
ANNALES

POLONICI MATHEMATICI

98.3 (2010)

Solutions to a class of singular quasilinear elliptic equations

by Lin Wei and Zuodong Yang (Nanjing)

Abstract. We study the existence of positive solutions to
div(|∇u|p−2∇u) + q(x)u−γ = 0 on Ω,

u = 0 on ∂Ω,

where Ω is RN or an unbounded domain, q(x) is locally Hölder continuous on Ω and
p > 1, γ > −(p− 1).

1. Introduction. In this paper, we are concerned with the existence of
positive entire solutions to quasilinear elliptic equations of the type

(1)
{

div(|∇u|p−2∇u) + q(x)u−γ = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

where Ω is a domain in RN with C2,α boundary, q(x) is locally Hölder
continuous on Ω and p > 1, γ > −(p − 1). When Ω = RN , the boundary
condition is omitted. By a positive entire solution to equation (1), we mean
a positive function u ∈ C1(RN ) which satisfies (1) at every point of RN

(see [10] and references therein). If lim|x|→∞ u(x) = 0, we call it a positive
decaying solution.

Equations of the above form are mathematical models occurring in the
study of the p-Laplace equation, generalized reaction-diffusion theory, non-
Newtonian fluid theory [2, 27], non-Newtonian filtration [19] and the turbu-
lent flow of a gas in a porous medium [8]. In non-Newtonian fluid theory,
the quantity p is a characteristic of the medium. Media with p > 2 are called
dilatant fluids and those with p < 2 are called pseudoplastics. If p = 2, they
are Newtonian fluids.

In recent years, the existence and non-existence with uniqueness of pos-
itive solutions to the quasilinear eigenvalue problems
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(2) div(|∇u|p−2∇u) + λf(u) = 0 in Ω,

(3) u(x) = 0 in ∂Ω,

with λ > 0, p > 1 on a bounded domain Ω ⊂ RN , N ≥ 2, have been stud-
ied by many authors (see [10–16, 29–31, 35, 37] and the references therein).
When f is strictly increasing on R+, f(0) = 0, lims→0+ f(s)/sp−1 = 0 and
f(s) ≤ α1 + α2s

µ, 0 < µ < p − 1, α1, α2 > 0, it was shown in [12] that
there exist at least two positive solutions to (2)–(3) when λ is sufficiently
large. If lim infs→0+ f(s)/sp−1 > 0, f(0) = 0 and the monotonicity hypoth-
esis (f(s)/sp−1)′ < 0 holds for all s > 0, it was proved in [13] that problem
(2)–(3) has a unique positive solution when λ is sufficiently large. Moreover,
it was also shown in [14] that problem (2)–(3) has a unique positive large
solution and at least one positive small solution when λ is large and f is non-
decreasing, there exist α1, α2 > 0 such that f(s) ≤ α1 +α2s

β, 0 < β < p−1,
lims→0+ f(s)/sp−1 = 0, and there exist T, Y > 0 with Y ≥ T such that

(f(s)/sp−1)′ > 0 for s ∈ (0, T )

and
(f(s)/sp−1)′ < 0 for s > Y.

Hai [17] considered the case when Ω is an annular domain. He obtained
the existence of positive large solutions to problem (2)–(3) when λ is suffi-
ciently small. Xuan & Chen [32] proved that the singular problem (1) has
a unique positive radial solution if q is a radially symmetric and continuous
function and positive on Ω = BR (here BR is a ball). The existence of entire
solutions to singular and non-singular problems (1) has been considered in
[11, 26, 36, 33, 34].

In this paper, we consider the cases that Ω is RN or an unbounded
domain under new conditions. Our results complement those in [11, 26, 36,
33, 34]. For p = 2, the singular semilinear elliptic problems{

∆u+ q(x)u−γ = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

have been extensively studied when Ω ⊂ RN or Ω = RN (see [3–7, 18, 21–25,
38]). When p 6= 2, the problem becomes more complicated since certain nice
properties inherent to the case p = 2 seem to be lost or at least difficult to
verify. The main differences between the cases p = 2 and p 6= 2 can be found
in [11, 15].

To state our result, we write x = (x′, x′′) with x′ = (x1, x2, x3). By
modifying the argument in the proof of Theorem 1 in [18], we will obtain
the following theorem.

Theorem 1.1. Let q(x) be a locally Hölder continuous function on Ω,
where Ω = RN , N ≥ 3 or Ω is a C2,α smooth unbounded subdomain of RN .
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Assume that q(x0) > 0 for some x0 ∈ Ω. If there exist positive constants C
and σ > p− 1 such that

0 ≤ q(x) ≤ C

(1 + |x′|
p
p−1 )σ

then the equation{
−div(|∇u|p−2∇u) = q(x)u−γ on Ω,
u = 0 on ∂Ω,

has a positive solution for any γ > −(p− 1).

Theorem 1.1 is proved by constructing upper and lower solutions on
bounded domains and taking a limit. First, let us fix some notation.

Since Ω is a C2,α unbounded domain, we can choose a sequence of subdo-
mains of Ω, denoted by Ωm, m = 1, 2, . . . , such that (1) Ωm ⊂ Ωm+1 ⊂ Ω
for all m; (2)

⋃
Ωm = Ω; (3) each Ωm is a bounded C2,α domain; (4)

dist(0, ∂Ω \ ∂Ωm) → ∞ as m → ∞. When Ω is indeed RN , we can simply
choose Ωm = Bm(0), the family of balls centered at the origin with radius m.

A function p(x) on Ω is said to have the property (HP) if p(x) ≥ 0 and
when m is large, the eigenvalue problem

−div(|∇u|p−2∇u) = λq(x)|u|p−2u on Ωm(0),
u = 0 on ∂Ωm(0),

has its first eigenvalue less than one.

2. Upper solutions. In this section, we will construct an upper solution
to (1). For x ∈ RN , we write x = (x′, x′′) with x′ ∈ R3.

Lemma 2.1. If there exist positive constants C and σ > p− 1 such that

(4) 0 ≤ q(x) ≤ C

(1 + |x′|
p
p−1 )σ

on Ω

then the equation
−div(|∇u|p−2∇u) = q(x)u−γ

has an upper solution ω(x) of the form

ω(x) = A{1 + (1 + |x′|
p
p−1 )

α
p−1 }

for some constants A > 0 and α < 0.

Proof. First we consider the case of N = 3. Let

ω1(x) = 1 + (1 + |x|
p
p−1 )

α
p−1

where −(p− 1)/p < α < 0, p− 1 + |α| < σ, x ∈ R3. Then

−div(|∇ω1|p−2∇ω1) = −(|ω′1|p−2ω′1)′ − 2
|x|
|ω′1|p−2ω′1.
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We compute successively:

ω′1 = (1 + |x|
p
p−1 )

α
p−1
−1 αp

(p− 1)2
|x|

1
p−1 ,

|ω′1|p−2ω′1 =
α|α|p−2pp−1

(p− 1)2(p−1)
(1 + |x|

p
p−1 )α−p+1|x|,

(|ω′1|p−2ω′1)′

=
pp−1

(p−1)2p−2
α|α|p−2

[
p(α−p+1)

p− 1
(1+|x|

p
p−1 )α−p|x|

p
p−1 +(1+|x|

p
p−1 )α−p+1

]
,

−(|ω′1|p−2ω′1)′ − 2
|x|

(|ω′1|p−2ω′1)

=
pp(α− p+ 1)|α|p−1

(p− 1)2p−1
(1+ |x|

p
p−1 )α−p|x|

p
p−1 +3

pp−1|α|p−1

(p− 1)2p−2
(1+ |x|

p
p−1 )α−p+1

=
|α|p−1pp−1(1 + |x|

p
p−1 )α

(p− 1)2p−1

[
3(p− 1) + p(α− p+ 1)

(1 + |x|
p
p−1 )p−1

− p(α− p+ 1)

(1 + |x|
p
p−1 )p

]
,

A direct calculation shows

−div(|∇ω1|p−2∇ω1) = V1(x)ωp−1
1 on R3

where

V1(x) =
pp−1|α|p−1(1 + |x|

p
p−1 )α

(p− 1)2p−1[1 + (1 + |x|
p
p−1 )

α
p−1 ]p−1

×
[

3(p− 1) + p(α− p+ 1)

(1 + |x|
p
p−1 )p−1

− p(α− p+ 1)

(1 + |x|
p
p−1 )p

]
Since −(p− 1)/p < α < 0 and V1(x) > 0 on R3, there exists a constant C1

such that

V1(x) ≥ C1

(1 + |x|
p
p−1 )p−1+|α|

on R3.

For any N ≥ 3, we set V (x) = V1(x′), ω(x) = Aω1(x′). Then if A is
large, ω(x) > 1 and γ > −(p− 1), for x ∈ Ω, we have

−div(|∇ω|p−2∇ω) = V (x)Ap−1ωp−1
1 ≥ C1

(1 + |x′|
p
p−1 )p−1+|α|

Ap−1ωp−1
1

≥ C1

(1 + |x′|
p
p−1 )p−1+|α|

Ap−1ω1(x)−γ =
C1A

p−1+γ

(1 + |x′|
p
p−1 )p−1+|α|

ω(x)−γ

≥ C

(1 + |x|
p
p−1 )σ

ω(x)−γ ≥ q(x)ω(x)−γ .

This is what we want.
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3. Local solutions. We consider

(Pm)
{
−div(|∇u|p−2∇u) = q(x)u−γ on Ωm,
u = 0 on ∂Ωm.

We will construct solutions for (Pm) if m is large. We recall that a function
q1(x) ≥ 0 on Ω is said to have the property (HP) if whenever m is large, the
following eigenvalue problem has its first eigenvalue λ1(m) less than one:

(5)
{
−div(|∇u|p−2∇u) = λq1(x)|u|p−2u on Ωm,
u = 0 on ∂Ωm.

By [26, 33], we have the following lemma:

Lemma 3.1 (Weak Comparison Principle). Let Ω be a bounded domain
in RN (N ≥ 2) with smooth boundary ∂Ω, and let θ : (0,∞) → (0,∞) be
continuous and nondecreasing. If u1, u2 ∈W 1,p(Ω) satisfy
�

Ω

|∇u1|p−2∇u1∇ψ dx+
�

Ω

θ(u1)ψ dx ≤
�

Ω

|∇u2|p−2∇u2∇ψ dx+
�

Ω

θ(u2)ψ dx

for all nonnegative ψ ∈W 1,p
0 (Ω), then the inequality

u1 ≤ u2 on ∂Ω

implies
u1 ≤ u2 in Ω.

Lemma 3.2. If q(x) ≥ 0 on Ω, and q(x) is not identically zero on Ω,
then there exists a function q1(x) having the property (HP) and a sequence
of numbers δm such that

(6) q(x)t−γ ≥ q1(x)tp−1 for x ∈ Ωm, 0 < t < δm.

Proof. Since q(x) ≥ 0 and q(x) is not identically zero, the first eigenvalue
µ1(m) of the following problem is positive for all m ≥ m0 for some m0:

(7)
{
−div(|∇u|p−2∇u) = µq(x)|u|p−2u on Ωm,
u = 0 on ∂Ωm.

It is well known that µ1(m) is strictly decreasing in m. Now we set q1(x) =
q(x)/µ1(m0). If δ is small and γ > −(p − 1), we have q(x)t−γ ≥ q1(x)tp−1

on RN for 0 < t < δ. It is clear that q1(x) has the property (HP). Thus we
can choose δm = δ for a small number δ.

Since the function q1(x) has the property (HP), we let ψm(x) with
maxΩm ψm(x) = 1 be the positive first eigenfunction of the eigenvalue prob-
lem

(8)
{
−div(|∇u|p−2∇u) = λq1(x)|u|p−2u on Ωm,
u = 0 on ∂Ωm.
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We are ready to construct local solutions. Denote by ω(x) the upper
solution constructed in Lemma 2.1.

Lemma 3.3. Suppose that q(x) satisfies the assumptions of Theorem 1.1.
For each fixed and large m, there exists a positive solution um(x) to the
problem

(Pm)
{
−div(|∇u|p−2∇u) = q(x)u−γ on Ωm,
u = 0 on ∂Ωm.

Furthermore, um(x) satisfies

(9) 0 < um(x) ≤ ω(x) on Ωm,

and for a fixed large s, when m > s we have

(10)
1
2
δsψs(x) ≤ um(x) on Ωs,

where δs is defined in Lemma 3.2.

Proof. By Lemma 3.2, there exists a function q1(x) having the property
(HP) and a sequence of numbers δm such that

(11) q(x)t−γ ≥ q1(x)tp−1 for x ∈ Ωm, 0 < t < δm.

We may assume that (recall ω(x) is an upper solution)

(12) ω(x) ≥ 2δm on Ωm.

Now let z(t) be a function satisfying (1) z(t) = 1 if 0 < t < 1
2δm; (2) z(t) = 0

if t > 3
4δm; (3) z(t) ≥ 0, z ∈ C2. For small ε > 0, from (11) it is easy to

check that

(13) q(x)(t+ εz(t))−γ ≥ q1(x)tp−1

for x ∈ Ωm, 0 < t <
1
2
δm, 0 < ε <

1
2
δm.

And (12) implies

q(x)(t+ εz(t))−γ = q(x)t−γ for x ∈ Ωm.
Thus for any m, ω(x) is an upper solution of the boundary value problem

(Pε,m)
{
−div(|∇u|p−2∇u) = q(x)(u+ εz(t))−γ on Ωm,
u = 0 on ∂Ωm.

Since 0 < µ < 1
2δm and m is large, (8) and (11) imply

−div(|∇(µψm)|p−2∇(µψm)) = λ1(m)(µψm)p−1q1(x)≤ q1(x)(µψm)p−1(14)
≤ q(x)(µψm)−γ .

We have used the fact that λ1(m) < 1 if m is large. Thus µψm(x) is a lower
solution to (Pε,m). Choosing µ smaller if necessary, we may assume

(15) µψm(x) < ω(x) on Ωm.
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Thus (Pε,m) has a pair of upper and lower solutions ω(x) and µψm(x). It is
well known that each such pair yields a solution. Thus (Pε,m) has a solution
um(x, ε) satisfying

(16) µψm(x) ≤ um(x, ε) ≤ ω(x) on Ωm.

Let φm(x) be a function defined by

−div(|∇φm|p−2∇φm) = 1 on Ωm, φm = 0 on ∂Ωm.

Then the same proof of Lemma 1.13 in [6] shows that for any β > 0 there
is a constant M(β,m) such that

(17) um(x, ε) ≤ β +M(β,m)φm(x) on Ωm uniformly in ε.

Since both bounds in (16) are independent of ε, it is easy to see that a
subsequence of um(x, ε) (with fixed m) converges to a function um(x) in
the C1

loc topology. Thus um(x) is a solution of the equation in (Pm) with
um(x) > 0 on Ωm. And (17) implies

(18) 0 < um(x) ≤ β +M(β,m)φm(x) on Ωm

for any β > 0. Since φm(x) is continuous on Ωm and um(x) = 0 on ∂Ωm, it
follows that um(x) is a solution of (Pm).

Now let us take care of (9) and (10). First, (9) is an immediate conse-
quence of (16) by taking the limit (for a subsequence). For (10), we observe
that we only need to prove that for a fixed and large s, if m > s,

(19)
1
2
δsψs(x) ≤ um(x, ε) on Ωs.

Then (9) follows from (19) by letting ε→ 0+ (for a subsequence).

The next lemma and its proof are similar to that of Lemma 1.13 in [19].
We show that um(x) is uniformly controlled near a fixed point on ∂Ω. Since
Ω is C2,α, for x0 ∈ ∂Ω, there exists a ball B in RN such that B ∩ Ω̄ = {x0}.
Then it is clear that we can find a C3 domain Ω0 such that ∂Ω ∩ ∂B
contains a neighborhood of x0 in ∂B, Ω0 ∩B is empty and Ω0 ∩Ω contains
a neighborhood of x0 in Ω. Now we choose a nonnegative function h(x) on
∂Ω0 such that (1) h(x) = ω(x) on ∂Ω0 ∩Ω; (2) h(x) = 0 in a neighborhood
of x0 on ∂Ω0; (3) h ∈ C3. Let φ0(x) be the function defined by{

−div(|∇φ0(x)|p−2∇φ0(x)) = 1 on Ω0,
φ0(x) = h(x) on ∂Ω0.

Then we have the following lemma.

Lemma 3.4. For any β > 0, there exists a constant M depending only
on β and Ω0 such that

(16) um(x) ≤ β +Mφ0(x) on Ω0 ∩Ω
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where um(x) is the solution obtained in Lemma 3.3 (when Ω is not RN ) and
m is large.

Proof. Because m is large, we have Ω0 ∩Ω ⊂ Ω0 ∩Ωm. Let

Mp−1 = sup{q(x)t−γ | x ∈ Ω0 ∩Ω, t ≥ β}+ 1,
Ω0(m,β) = {x | x ∈ Ω0 ∩Ω, um(x) > β}.

Then on Ω0(m,β), we get

(17) − div(|∇um(x)|p−2∇um(x)) = q(x)u−γm ≤Mp−1

= −div(|∇(β +Mφ0)|p−2∇(β +Mφ0)).

If x1 ∈ ∂Ω0(m,β), we have um(x1) = β or x1 ∈ ∂Ω0 ∩ Ω. Since φ0(x) =
h(x) = ω(x) ≥ um(x) for x ∈ ∂Ω0 ∩Ω, we see that

(18) um(x) ≤ β +Mφ0(x) on ∂Ω0(m,β).

Thus (17), (18) and Lemma 3.1 imply that

(19) um(x) ≤ β +Mφ0(x) on Ω0(m,β).

Since Ω0∩Ω = Ω0(m,β)∪{x | x ∈ Ω0∩Ω, um(x) ≤ β}, (19) implies (16).

4. Proof of Theorem 1.1. By Lemma 3.3, we can choose a subse-
quence of um such that for some function u ∈ C1(Ω), um(x) converges to
u(x) uniformly in the C1

loc(Ω) topology (for example, see Lemma 1.5 and
Theorem 1.1 in [5]). Hence u satisfies

−div(|∇u(x)|p−2∇u(x)) = q(x)u−γ(x) on Ω.

Also (10) implies that for any fixed and large s,

1
2
δsψs(x) ≤ u(x) on Ωs.

Thus u(x) is positive on Ω.
Finally, for x0 ∈ ∂Ω, (16) implies that

0 < u(x) ≤ β +Mφ0(x) on Ω0.

Since β is arbitrary, φ0(x) is continuous on Ω̄0 and φ0(x0) = 0, we see that
u(x) is continuous at x0 and u(x0) = 0. Since x0 is an arbitrary point on
∂Ω, it follows that u(x) is continuous up to the boundary of Ω and u(x) = 0
on ∂Ω.
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