] (see also [12, 6]).
In this Addendum, we also wish to indicate that Gabrielov’s proof [5] of the
complement theorem can be adapted to the real field with restricted smooth
R-definable functions.

Gabrielov’s approach relies on certain three preliminary lemmas. Below
we state their quasianalytic versions, whose proofs can be repeated mutatis
mutandis. Next, we shall outline our proof of the complement theorem based
on those lemmas. Denote by Qn the algebra of those R-definable functions
that are smooth in the vicinity of the closed cube [0, 1]n. The algebrasQn give
rise to the notions of Q-analytic, Q-semianalytic and Q-subanalytic subsets
of the cubes [0, 1]n, n ∈ N.

Lemma 1. Consider a Q-semianalytic subset E of [0, 1]n of the form

E := {x ∈ [0, 1]n : f1(x) = . . . = fk(x) = 0, g1(x) > 0, . . . , gl(x) > 0}

with fi, gj ∈ Qn. Then the closure E and frontier ∂E are Q-semianalytic too.
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Moreover, E and ∂E can be described by functions which are polynomials
in x, in the functions fi, gj, and in their (finitely many) partial derivatives.

Consequently, if F is a Q-subanalytic subset of [0, 1]m, then so are its
closure F and frontier ∂F .

Remark. As an easy generalization, one can formulate a parametric
version of the above lemma, in which the R-definable functions involved in
the description depend smoothly on parameters.

By a Q-leaf we mean a set of the form

L := {x ∈ [0, 1]n : f1(x) = . . . = fk(x) = 0, g1(x) > 0, . . . , gl(x) > 0},

where fi, gj ∈ Qn and

∂(f1, . . . , fk)
∂(xi1 , . . . , xik)

(x) 6= 0 for some 1 ≤ i1 < · · · < ik ≤ n and for all x ∈ L.

Lemma 2. Every Q-semianalytic subset E of [0, 1]n is a finite union of
Q-leaves.

The image of a Q-leaf L ⊂ [0, 1]n under a projection π : Rn → Rm,
n ≥ m, will be called an immersed Q-leaf if the restriction of π to L is an
immersion. By combining Lemma 2 with the technique of fiber cutting (see
e.g. [4, 5, 2, 3, 1, 7]), one can obtain

Lemma 3. Every Q-subanalytic subset F of [0, 1]m is a finite union of
immersed Q-leaves.

By a Q-cell we mean a cell given by smooth functions with Q-subanalytic
graphs. Now we can readily outline our proof of the following main result
wherefrom the complement theorem follows immediately.

Main Theorem. Consider Q-subanalytic subsets F1, . . . , Fr of [0, 1]m.
Then there exists a Q-cell decomposition C of [0, 1]m which is compatible with
the sets Fi, i = 1, . . . , r.

We proceed by a double induction with respect to m and

d := max{dimF1, . . . ,dimFr}.

The case m = 0 is trivial, and so take m > 0. Again, the case d = 0 is
evident, and we may suppose d > 0. By virtue of Lemma 3, we can assume
that Fi are immersed Q-leaves, i.e.

Fi = p(Ei), p : Rn → Rm, p(x1, . . . , xm) = (x1, . . . , xn),

for all i = 1, . . . , r. Denote by q : Rn → Rm−1 and π : Rm → Rm−1 the
canonical projections onto the first m− 1 coordinates; obviously, π ◦ p = q.
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Put di := dimFi = dimEi, di ≤ d, i = 1, . . . , r, and

E′i := {x ∈ Ei : rank q|Ei = di}, E′′i := {x ∈ Ei : rank q|Ei = di − 1}.

Then Ei = E′i ∪ E′′i . Clearly, the restriction

res q : E′i \ q−1(q(∂E′i))→ q(E′i) \ q(∂E′i)

is proper. Now observe that the set S of self-intersections of the image of
res q is a Q-subanalytic subset of q(E′i) as S×{0} = V ∩(q(E′i)×{0}), where

V := {(u1, . . . , um−1, ε) ∈ (q(E′i) \ q(∂E′i))× [0, 1] :
∃v = (v1, . . . , vn−m+1), w = (w1, . . . , wn−m+1) ∈ [0, 1]n−m+1 :

0 < |v − w| < ε, (u, v), (u,w) ∈ E′i \ q−1(q(∂E′i))}.

Then T := S ∪ q(∂E′i) is a Q-subanalytic set of dimension < d, and the
restriction

res q : E′i \ q−1(T )→ q(E′i) \ T

is a topological covering, whence so is the restriction

resπ : p(E′i) \ π−1(T )→ q(E′i) \ T.

Therefore, over any simply connected subset (below we shall take a Q-cell)
of q(E′i) \ T , the set p(E′i) is a finite union of the Q-subanalytic graphs of
smooth functions.

Further, notice that, for each u ∈ q(E′′i ), the fiber (E′′i )u := q−1(u) ∩ E′′i
is a smooth Q-semianalytic arc, and the restriction of p to (E′′i )u is an im-
mersion of this fiber into {u} ×Rxm whence the fiber (Fi)u is a finite union
of open intervals. By virtue of the parametric version of Lemma 1, the sets

Zi :=
⋃

u∈q(E′′
i )

({u} × ∂p(E′′i )u) ⊂ [0, 1]m

are Q-subanalytic of dimension < d. By the induction hypothesis, there
exists a Q-cell decomposition {Cp : p = 1, . . . , s} of [0, 1]m compatible with
the sets Zi, i = 1, . . . , r. Clearly, for each cell Cp, the sets

Wi,p := {u ∈ [0, 1]m−1 : (Cp)u ⊂ (Ei)u} ⊂ [0, 1]m−1

are Q-subanalytic. Again by the induction hypothesis, one can find a Q-cell
decomposition C compatible with the sets

q(E′i), q(∂E′i), Wi,p, p(E′i) ∩ π−1q(∂E′i) and Zi;

where the first three are subsets of [0, 1]m−1, the last two are subsets of
[0, 1]m of dimension < d. Indeed, one must construct a Q-cell decomposition
compatible with the subsets of [0, 1]m under study, which are of dimension
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< d, and next refine the induced Q-cell decomposition of [0, 1]m−1 so as to
be compatible with the remaining subsets of [0, 1]m−1.

What remains to be done is to modify the Q-cell decomposition C,
achieved in this fashion, as follows. As we have already seen, over each Q-cell
C from the induced Q-cell decomposition of [0, 1]m−1 such that C ⊂ q(E′i)
but C ∩ q(∂E′i) = ∅, i = 1, . . . , r, the set p(E′i) is a finite union of the
Q-subanalytic graphs of smooth functions. Again, one must modify C by
partitioning its Q-cells by means of those Q-subanalytic graphs; this is, of
course, linked with a successive refinement of the cube [0, 1]m−1, which is
possible due to the induction hypothesis.

It is not difficult to check that eventually we attain a Q-cell decomposition
C of [0, 1]m compatible with the sets p(E′i) and p(E′′i ), and a fortiori with
the sets Fi := p(Ei) = p(E′i) ∪ p(E′′i ). We leave the details to the reader.
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