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Uniqueness of meromorphic functions
sharing a meromorphic function of a smaller order

with their derivatives

by Xiao-Min Li (Qingdao) and Hong-Xun Yi (Jinan)

Abstract. We prove some uniqueness theorems for meromorphic functions and their
derivatives that share a meromorphic function whose order is less than those of the above
meromorphic functions. The results in this paper improve those given by G. G. Gundersen
& L. Z. Yang, J. P. Wang, J. M. Chang & Y. Z. Zhu, and others. Some examples are
provided to show that our results are the best possible.

1. Introduction and main results. In this paper, by meromorphic
functions we will always mean meromorphic functions in the complex plane.
We adopt the standard notations of the Nevanlinna theory of meromorphic
functions as explained in [6], [9] and [19]. It will be convenient to let E denote
any set of positive real numbers of finite linear measure, not necessarily the
same at each occurrence. For a nonconstant meromorphic function h, we
denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any
quantity satisfying

S(r, h) = o{T (r, h)} (r →∞, r 6∈ E).

Let f and g be two nonconstant meromorphic functions, and let a be a
finite value. We say that f and g share the value a CM provided that f − a
and g − a have the same zeros with the same multiplicities. Similarly, we
say that f and g share a IM provided that f − a and g − a have the same
zeros ignoring multiplicities. In addition, we say that f and g share ∞ CM
if 1/f and 1/g share 0 CM, and we say that f and g share ∞ IM if 1/f and
1/g share 0 IM (see [20]).

In this paper, we also need the following definition.

Definition 1.1. For a nonconstant entire function f, the order σ(f),
the lower order µ(f), and the hyper order σ2(f) are defined as
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σ(f) = lim sup
r→∞

log T (r, f)
log r

= lim sup
r→∞

log logM(r, f)
log r

,

µ(f) = lim inf
r→∞

log T (r, f)
log r

= lim inf
r→∞

log logM(r, f)
log r

,

σ2(f) = lim sup
r→∞

log log T (r, f)
log r

= lim sup
r→∞

log log logM(r, f)
log r

respectively; here and in what follows, M(r, f) = max|z|=r |f(z)|.

In 1977, L. A. Rubel and C. C. Yang [15] proved that if an entire func-
tion f shares two distinct finite complex numbers CM with its derivative
f ′, then f = f ′. What is the relation between f and f ′ if an entire func-
tion f shares one finite complex number a CM with its derivative f ′? In
1996, R. Brück [2] made the conjecture that if f is a nonconstant entire
function satisfying σ2(f) < ∞, where σ2(f) is not a positive integer, and
if f and f ′ share one finite complex number a CM, then f − a = c(f ′ − a)
for some constant c 6= 0. He proved this for a = 0. He also proved that
the conjecture is true provided that a 6= 0 and N(r, 1/f ′) = S(r, f). In
2005, Al-Khaladi showed that the conjecture remains true for a nonconstant
meromorphic function f such that N(r, 1/f ′) = S(r, f) (see [1]). Recently
many mathematicians have dealt with the above conjecture: A. Banerjee &
P. Bhattacharjee [3], J. M. Chang & Y. Z. Zhu [4], J. Heittokangas et al.
[7], I. Lahiri & A. Sarkar [8], X. M. Li & C. C. Gao [10], [11], X. M. Li
& H. X. Yi [12]–[14], J. Wang & I. Laine [16], J. Wang & X. M. Li [17],
Q. C. Zhang [21], J. L. Zhang & L. Z. Yang [22], [23], among others. But
the conjecture is still an open question by now.

In 1998, G. G. Gundersen and L. Z. Yang proved the following result,
which shows that the above conjecture is true for a 6= 0 provided that f
satisfies the additional assumption σ(f) <∞.

Theorem A (see [5, Theorem 1]). Let f be a nonconstant entire function
of finite order, and let a (6= 0) be a finite complex number. If f and f ′ share
a CM, then f ′ − a = c(f − a) for some nonzero constant c.

In 2004, J. P. Wang proved the following theorem, which improved The-
orem A.

Theorem B (see [18, Theorem 1]). Let f be a nonconstant entire func-
tion of finite order, let P be a polynomial with degree p ≥ 1, and let k be a
positive integer. If f −P and f (k)−P share 0 CM, then f (k)−P = c(f −P )
for some complex number c 6= 0.

Recently J. M. Chang and Y. Z. Zhu proved the following result, which
improved Theorem B.
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Theorem C (see [4, Theorem 1]). Let f be an entire function such that
σ(f) < ∞, and let a ( 6≡ 0) be an entire function such that σ(a) < σ(f).
If f − a and f ′ − a share 0 CM, then f ′ − a = c(f − a) for some nonzero
constant c.

We will prove the following result, which improves Theorem C.

Theorem 1.1. Let f be a nonconstant entire function such that σ(f)
< ∞, and let a (6≡ 0) be an entire function such that σ(a) < σ(f). If
f − a and f (k) − a share 0 CM, where k (≥ 1) is a positive integer, then
f (k) − a = c(f − a) for some nonzero constant c.

The following example shows that the condition “σ(a) < σ(f)” in The-
orem 1.1 is the best possible.

Example 1.1 (see [4]). Let f(z) = e2z − (z− 1)ez and a(z) = e2z − zez.
Then it can be verified that f−a and f ′−a share 0 CM and σ(f) = σ(a) = 1.
But f ′ − a = ez(f − a).

In the same paper [4], J. M. Chang and Y. Z. Zhu prove the following
result.

Theorem D (see [4, Theorem 2]). Let f and a be meromorphic functions
such that f and a have finitely many poles, and such that f and a have no
common poles. If f − a and f ′ − a share 0 CM, and if σ(a) < σ(f) < ∞,
then f ′ − a = c(f − a) for some nonzero constant c.

We will prove the following result, which improves Theorem D.

Theorem 1.2. Let f be a nonconstant meromorphic function, and let
a (6≡ 0) be a meromorphic function such that f and a have finitely many
poles, and such that f and a have no common poles. If σ(a) < σ(f) < ∞,
and if f − a and f (k) − a share 0 CM, where k (≥ 1) is a positive integer,
then f (k) − a = c(f − a) for some nonzero constant c.

Lemma 2.1 in Section 2 implies the following result, which complements
Theorem 1.2.

Theorem 1.3. Let f be a nonconstant rational function, and let a be a
nonzero complex number. If f − a and f (k) − a share 0 CM, where k (≥ 1)
is a positive integer, then f can be expressed as

f(z) = a+
a(z − z1)k

2k!
+

A1

z − z1
,

where z1 and A1 ( 6= 0) are two complex numbers.

The following example shows that the condition “f and a have finitely
many poles” in Theorem 1.2 is the best possible.
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Example 1.2 (see [5]). Let f(z) = (2ez + z + 1)/(ez + 1). Then f is
a nonconstant meromorphic function but not an entire function. Moreover,
we can verify that f and f ′ share 1 CM, that µ(f) = σ(f) = 1 and that f
has infinitely many poles. However, (f ′ − 1)/(f − 1) = −ez/(ez + 1).

J. M. Chang and Y. Z. Zhu [4] prove the following result.

Theorem E (see [4, Theorem 3]). Let f be a nonconstant entire function
of finite order. If 1/f ′ and 1/f have the same fixed points with the same
multiplicities, then f = f ′.

We will prove the following result, which improves Theorem E.

Theorem 1.4. Let f be a nonconstant entire function of finite order,
and let R be a nonzero rational function that has at least one pole. If f −R
and f (k) −R share 0 CM, then f = f (k).

In 1995, H. X. Yi and C. C. Yang posed the following question.

Question 1.1 (see [20, p. 398]). Let f be a nonconstant meromorphic
function, and let a be a finite nonzero complex constant. If f, f (n) and f (m)

share the value a CM, where n and m (n < m) are distinct positive integers
not all even or odd, can we infer that f = f (n)?

Regarding Question 1.1, G. G. Gundersen and L. Z. Yang proved the
following result in 1998.

Theorem F (see [5, Theorem 2]). Let f be a nonconstant entire function
of finite order, let a (6= 0) be a finite complex number, and let n be a positive
integer. If a is shared by f, f (n) and f (n+1) IM, and shared by f (n) and f (n+1)

CM, then f = f ′.

We will prove the following result, which improves Theorem F.

Theorem 1.5. Let f be a nonconstant meromorphic function such that
f has finitely many poles and σ(f) <∞, let a (6= 0) be a finite value in the
complex plane, and let n be a positive integer. If a is shared by f, f (n) and
f (n+1) IM, and shared by f (n) and f (n+1) CM, then f(z) = γez, where γ is
a certain nonzero constant.

2. Some lemmas

Lemma 2.1 (see [20, Corollary of Theorem 1.23]). Let f be a nonconstant
meromorphic function, and let k (≥ 1) be a positive integer. Then

T (r, f) ≤ N(r, f) +N

(
r,

1
f

)
+N

(
r,

1
f (k) − 1

)
−N

(
r,

1
f (k+1)

)
+ S(r, f).

Let f =
∑∞

n=0 anz
n be an entire function. We define by µ(r) =

max{|an|rn : n = 0, 1, 2, . . .} the maximum term of f, and define by ν(r, f) =
max{m : µ(r) = |am|rm} the central index of f (see [9, p. 50]).
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Lemma 2.2 (see [9, Theorem 3.1]). If f is an entire function of order
σ(f), then

σ(f) = lim sup
r→∞

log ν(r, f)
log r

.

Lemma 2.3 (see [9, p. 5]). Let g : (0,∞) → R and h : (0,∞) → R be
increasing functions such that g(r) ≤ h(r) outside of an exceptional set E1

of finite logarithmic measure. Then, for any α > 1, there exists r0 > 0 such
that g(r) ≤ h(rα) for all r > r0.

Lemma 2.4 (see [9, Lemma 1.1.1]). Let g : (0,∞)→R and h : (0,∞)→R
be increasing functions such that g(r) ≤ h(r) outside of an exceptional set
E of finite linear measure. Then, for any α > 1, there exists r0 > 0 such
that g(r) ≤ h(αr) for all r > r0.

Lemma 2.5 (see [20, Theorem 1.21]). Suppose that f is meromorphic in
the complex plane. Then σ(f) = σ(f ′) and µ(f) = µ(f ′).

3. Proof of theorems

Proof of Theorem 1.2. From the condition σ(a) < σ(f) we know that f is
a transcendental meromorphic function. We discuss the following three cases.

Case 1. Suppose that f and a are not entire functions. Then

(3.1) a =
a1

P1
,

where P1 is a nonconstant polynomial such that P1 and 1/a share 0 CM.
From the condition that f − a and f (k) − a share 0 CM we get

(3.2)
f (k) − a
f − a

=
ceβ1

(z − ω1)k · · · (z − ωn)k
,

where c is some nonzero complex number, ω1, . . . , ωn are n distinct complex
numbers that are all poles of f, and β1 is an entire function. Let

(3.3) F = P0f,

where P0 is a nonconstant polynomial such that P0 and 1/f share 0 CM.
Then F is a transcendental entire function. From (3.3) we get

f (k) − a
f − a

=
F (k)

F + kR′0
R0
· F (k−1)

F + · · ·+
(
k
j

)R(j)
0
R0
· F (k−j)

F

1− aP0
F

(3.4)

+

(
k
j+1

)R(j+1)
0
R0
· F (k−j−1)

F + · · ·+
(
k
k−2

)R(k−2)
0
R0

· F (2)

F

1− aP0
F

+
kR

(k−1)
0
R0

· F ′F + R
(k)
0
R0
− aP0

F

1− aP0
F

,
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where

(3.5) R0 =
1
P0
.

From (3.5) and the definition of P0 we get

(3.6)
R′0
R0

=
m1

z − ω1
+ · · ·+ mn

z − ωn
,

where m1, . . . ,mn are negative integers. By induction from (3.6) we get

(3.7)
R

(j)
0 (z)
R0(z)

=
{(−1)j−1(j − 1)!

∑n
l=1ml}(1 + o(1))

zj

as |z| → ∞, where j is a positive integer satisfying 1 ≤ j ≤ k. Noting that
F is a transcendental entire function, by Lemma 2.2 and Proposition 3.3 in
[9] we know that

(3.8) ν(r, F )→∞.
Let

(3.9) M(r, F ) = |F (zr)|,
where zr = reiθ(r) and θ(r) ∈ [0, 2π). From (3.9) and the Wiman–Valiron
theory (see [9, Theorem 3.2]), we know that there exists a subset Ej ⊂ (1,∞)
with finite logarithmic measure, i.e.,

	
Ej
dt/t <∞, such that for some point

zr = reiθ(r) (θ(r) ∈ [0, 2π)) satisfying |zr| = r 6∈ Ej and M(r, F ) = |F (zr)|,
we have

(3.10)
F (j)(zr)
F (zr)

=
(
ν(r, F )
zr

)j
{1 + o(1)}

as r 6∈
⋃k
j=1Ej and r →∞. From (3.1) we see that a1 is an entire function

such that

(3.11) σ(a1P0) = σ(a1) = σ(a).

From (3.3) we get T (r, F ) = T (r, f) + O(log r). This together with (3.11)
and the condition σ(a) < σ(f) implies that

(3.12) σ(a1P0) < σ(F ).

By (3.12), Definition 1.1 and Lemma 2.3 we can deduce that there exists an
infinite sequence of points zrn = rne

iθ(rn) satisfying M(rn, F ) = |F (zrn)|,
where rn ∈ I, I ⊆ R+ is a subset with logarithmic measure ml(I) = ∞,
such that

lim
rn→∞

log logM(rn, F )
log rn

= σ(F ),(3.13)

lim
rn→∞

M(rn, a1P0)
M(rn, F )

= 0.(3.14)
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Next we will show that β2 is a constant. In fact, if k = 1, then (3.4) can
be rewritten as

(3.15)
f ′ − a
f − a

=
F ′

F + R′0
R0
− aP0

F

1− aP0
F

.

From (3.1), (3.7)–(3.10) and (3.13)–(3.15) we get

(3.16)
f ′(zrn)− a(zrn)
f(zrn)− a(zrn)

=
ν(rn, F )
zrn

{1 + o(1)}

as rn ∈ I \ E1 and rn →∞. From (3.1) and (3.16) we get

|β1(zrn)| = |log eβ1(zrn )| =
∣∣∣∣log

f (k)(zrn)− a(zrn)
f(zrn)− a(zrn)

∣∣∣∣(3.17)

≤ log{ν(rn, F )}+ log rn +O(1)

as rn ∈ I \ E1 and rn → ∞. From the condition σ(a) < σ(f) < ∞ and
(3.2) we know that there exists a sufficiently large positive number r0 and
a positive number B1 such that

T (r, eβ1) ≤ B1r
1+σ(f) (r ≥ r0),

which implies that β1 is a polynomial. From (3.17), Definition 1.1 and
Lemma 2.2 we get

(3.18) |β1(zrn)| ≤ log{ν(rn, F )}+ log rn +O(1) ≤ {2 + σ(f)} log rn
as rn ∈ I \ E1 and rn →∞.

If k ≥ 2, from (3.1), (3.4), (3.7)–(3.10), (3.13) and (3.14) we get

(3.19)
f (k)(zrn)− a(zrn)
f(zrn)− a(zrn)

=
F (k)(zrn )
F (zrn ) + kR′0(zrn )

R0(zrn ) ·
F (k−1)(zrn )

F (zrn ) + · · ·+
(
k
j

)R(j)
0 (zrn )
R0(zrn ) ·

F (k−j)(zrn )
F (zrn )

1− a(zrn )P0(zrn )
F (zrn )

+

(
k
j+1

)R(j+1)
0 (zrn )
R0(zrn ) ·

F (k−j−1)(zrn )
F (zrn ) + · · ·+

(
k
k−2

)R(k−2)
0 (zrn )
R0(zrn ) · F

(2)(zrn )
F (zrn )

1− a(zrn )P0(zrn )
F (zrn )

+
kR

(k−1)
0 (zrn )
R0(zrn ) · F

′(zrn )
F (zrn ) + R

(k)
0 (zrn )
R0(zrn ) −

a(zrn )P0(zrn )
F (zrn )

1− a(zrn )P0(zrn )
F (zrn )

=
Nn
∑k−1

j=1

(
k
j

)∑k−1
j=1(−1)j−1(j − 1)!{ν(rn, F )}k−j{1 + o(1)}

zkrn

+
{ν(rn, F )}k{1 + o(1)}

zkrn
=
(
ν(rn, F )
zrn

)k
{1 + o(1)}
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as rn ∈ I \
⋃k
j=1Ej and rn → ∞, where Nn =

∑n
l=1ml. Next in the same

manner as in the proof of (3.18) we get

(3.20) |β1(zrn)| ≤ k{log{ν(rn, F )}+ log rn}+O(1) ≤ k{2 +σ(f)} log rn

as rn ∈ I \
⋃k
j=1Ej and rn → ∞. From (3.18) and (3.20) we know that β1

is a constant. Thus (3.2) can be rewritten as

(3.21)
f (k) − a
f − a

=
c

(z − ω1)k · · · (z − ωn)k
,

where c is some nonzero constant. From (3.7) we get

(3.22)
∣∣∣∣R(j)

0 (z)
R0(z)

∣∣∣∣ ≤ dj
|z|j

,

as |z| → ∞, where j is a positive integer satisfying 1 ≤ j ≤ k, dj is some
positive constant. We discuss the following two subcases.

Subcase 1.1. Suppose k = 1. Then (3.4) can be rewritten as (3.15).
From (3.15) and (3.21) we get

(3.23)
F ′

F + R′0
R0
− aP0

F

1− aP0
F

=
c

(z − ω1) · · · (z − ωn)
.

From (3.10), (3.13) (3.14), (3.23) we get∣∣∣∣ν(rn, F )
2zrn

∣∣∣∣ ≤ |c|
|zrn − ω1| · · · |zrn − ωn|

+
|c|

|zrn − ω1| · · · |zrn − ωn|
·
∣∣∣∣a(zrn)P0(zrn)

F (zrn)

∣∣∣∣
+
∣∣∣∣a(zrn)P0(zrn)

F (zrn)

∣∣∣∣+
∣∣∣∣R′0(zrn)
R0(zrn)

∣∣∣∣
as rn ∈ I \ E1 and rn →∞. This together with (3.6) implies

ν(rn, F ) ≤ 2|c| |zrn |
|zrn − ω1| · · · |zrn − ωn|

(3.24)

+
2|c|

|zrn − ω1| · · · |zrn − ωn|
·
∣∣∣∣zrna(zrn)P0(zrn)

F (zrn)

∣∣∣∣
+ 2
∣∣∣∣zrna(zrn)P0(zrn)

F (zrn)

∣∣∣∣+
∣∣∣∣2zrnR′0(zrn)

R0(zrn)

∣∣∣∣
≤ 3

∣∣∣∣zrna(zrn)P0(zrn)
F (zrn)

∣∣∣∣+O(1)

as rn ∈ I \ E1 and rn →∞. From (3.1) we get

(3.25) σ(za1P0) = σ(a1) = σ(a).
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From (3.25) and the condition σ(a) < σ(F ) we get

(3.26) σ(za1P0) < σ(F ).

From (3.1), (3.8) and (3.24) we get

(3.27) ν(rn, F ) ≤ 3
∣∣∣∣zrna1(zrn)P0(zrn)
P1(zrn)F (zrn)

∣∣∣∣+O(1)

≤ 4
∣∣∣∣zrna1(zrn)P0(zrn)

F (zrn)

∣∣∣∣
as rn ∈ I \ E1 and rn →∞. Thus

(3.28) ν(rn, F )|F (zrn)| ≤ 4 |zrna1(zrn)P0(zrn)| ≤ 4M(rn, za1P0)

as rn ∈ I \E1 and rn →∞. From (3.13), (3.28) and Definition 1.1 we know
that

(3.29) ν(rn, F )er
σ(F )−ε
n ≤ 4M(rαn , za1P0) ≤ er

δ1+ε
n

as rn ∈ I \ E1 and rn →∞, where

(3.30) δ1 = σ(za1P0)

and ε is an arbitrary positive number. From (3.8), (3.26), (3.29) and (3.30)
we get a contradiction.

Subcase 1.2. Suppose that

(3.31) k ≥ 2.

From (3.4) and (3.21) we get

(3.32)
F (k)

F + kR′0
R0
· F (k−1)

F + · · ·+
(
k
j

)R(j)
0
R0
· F (k−j)

F

1− aP0
F

+

(
k
j+1

)R(j+1)
0
R0
· F (k−j−1)

F + · · ·+
(
k
k−2

)R(k−2)
0
R0

· F (2)

F

1− aP0
F

+
kR

(k−1)
0
R0

· F ′F + R
(k)
0
R0
− aP0

F

1− aP0
F

=
c

(z − ω1)k · · · (z − ωn)k
.
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From (3.10), (3.13), (3.14), (3.22) and (3.32) we get

(3.33) {ν(rn, F )}k

≤ 4
{
k|d1|{ν(rn, F )}k−1 + · · ·+

(
k

j

)
|dj |{ν(rn, F )}k−j + · · ·

+ k|dk−1|ν(rn, F ) + |dk|+
|a1(zrn)zkrnP0(zrn)|
|P1(zrn)F (zrn)|

}
+

|c| |zkrn |
|zrn − ω1|k · · · |zrn − ωn|k

·
{

1 +
|a1(zrn)P0(zrn)|
|P1(zrn)F (zrn)|

}
≤ 4
{
k|d1|{ν(rn, F )}k−1 + · · ·+

(
k

j

)
|dj |{ν(rn, F )}k−j + · · ·

+ k|dk−1|ν(r, F ) + |dk|+
|zkrna1(zrn)P0(zrn)|

|F (zrn)|

}
+ 2|c|

{
1 +
|a1(zrn)P0(zrn)|
|F (zrn)|

}
as rn ∈ I \

⋃k
j=1Ej and rn →∞. From (3.8) and (3.33) we get

(3.34) {ν(rn, F )}k ≤
16|zkrna1(zrn)P0(zrn)|

|F (zrn)|
+O(1) ≤

17|zkrna1(zrn)P0(zrn)|
|F (zrn)|

as rn ∈ I \
⋃k
j=1Ej and rn →∞. From (3.34) we get

(3.35) {ν(rn, F )}k|F (zrn)| ≤ 17|zkrna1(zrn)P0(zrn)| ≤ 17M(rn, zka1P0)

as rn ∈ I \
⋃k
j=1Ej and rn →∞. From (3.1) and (3.3) we get σ(a1) = σ(a)

and σ(F ) = σ(f) respectively. This together with σ(zka1P0) = σ(a1) and
the condition σ(a) < σ(f) gives

(3.36) δ2 < σ(F ),

where

(3.37) δ2 = σ(zka1P0).

From (3.13), (3.35), (3.37) and Definition 1.1 we get

(3.38) {ν(rn, F )}ker
σ(F )−ε
n ≤ 17er

δ2+ε
n

as rn ∈ I \
⋃k
j=1Ej and rn → ∞. From (3.8), (3.36) and (3.38) we get a

contradiction.

Case 2. Suppose that f is not an entire function and a is an entire
function. Proceeding as in Case 1 we get contradictions.

Case 3. Suppose that f is an entire function. Then from the condition
that f − a and f (k) − a share 0 CM we get
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(3.39)
f (k) − a
f − a

= eβ2 ,

where β2 is an entire function. Proceeding as in Case 1 we deduce from
(3.39) that β2 is a constant, which yields the conclusion of Theorem 1.2.

Theorem 1.2 is thus completely proved.

Proof of Theorem 1.1. By the assumptions of Theorem 1.1 we have
(3.39). Next in the same manner as in Case 1 of the proof of Theorem
1.2 we get the conclusion of Theorem 1.1.

Proof of Theorem 1.4. By the assumptions of Theorem 1.4 we have

(3.40)
f (k) −R
f −R

= eβ3 ,

where β3 is an entire function. If f is a polynomial, then it follows from
(3.40) that β3 is a constant. If eβ3 = 1, from (3.40) we get the conclusion of
Theorem 1.4. Next we suppose that eβ3 6= 1. By rewriting (3.40) we get

(3.41) f (k) − feβ3 = R(1− eβ3).

From (3.41) and the supposition that R has at least one pole we get a
contradiction. Next we suppose that f is a transcendental entire function.
Proceeding as in Case 1 of the proof of Theorem 1.1 we infer from (3.41)
and the condition σ(f) < ∞ that β3 is a polynomial. If β3 is not constant,
from (3.41) we get

(3.42) T (r, eβ3) ≤ 2T (r, f) +O{log T (r, f) + log r} (r ∈ I \ E).

From (3.42) and Lemma 2.4 we know that there exists a sufficiently large
positive number r0 such that

(3.43) T (r, eβ3) ≤ 2T (2r, f) +O{log T (2r, f) + log r + log 2} (r ≥ r0).

From (3.43) and Definition 1.1 we get

(3.44) 1 ≤ deg(β3) = σ(eβ3) ≤ σ(f).

From (3.44) and σ(R) = 0 we get

(3.45) σ(R) < σ(f).

From (3.45) and Theorem 1.2 we find that eβ3 is a constant, which con-
tradicts the above supposition. Next we suppose that β3 is a constant. If
eβ3 6= 1, by rewriting (3.40) as (3.41) and using the condition that R has
at least one pole we get a contradiction. Thus eβ3 = 1. This together with
(3.40) yields the conclusion of Theorem 1.4.

Proof of Theorem 1.5. We discuss the following two cases.

Case 1. Suppose that f, and so f (n), is a nonconstant rational function.
Then from Theorem 1.3 and the condition that f (n) and f (n+1) share a CM
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we get

(3.46) f (n)(z) = a+
a(z − z1)

2
+

A1

z − z1
,

where z1 and A1 (6= 0) are two complex numbers. From (3.46) we get a
contradiction.

Case 2. Suppose that f is a transcendental meromorphic function. Then
from Lemma 2.5 we get

(3.47) σ(f) = σ(f ′).

Similarly

(3.48) σ(f (j)) = σ(f j+1) (1 ≤ j ≤ n− 1).

From (3.47) and (3.48) we get

(3.49) σ(f) = σ(f (n)).

From (3.49) and the condition σ(f) <∞ we get

(3.50) σ(f (n)) <∞.
From (3.50), Theorem 1.2 and the condition that f (n) and f (n+1) share a
CM we get

(3.51) f (n+1) − a = c(f (n) − a),

where c is some nonzero constant. From (3.51) we know that f is a noncon-
stant entire function. This together with Theorem F yields the conclusion
of Theorem 1.5.
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