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Asymptotic behavior of the sectional curvature of the
Bergman metric for annuli

by Włodzimierz Zwonek (Kraków)

Abstract. We extend and simplify results of [Din 2010] where the asymptotic be-
havior of the holomorphic sectional curvature of the Bergman metric in annuli is studied.
Similarly to [Din 2010] the description enables us to construct an infinitely connected
planar domain (in our paper it is a Zalcman type domain) for which the supremum of the
holomorphic sectional curvature is two, whereas its infimum is equal to −∞.

For a domain D ⊂ Cn, j = 0, 1, . . . , z ∈ D, X ∈ Cn define

J
(j)
D (z;X) :=

sup{|f (j)(z)(X)|2 : f ∈ L2
h(D), f(z) = 0, . . . , f (j−1)(z) = 0, ‖f‖L2(D) ≤ 1}.

Note that the functions above are the squares of the operator norms of
continuous operators defined on a closed subspace of L2

h(D).
Let us restrict ourselves to the case when D is bounded. Note that

J
(0)
D (z;X) is independent of X 6= 0 and is equal to the Bergman kernel
KD(z, z). Moreover, we may express the Bergman metric as β2

D(z;X) =
J

(1)
D (z;X)/J (0)

D (z;X), X 6= 0. And finally the sectional curvature is given by
the formula

RD(z;X) = 2−
J

(0)
D (z;X)J (2)

D (z;X)

J
(1)
D (z;X)2

, X 6= 0.

Below we list a number of simple properties of the above functions.
The transformation formula for a biholomorphic mapping F : D1 → D2

is
J

(j)
D1

(z;X) = |detF ′(z)|2J (j)
D2

(F (z);F ′(z)X),

from which we get, among other things, the biholomorphic invariance of the
sectional curvature: RD1(z;X) = RD2(F (z);F ′(z)X).
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If D1 ⊂ D2 then J (j)
D1
≥ J (j)

D2
.

We shall also need the continuity property of the functions just intro-
duced with respect to increasing families of domains.

Proposition 1.

(1) Let D be a bounded domain in Cn. Let D =
⋃∞
ν=1Dν where Dν ⊂

Dν+1, Dν is a domain in Cn. Then for any j the sequence (J (j)
Dν

)ν is

increasing and convergent locally uniformly on D×Cn to J (j)
D . In par-

ticular, the sequence (βDν ) (respectively, (RDν )ν) is locally uniformly
convergent to βD (respectively, RD) on D × (Cn \ {0}).

(2) Let D be a bounded domain in Cn. Assume that D =
⋃∞
ν=1Gν where

Gν is a domain in Cn. Assume additionally that for any compact
set K ⊂ D there is a ν0 such that K ⊂ Gν for any ν ≥ ν0. Then
the sequence (J (j)

Gν
)∞ν=1 is locally uniformly conergent to J (j)

D . In par-
ticular, the sequence (βGν ) (respectively, (RGν )) is locally uniformly
convergent to βD (respectively, RD) on D × (Cn \ {0}).

For a domain D ⊂ C, z ∈ D we put J (j)
D (z) := J

(j)
D (z; 1), βD(z) :=

βD(z; 1), RD(z) := RD(z; 1). Recall that J (j)
D = J

(j)
D\A on D \ A where A is

any closed polar set in D such that D \A is connected.
Denote P (λ0, r, R) := {λ ∈ C : r < |λ − λ0| < R}, 0 ≤ r < R ≤ ∞,

λ0 ∈ C. We also put P (r,R) := P (0, r, R).
We are going to prove the following result.

Theorem 2. Let r ∈ (0, 1), α ∈ (0, 1). Then

r2αJ
(0)
P (r,1)(r

α) ∼ 1
− log r

, r4αJ
(1)
P (r;1)(r

α) ∼ 2r2α + 2r2(1−α)

1− r2
,

r6αJ
(2)
P (r;1)(r

α) =
A(r)
B(r)

,

where

A(r) ∼ r2

(1− r2)2
(−24) +

r6(1−α)

(1− r2)(1− r4)
(A) +

r6α

(1− r2)(1− r4)
(−25),

B(r) ∼ 2r2α + 2r2(1−α)

1− r2
,

for some A < −100. The symbol ϕ(r) ∼ ψ(r) means that for any sufficiently
small ε > 0 one has ϕ(r)− ψ(r) = ψ(r)o(rε).

In particular,

lim
r→0+

RP (r;1)(r
α) =

{−∞ for α ∈ (1/3, 2/3),
2 for α ∈ (0, 1/3] ∪ [2/3, 1).
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The above theorem gives a generalization of a result from [Din 2010]
(where the cases α = 1/2, α = 0.3 and α = 0.7 have been handled). Addition-
ally, we present in Remark 4 the precise asymptotic behavior of RP (r;1)(rα)
as r → 0+.

As in [Din 2010], we can make use of Theorem 2 to construct an infinitely
connected planar bounded domain with the supremum of the sectional cur-
vature equal to 2 and its infimum equal to −∞. The domain constructed by
us is a Zalcman-type domain (unlike that in [Din 2010]) and the proof of the
above fact does not use, in contrast to [Din 2010], any sophisticated means.

Recall that the example from [Din 2010] (and certainly also the one in
Corollary 3) may be seen as the final one in presenting examples where
the supremum of the sectional curvature may be 2 (see [Chen-Lee 2009]) or
its infimum may be equal to −∞ (see [Her 2007])—the example has both
properties simultaneously.

Corollary 3. Let θ ∈ (0, 1). Then there is a strictly increasing sequence
(nk)k of positive integers such that 4̄(θnk , θ2nk)∩4̄(θnl , θ2nl) = ∅ for k 6= l,
4̄(θnk , θ2nk) ⊂ 1

2D and

sup{RD(z) : z ∈ D} = 2, inf{RD(z) : z ∈ D} = −∞,

where D= 1
2D\(

⋃∞
k=1 4̄(θnk , θ2nk)∪{0}) and 4̄(a, r) := {z ∈ C : |z−a|≤r}.

Proof of Theorem 2. We start with the analysis of some more general
situation. For 0 < r < R denote αr,Rn := ‖λn‖2P (r,R), n ∈ Z.

Note that

1
2π

αr,Rn =


R2(n+1) − r2(n+1)

2(n+ 1)
, n 6= −1,

logR− log r, n = −1.

For f ∈ L2
h(P (r,R)), f(λ) =

∑
n∈Z anλ

n we have the following identity:

‖f‖2P (r,R) =
∑
n∈Z
|an|2αr,Rn .

Assume now that r < 1 < R. Notice that

|f(1)|2 =
∣∣∣∑
n∈Z

an

∣∣∣2 =
∣∣∣∣∑
n∈Z

an

√
αr,Rn

1√
αr,Rn

∣∣∣∣2
≤
∑
n∈Z
|an|2αr,Rn

∑
n∈Z

1

αr,Rn
= ‖f‖2P (r,R)

∑
n∈Z

1

αr,Rn
.

Therefore, J (0)
P (r,R)(1) ≤

∑
n∈Z 1/αr,Rn . In fact, we have equality above—it is

sufficient to take f ∈ L2
h(P (r,R)) with an = 1/αr,Rn .



294 W. Zwonek

Our next aim is to give a formula for J (1)
P (r,R)(1) (which together with the

previous one and general properties of the Bergman metric gives a formula
for the Bergman metric of an arbitrary annulus at any point—see Remark 4).

We prove the equality

(1) J
(1)
P (r,R)(1) =

∑
n∈Z

(n− β)2

αr,Rn

for a suitably chosen β ∈ R (to be given precisely later).
Let us start with f ∈ L2

h(Pr,R) of the form f(λ) =
∑

n∈Z anλ
n such that∑

n∈Z an = f(1) = 0. For such an f the following estimate holds:

|f ′(1)|2 =
∣∣∣∑
n∈Z

nan

∣∣∣2 =
∣∣∣∑
n∈Z

(n− β)an
∣∣∣2 =

∣∣∣∣∑
n∈Z

n− β√
αr,Rn

an

√
αr,Rn

∣∣∣∣2

≤
∑
n∈Z

(n− β)2

αr,Rn

∑
n∈Z
|an|2αr,Rn =

∑
n∈Z

(n− β)2

αr,Rn
‖f‖2P (r,R).

This gives the inequality “≤” (with arbitrary β). Now we take f with an =
n− β/αr,Rn , where β is such that

∑
n∈Z an = f(1) = 0. If such a β could be

found we would get the equality in (1). But this means that we need to find
a β such that

∑
n∈Z (n− β)/αr,Rn = 0, which is satisfied exactly if

β =

∑
n∈Z

n

αr,Rn∑
n∈Z

1

αr,Rn

.

Consequently, with this β we get the equality

J
(1)
P (r,R)(1) =

∑
n∈Z

(n− β)2

αr,Rn
=
∑
n∈Z

n2 − βn
αr,Rn

+ β
∑
n∈Z

β − n
αr,Rn

=
∑
n∈Z

n2 − nβ
αr,Rn

=
ϕr,R(2)ϕr,R(0)− ϕr,R(1)2

ϕr,R(0)
,

where ϕr,R(j) :=
∑

n∈Z n
j/αr,Rn .

Let us now go on to the case of the annulus P (r, 1) where 0 < r < 1.
Our aim is to get the asymptotic behavior of the curvature of P (r, 1) at rα
(for a fixed α ∈ (0, 1)) as r → 0+. First recall that

J
(j)
P (r,1)(r

α) = r−2(j+1)αJ
(j)
P (r1−α,r−α)

(1).

For simplicity we shall write αn = αr
1−α,r−α
n and J (j)(1) = J

(j)
P (r1−α,r−α)

(1).
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Then we get the following formulas:

αn
2π

=


1− r2(n+1)

2(n+ 1)r2(n+1)α
, n 6= −1,

− log r, n = −1.
From now on we forget about the constant 2π. Skipping the factor 1/(2π) is
justified by the formula for 2−R(r, α) in Remark 4.

Note that for n ≥ 0 the following formula holds:

α−n−2 =
1− r2(n+1)

2(n+ 1)r2(n+1)(1−α)
.

Let us define (for j = 0, 1, . . .)

ϕ(j) :=
∑
n∈Z

nj

αn

=
(−1)j

− log r
+
∞∑
n=0

2(n+ 1)
1− r2(n+1)

(njr2(n+1)α + (−1)j(n+ 2)jr2(n+1)(1−α))

=:
(−1)j

− log r
+ ψ(j).

Then we have

J (0)(1) = ϕ(0), J (1)(1) =
ϕ(2)ϕ(0)− ϕ(1)2

ϕ(0)
.

Note that the above formulas depend on r and α.
Our next aim is to find a formula for J (2)(1). We proceed as above.
Let us start with f ∈ O(P (r1−α, r−α)) with f(λ) =

∑
n∈Z anλ

n such
that

∑
n∈Z an = f(1) = 0 and

∑
n∈Z nan = f ′(1) = 0. Then

|f ′′(1)|2 =
∣∣∣∑
n∈Z

n(n− 1)an
∣∣∣2 =

∣∣∣∑
n∈Z

(n2 − βn− γ)an
∣∣∣2

=
∣∣∣∣∑
n∈Z

n2 − βn− γ
√
αn

an
√
αn

∣∣∣∣2 ≤∑
n∈Z

(n2 − βn− γ)2

αn

∑
n∈Z
|an|2αn.

As before if we find β, γ such that for an = (n2 − βn− γ)/αn the equalities∑
n∈Z nan =

∑
n∈Z an = 0 hold then we shall have the equality

J (2)(1) =
∑
n∈Z

(n2 − βn− γ)2

αn
=
∑
n∈Z

n2(n2 − βn− γ)
αn

.

The above properties are satisfied iff for some β, γ ∈ R,∑
n∈Z

n2 − βn− γ
αn

= 0,
∑
n∈Z

n
n2 − βn− γ

αn
= 0.
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The above is equivalent to the following system:
β
∑
n∈Z

n

αn
+ γ

∑
n∈Z

1
αn

=
∑
n∈Z

n2

αn
,

β
∑
n∈Z

n2

αn
+ γ

∑
n∈Z

n

αn
=
∑
n∈Z

n3

αn
.

Since
(∑

n∈Z
n
αn

)2−∑n∈Z
n2

αn

∑
n∈Z

1
αn

< 0, the above system has the unique
solution

β =

∑
n∈Z

n2

αn

∑
n∈Z

n
αn
−
∑

n∈Z
n3

αn

∑
n∈Z

1
αn(∑

n∈Z
n
αn

)2 −∑n∈Z
n2

αn

∑
n∈Z

1
αn

=
ϕ(2)ϕ(1)− ϕ(3)ϕ(0)
ϕ(1)2 − ϕ(2)ϕ(0)

,

γ =

∑
n∈Z

n
αn

∑
n∈Z

n3

αn
−
(∑

n∈Z
n2

αn

)2(∑
n∈Z

n
αn

)2 −∑n∈Z
n2

αn

∑
n∈Z

1
αn

=
ϕ(1)ϕ(3)− ϕ(2)2

ϕ(1)2 − ϕ(2)ϕ(0)
.

Therefore, we may write

J (2)(1) = ϕ(4)− βϕ(3)− γϕ(2)

=
ϕ(4)ϕ(1)2 − ϕ(4)ϕ(2)ϕ(0)− 2ϕ(3)ϕ(2)ϕ(1) + ϕ(3)2ϕ(0) + ϕ(2)3

ϕ(1)2 − ϕ(2)ϕ(0)
.

So let us fix α ∈ (0, 1). Then for any ε > 0 small enough,

ϕ(0) =
1

− log r
+

2r2α

1− r2
+

2r2(1−α)

1− r2
+ o(r2α+ε) + o(r2(1−α)+ε).

The asymptotic behavior of ϕ(1)2 − ϕ(2)ϕ(0) is the following. The coef-
ficient of the expression of highest order (i.e. of 1

(− log r)2
) vanishes and the

coefficient of 1
− log r is

−(ψ(2) + ψ(0) + 2ψ(1)) = −
∞∑
n=0

2(n+ 1)3

1− r2(n+1)
(r2(n+1)α + r2(n+1)(1−α)).

The remaining expressions are ψ(1)2 − ψ(2)ψ(0). Therefore, one can easily
verify that the asymptotic behavior is the following: for any ε > 0 small
enough,

ϕ(1)2 − ϕ(2)ϕ(0) =
1

− log r

(
2r2α

1− r2
+

2r2(1−α)

1− r2

)
+ o(r2α+ε) + o(r2(1−α)+ε).

We still have to consider the asymptotic behavior of the expression
ϕ(4)ϕ(1)2 − ϕ(4)ϕ(2)ϕ(0)− 2ϕ(3)ϕ(2)ϕ(1) + ϕ(3)2ϕ(0) + ϕ(2)3.

First note that the coefficients of the expressions 1
(− log r)j

, j = 2, 3, van-
ish. On the other hand, the coefficient of 1

− log r is
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ψ(1)2 − 2ψ(1)ψ(4)− ψ(4)ψ(2)− ψ(4)ψ(0)− ψ(2)ψ(0)

− 2(−ψ(2)ψ(1) + ψ(3)ψ(1)− ψ(2)ψ(3)) + ψ2(3)− 2ψ(0)ψ(3) + 3ψ(2)2.

One can calculate that for any ε > 0 small enough the last expression equals

r2

(1− r2)2
(−24) +

r6(1−α)

(1− r2)(1− r4)
(A)

+
r6α

(1− r2)(1− r4)
(−25) + o(r2) + o(r6(1−α)+ε) + o(r6α+ε)

for some A < −100.
Combining all the above results we easily get the desired asymptotic

behavior as claimed in the theorem.

Remark 4. Recall the formula for the curvature

RP (r,1)(r
α) = 2−R(r, α) := 2− J (0)(1)J (2)(1)

(J (1)(1))2
.

Then the result of Theorem 2 gives, in particular, the asymptotic behavior
of the expression R(r, α) (and consequently the asymptotic behavior of the
holomorphic curvature) as r → 0+, which is as follows:

1
− log r

for α ∈ (0, 1/3],

1
r6α−2(− log r)

for α ∈ (1/3, 1/2],

1
r6(1−α)−2(− log r)

for α ∈ (1/2, 2/3),

1
− log r

for α ∈ [2/3, 1).

Remark 5. Note that in the proof of Theorem 2 we have obtained a for-
mula for the Bergman kernel and metric in the annulus (compare [Her 1983],
[Jar-Pfl 1993]) and a relatively simple expression for the sectional curvature
of the annulus.

Proof of Corollary 3. We construct inductively sequences (nk), (xk), (yk)
and (rk) such that θn1 + θ2n1 < x1, y1 < 1/2 and for any k = 1, 2, . . .
the following properties hold: θnk+1 + θ2nk+1 < xk+1, yk+1 < θnk − θ2nk ,
θnk+1 + θ2nk+1 < rk+1 < θnk − θ2nk and for any compact L ⊂ 4̄(0, rk+1)
for which Ω = 1

2D \ (
⋃k
j=1 4̄(θnj , θ2nj ) ∪ L) is connected the inequalities

RΩ(xj) > 2− 1/j, RΩ(yj) < −j hold for any j = 1, . . . , k.
Then we put D := 1

2D \ (
⋃∞
j=1 4̄(θnj , θ2nj ) ∪ {0}). From the properties

stated above we will obtain the inequalities RD(xk) > 2−1/k, RD(yk) < −k,
which finishes the proof.
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We turn to the construction of the above sequences. We put r1 := 1/4.
The possibility of choosing n1, x1, y1 as desired follows from Theorem 2
together with the biholomorphic invariance of the sectional curvature (we
have to choose n1 sufficiently large). The possibility of choosing r2 follows
from Proposition 1. Now assume the system as above has been chosen for j =
1, . . . , k (with the choice of nj , xj , yj , j = 1, . . . , k, and rj , j = 1, . . . , k+ 1).

First note that choosing nk+1 > nk so that θnk+1 + θ2nk+1 < rk+1 we
achieve that the recursively defined set Dk+1 = 1

2D \ (
⋃k+1
j=1 4̄(θnj , θ2nj ))

satisfies RDk+1
(xj) > 2−1/j, RDk+1

(yj) < −j, j = 1, . . . , k. Moreover, notice
that after we choose nk+1 and xk+1, yk+1 with θnk+1 +θ2nk+1 < xk+1, yk+1 <
θnk − θ2nk and RDk+1

(xk+1) > 2 − 1/(k + 1), RDk+1
(yk+1) < −(k + 1) we

easily get the existence of the desired rk+2 from Proposition 1. Therefore,
what we need is to choose nk+1 � nk and properly select xk+1, yk+1. We
define xk+1, yk+1 to be equal to θnk+1 + θα2nk+1 , where α = 1/4 in the case
of xk+1 and α = 1/2 in the case of yk+1.

Note that for r < rα < s < a,

J
(j)
P (r,s)(r

α) = J
(j)
P (r/s,1)

((
r

s

)β)
s−2(j+1), where β =

α log r − log s
log r − log s

.

If nk+1 � nk then s = rk+1 − θnk+1 is very close to rk+1, and β ≈ α. Then
we obtain

RDk+1
(xk+1) = 2−

J
(0)
Dk+1

(xk+1)J (2)
Dk+1

(xk+1)

(J (1)
Dk+1

(xk+1))2

≥ 2−
J

(0)

P (θnk+1 ,θ2nk+1 ,s)
(xk+1)J (2)

P (θnk+1 ,θ2nk+1 ,s)
(xk+1)

(J (1)

P (θnk+1 ,θ2nk+1 ,1)
(xk+1))2

= 2−
J

(0)

P (θnk+1 ,θ2nk+1 ,s)
(θα2nk+1)J (2)

P (θnk+1 ,θ2nk+1 ,s)
(θα2nk+1)

(J (1)

P (θnk+1 ,θ2nk+1 ,1)
(θα2nk+1))2

.

Substituting in the last formula α = 1/4 we find that, in view of Theorem 2, if
nk+1 � nk then the last expression is greater than 2−1/(k + 1). Analogously
we get the desired estimate for RDk+1

(yk+1) (but in this case we substitute
α = 1/2).

Remark 6. It would be interesting to find a precise description of Zalc-
man-type domains having the property as stated in Corollary 3. Note that
such a description (complete or at least partial) has been given for the bound-
ary behavior of the Bergman kernel, Bergman metric or Bergman complete-
ness (see [Juc 2004], [Pfl-Zwo 2003], [Zwo 2002]).
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The construction presented in Corollary 3 is similar to the one presented
in [Jar-Pfl-Zwo 2000] where the first example of a fat bounded planar domain
which is not Bergman exhaustive has been given.
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