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Asymptotic behavior of the sectional curvature of the
Bergman metric for annuli

by WELODZIMIERZ ZWONEK (Krakow)

Abstract. We extend and simplify results of [Din 2010] where the asymptotic be-
havior of the holomorphic sectional curvature of the Bergman metric in annuli is studied.
Similarly to [Din 2010] the description enables us to construct an infinitely connected
planar domain (in our paper it is a Zalcman type domain) for which the supremum of the
holomorphic sectional curvature is two, whereas its infimum is equal to —oo.

For a domain D C C*, j =0,1,..., z € D, X € C" define
Jg)(z;X) =
sup{| fD(2)(X)[* : f € Li(D), f(2) = 0,..., f97(2) = 0, | fll 12y < 13-
Note that the functions above are the squares of the operator norms of
continuous operators defined on a closed subspace of L3 (D).
Let us restrict ourselves to the case when D is bounded. Note that

Jg) )(Z;X ) is independent of X # 0 and is equal to the Bergman kernel
Kp(z,z). Moreover, we may express the Bergman metric as BQD(Z;X) =

Jl()l)(z; X)/J](jo)(z; X), X # 0. And finally the sectional curvature is given by
the formula
Jg))(z;X)Jg)(z;X)
1
J é ) (2; X)?
Below we list a number of simple properties of the above functions.
The transformation formula for a biholomorphic mapping F' : D1 — Do

Rp(zX)=2— . X0

is
. 5 (]
JB)(z.X) = [det F'(2) T ) (F(=): F'() X),
from which we get, among other things, the biholomorphic invariance of the
sectional curvature: Rp, (z; X) = Rp,(F(z); F'(2)X).
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If Dy C Dy then J§) > J3).
We shall also need the continuity property of the functions just intro-

duced with respect to increasing families of domains.
PROPOSITION 1.

(1) Let D be a bounded domain in C". Let D = |J,2, D, where D, C
Dyy1, Dy, is a domain in C". Then for any j the sequence (J(DJV))V is

icreasing and convergent locally uniformly on D xC™ to Jg). In par-
ticular, the sequence (Bp,) (respectively, (Rp,),) is locally uniformly
convergent to Bp (respectively, Rp) on D x (C™\ {0}).

(2) Let D be a bounded domain in C"™. Assume that D = J,- | G, where
Gy is a domain in C". Assume additionally that for any compact

set K C D there is a vy such that K C G, for any v > vy. Then
the sequence (Jg”))lcjozl 1s locally uniformly conergent to J(Dj). In par-
ticular, the sequence (Bg,) (respectively, (Rq,)) is locally uniformly
convergent to Bp (respectively, Rp) on D x (C™\ {0}).

For a domain D C C, z € D we put Jg)(z) = Jg)(z;l), Bp(z) =
Bp(z;1), Rp(z) := Rp(z;1). Recall that Jg) = J(DjiA on D\ A where A is
any closed polar set in D such that D\ A is connected.

Denote P(Ag, 7, R) :={A € C:r < |A—=X| <R},0<7r<R< o0,
Ao € C. We also put P(r,R) := P(0,r, R).

We are going to prove the following result.

THEOREM 2. Letr € (0,1), o € (0,1). Then

Py (%) ~ —1<1)gr’ P Ty (1) ~ QTQQ;F_QZZ(la)’
I 0% = 05
where
A0~ a2+ )+ )
B(r) ~ 2 1+ _2:22(1@’

for some A < —100. The symbol ¢(r) ~ () means that for any sufficiently
small € > 0 one has o(r) — (r) = P (r)o(r).
In particular,

{ —oco fora € (1/3,2/3),
2

lim Rp1)(r®) = for a € (0,1/3] U [2/3,1).

r—0+t
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The above theorem gives a generalization of a result from [Din 2010]
(where the cases &« = 1/2, a = 0.3 and @ = 0.7 have been handled). Addition-
ally, we present in Remark 4 the precise asymptotic behavior of RP(T;]_)(?"Q)
asr — 0T,

As in [Din 2010], we can make use of Theorem 2 to construct an infinitely
connected planar bounded domain with the supremum of the sectional cur-
vature equal to 2 and its infimum equal to —oo. The domain constructed by
us is a Zalcman-type domain (unlike that in [Din 2010]) and the proof of the
above fact does not use, in contrast to [Din 2010|, any sophisticated means.

Recall that the example from [Din 2010] (and certainly also the one in
Corollary 3) may be seen as the final one in presenting examples where
the supremum of the sectional curvature may be 2 (see [Chen-Lee 2009]) or
its infimum may be equal to —oo (see [Her 2007])—the example has both
properties simultaneously.

COROLLARY 3. Letf € (0,1). Then there is a strictly increasing sequence
(n)k of positive integers such that A(0™, 02" ) N A(0™,0%™) = () for k # 1,
INCEN O N %]D) and

sup{Rp(z) : z€ D} =2, inf{Rp(z):2z€ D} = —o0,
where D= 3D\ (Up2; A0, 6*+)U{0}) and A(a,r) == {z € C: [z—a|<r}.

Proof of Theorem 2. We start with the analysis of some more general

situation. For 0 < r < R denote aj™* := H)\”H?D(Tﬂ), n € Z.
Note that
R2(n+1) _ ).2(n+1)
1 y N _17
s =1 2+ 7
log R — logr, n=—1.

For f € L}(P(r,R)), f(A) = Y_,.cz, anA™ we have the following identity:
£ B0 m) = D lanl?a™.
nez
Assume now that » < 1 < R. Notice that

FOR =[S | =[S an/ar®

2

nez nez OKQR
1 1
2 rR 2
<M janlal®y — = 1 pn Y. g
neZ nez On nez n

Therefore, J 1(30()7, R)

sufficient to take f € LZ(P(r,R)) with a,, = 1/an

(1) <> ,ezl/ bl In fact, we have equality above—it is
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Our next aim is to give a formula for J ](31(17 R)(l) (which together with the
previous one and general properties of the Bergman metric gives a formula
for the Bergman metric of an arbitrary annulus at any point—see Remark 4).

We prove the equality

n— )2
(1) ‘]1(31()7~,R)(1) =2 %

neL Qn

for a suitably chosen 3 € R (to be given precisely later).

Let us start with f € L? (P, ) of the form f(\) =}, ., an A" such that
Y nez @n = f(1) = 0. For such an f the following estimate holds:

2= S | =[S0 - Baa = > ;;—i o

nez nez
2
n —
SO S papt = O e

ne’ " neL nez n

This gives the inequality “<” (with arbitrary ). Now we take f with a,, =
n— B/ay™, where 8 is such that Y nez @n = f(1) = 0. If such a 3 could be
found we would get the equality in (1). But this means that we need to find
a 3 such that ), (n— 3)/042’1% = 0, which is satisfied exactly if

ZnGZ a?vR
n
1
EnGZ a:;R

Consequently, with this § we get the equality

_ 2 —
FUNNTI I g Uty ket L) e
ne’z fo7% nez n nez Odn
n — nﬁ (PT,R(2)SOT,R<O) - QOT,R(l)Z
R orr(0) ’

where 0, r(j7) =D,z nd Japt

Let us now go on to the case of the annulus P(r,1) where 0 < r < 1.
Our aim is to get the asymptotic behavior of the curvature of P(r,1) at r®
(for a fixed o € (0,1)) as r — 0T First recall that

79

or 1)(7,04) _ 7,—2(j+1)ozj(j) (1)

P(rli-ar-a)

l—-a ,.—

For simplicity we shall write oy, = oy 7 and J@ (1) = Jg()rl_a’r_a)(l).
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Then we get the following formulas:

1— 7,,2(71—‘,—1)
n = 2(n 4 1)T2(n+1)a’ n# -1,
27
—logr, n=—1

From now on we forget about the constant 27. Skipping the factor 1/(27) is
justified by the formula for 2 — R(r, o) in Remark 4.
Note that for n > 0 the following formula holds:
1— T2(n+1)
2(n + 1)r2(rth)(1-a)’

Let us define (for j =0,1,...)

O_n—2 =

. n’
¢(j) == o
neZ
-1 & 2n+41 . )
_ =
- logr ‘Hﬂ(J)

Then we have
p(2)9(0) — p(1)?
»(0) '
Note that the above formulas depend on r and «a.
Our next aim is to find a formula for J)(1). We proceed as above.
Let us start with f € O(P(r’=*,r=®)) with f(\) = Y, 7 an A" such

that > ., a, = f(1) =0and >, ., na, = f'(1) = 0. Then
2

JO1) = p(0),  JV(1) =

PO =3 0 -] =302 = Bn— 1)
nez nez
n? —ﬂn— 2 (n* — Bn —v)? 9
Z an@ SZQ—Z]an| Q.
nez n nez

neL

As before if we find 3, v such that for a, = (n? — fn — )/, the equalities
Y ez Man = Y7 an = 0 hold then we shall have the equality

J(2)(1) _ Z (TL2 — in - 7)2 _ Z n2(n2 - ﬁn - ’7)

[0
nez n nez n

The above properties are satisfied iff for some G,y € R,

nQ—ﬁn—w_ nZ—ﬁn—’y_
ZT—O, ZnT—O.

nez n nez
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The above is equivalent to the following system'

ﬂZ*HZ Z*

ne”

ﬁZ*ﬂZ Z*

neL

Since (3,,c7 aﬂ)z—znez 2—2 nez an < 0, the above system has the unique

solution
2 3

5= ZnEZ 27 neZ % - ZnGZ 27 nez o%" i ©(2)p(1) — 9(3)p(0)
(ZnEZ i)Q - ZTLEZ % ZnEZ é 80(1)2 N

Cnen e Tnez e — (Tnez b)) _ o(1)0(3) - 9(2)

(Crez ) = Sz B S en & 912 = 2(2)¢(0)

Therefore, we may write

TO(1) = p(4) = Bo(3) — 74(2)

_ p(@)e(1)? = o(1)e(2)9(0) — 20(3)0(2)¢(1) + ¢(3)%0(0) + (2)°

p(1)? = ¢(2)¢(0) '
So let us fix @ € (0,1). Then for any € > 0 small enough,

1 or2a or2(1—a) B
#(0) = — log r + 1—r2 + 1 — g2 + o(r7e) 4 o(r21mo)te),

The asymptotic behavior of ¢(1)2 — (2)¢(0) is the following. The coef-
ficient of the expressmn of highest order (i.e. of = )2) vanishes and the

coefficient of is

logr

o0

—(1h(2) + 9(0) + 20(1)) = — Z M(ﬂ(nﬂ)a + P2 —a)y
T 20D :
The remaining expressions are 1(1)2 — 1(2)1(0). Therefore, one can easily
verify that the asymptotic behavior is the following: for any € > 0 small

enough,

©(1)> — (2)p(0) =

1 2r2  op2(1-a)
<1 I P

2at¢€ 2(1—a)+e
“Togr > + o(r**TF) + o(r ).
We still have to consider the asymptotic behavior of the expression
p(4)0(1)? = o(4)p(2)9(0) — 20(3)p(2)p(1) + ©(3)%0(0) + ¢(2)°.

First note that the coefficients of the expressions = 2,3, van-
ish. On the other hand, the coefficient of

1
(—Togr)® J
is

1
—logr
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$(1)? = 20(1)1h(4) — P(4)1h(2) — P(4)1(0) — $(2)3(0)
= 2(=9(2)9(1) + Y3)¥(1) — ¥ (2)9(3)) + ¥ (3) — 20(0)¥(3) + 3¥(2)*.
One can calculate that for any € > 0 small enough the last expression equals
2 6(1—a)
- 2)2 (_24) + : 2 4
(1—1r2) (1—=r2)(1—r4)
6a
r 95 2 6(1—a)+e 6a+e
i (20 o)+ 0t s ofrte)
for some A < —100.
Combining all the above results we easily get the desired asymptotic
behavior as claimed in the theorem. =

(4)

REMARK 4. Recall the formula for the curvature
JO(1)J3) (1)
(J(M(1))2
Then the result of Theorem 2 gives, in particular, the asymptotic behavior

of the expression R(r,«) (and consequently the asymptotic behavior of the
holomorphic curvature) as r — 0%, which is as follows:

RP(T,l)(ra) =2- R(T> Oé) =2-

( —ligr for av € (0,1/3],
M for a € (1/3,1/2],
T6(1_°‘)_;(—log 7 for a € (1/2,2/3),
—ligr for a € [2/3,1).

REMARK 5. Note that in the proof of Theorem 2 we have obtained a for-
mula for the Bergman kernel and metric in the annulus (compare [Her 1983,
[Jar-Pfl 1993]) and a relatively simple expression for the sectional curvature
of the annulus.

Proof of Corollary 3. We construct inductively sequences (ny), (), (yx)
and (rg) such that 6™ + 0?1 < z1,4; < 1/2 and for any k = 1,2,...
the following properties hold: §™+1 + 02"+1 < 231, yppy < O™ — G270,
Orr+1 4 @24 < g < 0™ — 02 and for any compact L C A(0,7411)
for which 2 = D\ (U?Z1 A(67,6?") U L) is connected the inequalities
Ro(z;) >2—1/j, Ro(y;) < —j hold for any j =1,... k.

Then we put D := 3D\ (U2, A(6™,6%"7) U {0}). From the properties
stated above we will obtain the inequalities Rp(zy) > 2—1/k, Rp(yx) < —k,
which finishes the proof.
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We turn to the construction of the above sequences. We put r; := 1/4.
The possibility of choosing ny, x1, y1 as desired follows from Theorem 2
together with the biholomorphic invariance of the sectional curvature (we
have to choose n; sufficiently large). The possibility of choosing ro follows
from Proposition 1. Now assume the system as above has been chosen for j =
1,...,k (with the choice of nj, z;,y;, j=1,...,k,and rj, j=1,...,k+1).

First note that choosing njy1 > ng so that 0™+1 4+ 27+1 < rp ) we
achieve that the recursively defined set Dy = 1D\ (Ufill YNCERCEED)
satisfies Rp, ., (zj) > 2—1/j, Rp,,(y;) < —j,j =1,..., k. Moreover, notice
that after we choose ny41 and Tp41, Ypp1 With 07+ 0241 < 2y g ypgg <
6 — 62 and Rp, ,, (whe1) > 2 — 1/(k+ 1), Rp,,, (ger1) < —(k + 1) we
easily get the existence of the desired ryio from Proposition 1. Therefore,
what we need is to choose ng11 > ng and properly select zp41, yip+1. We
define wy 1, Yry1 to be equal to §™F+1 + §2"k+1 where o = 1/4 in the case
of 41 and a = 1/2 in the case of yp41.

Note that for r < r® < s < a,

B
9 =79 T) )26+ _ alogr —logs
JP(T,S) (T ) - JP(r/s,l) (<S> >8 ,  where 3 = logr — log 5 .

If ngq1 > ng then s = rg — 0™+ is very close to riy1, and 8 = a. Then
we obtain

0 2
J(Dk)+1 (xk+1)J(D,3+1 (Sck—i-l)
RDk+1 (Th+1) =2 — o) ;
(JDk+1(35k+1))

(0) (2)
>9 P(0"k+1,0%"k+1 s) (xk+1)JP(9"k+1792"k+175) ($k+1)
- M

(JP(G”k+1792”k+171)<xk+1))2

() asn, (2) a2n

. JP(Gnk+1,92nk+175) (9 2 k+1)JP(0nk+1,02nk+17s) (0 2 k+1)

(1) 2ny,
(‘]P(G"k+1 627kt 71)(904 nk+1))2
Substituting in the last formula o = 1/4 we find that, in view of Theorem 2, if
ngt1 > ng then the last expression is greater than 2—1/(k + 1). Analogously
we get the desired estimate for Rp, , (yr4+1) (but in this case we substitute
o = 1/2). u

REMARK 6. It would be interesting to find a precise description of Zalc-
man-type domains having the property as stated in Corollary 3. Note that
such a description (complete or at least partial) has been given for the bound-
ary behavior of the Bergman kernel, Bergman metric or Bergman complete-
ness (see [Juc 2004], [Pfl-Zwo 2003], [Zwo 2002]).
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The construction presented in Corollary 3 is similar to the one presented
in [Jar-Pfl-Zwo 2000] where the first example of a fat bounded planar domain
which is not Bergman exhaustive has been given.
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