Asymptotic behavior of the sectional curvature of the Bergman metric for annuli

by Weodzimierz Zwonek (Kraków)

Abstract

We extend and simplify results of [Din 2010] where the asymptotic behavior of the holomorphic sectional curvature of the Bergman metric in annuli is studied. Similarly to [Din 2010] the description enables us to construct an infinitely connected planar domain (in our paper it is a Zalcman type domain) for which the supremum of the holomorphic sectional curvature is two, whereas its infimum is equal to $-\infty$.

For a domain $D \subset \mathbb{C}^{n}, j=0,1, \ldots, z \in D, X \in \mathbb{C}^{n}$ define
$J_{D}^{(j)}(z ; X):=$
$\sup \left\{\left|f^{(j)}(z)(X)\right|^{2}: f \in L_{h}^{2}(D), f(z)=0, \ldots, f^{(j-1)}(z)=0,\|f\|_{L^{2}(D)} \leq 1\right\}$.
Note that the functions above are the squares of the operator norms of continuous operators defined on a closed subspace of $L_{h}^{2}(D)$.

Let us restrict ourselves to the case when D is bounded. Note that $J_{D}^{(0)}(z ; X)$ is independent of $X \neq 0$ and is equal to the Bergman kernel $K_{D}(z, z)$. Moreover, we may express the Bergman metric as $\beta_{D}^{2}(z ; X)=$ $J_{D}^{(1)}(z ; X) / J_{D}^{(0)}(z ; X), X \neq 0$. And finally the sectional curvature is given by the formula

$$
R_{D}(z ; X)=2-\frac{J_{D}^{(0)}(z ; X) J_{D}^{(2)}(z ; X)}{J_{D}^{(1)}(z ; X)^{2}}, \quad X \neq 0
$$

Below we list a number of simple properties of the above functions.
The transformation formula for a biholomorphic mapping $F: D_{1} \rightarrow D_{2}$ is

$$
J_{D_{1}}^{(j)}(z ; X)=\left|\operatorname{det} F^{\prime}(z)\right|^{2} J_{D_{2}}^{(j)}\left(F(z) ; F^{\prime}(z) X\right)
$$

from which we get, among other things, the biholomorphic invariance of the sectional curvature: $R_{D_{1}}(z ; X)=R_{D_{2}}\left(F(z) ; F^{\prime}(z) X\right)$.

[^0]If $D_{1} \subset D_{2}$ then $J_{D_{1}}^{(j)} \geq J_{D_{2}}^{(j)}$.
We shall also need the continuity property of the functions just introduced with respect to increasing families of domains.

Proposition 1.
(1) Let D be a bounded domain in \mathbb{C}^{n}. Let $D=\bigcup_{\nu=1}^{\infty} D_{\nu}$ where $D_{\nu} \subset$ $D_{\nu+1}, D_{\nu}$ is a domain in \mathbb{C}^{n}. Then for any j the sequence $\left(J_{D_{\nu}}^{(j)}\right)_{\nu}$ is increasing and convergent locally uniformly on $D \times \mathbb{C}^{n}$ to $J_{D}^{(j)}$. In particular, the sequence $\left(\beta_{D_{\nu}}\right)$ (respectively, $\left.\left(R_{D_{\nu}}\right)_{\nu}\right)$ is locally uniformly convergent to $\beta_{D}\left(\right.$ respectively, $\left.R_{D}\right)$ on $D \times\left(\mathbb{C}^{n} \backslash\{0\}\right)$.
(2) Let D be a bounded domain in \mathbb{C}^{n}. Assume that $D=\bigcup_{\nu=1}^{\infty} G_{\nu}$ where G_{ν} is a domain in \mathbb{C}^{n}. Assume additionally that for any compact set $K \subset D$ there is a ν_{0} such that $K \subset G_{\nu}$ for any $\nu \geq \nu_{0}$. Then the sequence $\left(J_{G_{\nu}}^{(j)}\right)_{\nu=1}^{\infty}$ is locally uniformly conergent to $\bar{J}_{D}^{(j)}$. In particular, the sequence $\left(\beta_{G_{\nu}}\right)$ (respectively, $\left(R_{G_{\nu}}\right)$) is locally uniformly convergent to β_{D} (respectively, R_{D}) on $D \times\left(\mathbb{C}^{n} \backslash\{0\}\right)$.
For a domain $D \subset \mathbb{C}, z \in D$ we put $J_{D}^{(j)}(z):=J_{D}^{(j)}(z ; 1), \beta_{D}(z):=$ $\beta_{D}(z ; 1), R_{D}(z):=R_{D}(z ; 1)$. Recall that $J_{D}^{(j)}=J_{D \backslash A}^{(j)}$ on $D \backslash A$ where A is any closed polar set in D such that $D \backslash A$ is connected.

Denote $P\left(\lambda_{0}, r, R\right):=\left\{\lambda \in \mathbb{C}: r<\left|\lambda-\lambda_{0}\right|<R\right\}, 0 \leq r<R \leq \infty$, $\lambda_{0} \in \mathbb{C}$. We also put $P(r, R):=P(0, r, R)$.

We are going to prove the following result.
Theorem 2. Let $r \in(0,1), \alpha \in(0,1)$. Then

$$
\begin{aligned}
r^{2 \alpha} J_{P(r, 1)}^{(0)}\left(r^{\alpha}\right) & \sim \frac{1}{-\log r}, \quad r^{4 \alpha} J_{P(r ; 1)}^{(1)}\left(r^{\alpha}\right) \sim \frac{2 r^{2 \alpha}+2 r^{2(1-\alpha)}}{1-r^{2}} \\
r^{6 \alpha} J_{P(r ; 1)}^{(2)}\left(r^{\alpha}\right) & =\frac{A(r)}{B(r)}
\end{aligned}
$$

where

$$
\begin{aligned}
& A(r) \sim \frac{r^{2}}{\left(1-r^{2}\right)^{2}}\left(-2^{4}\right)+\frac{r^{6(1-\alpha)}}{\left(1-r^{2}\right)\left(1-r^{4}\right)}(A)+\frac{r^{6 \alpha}}{\left(1-r^{2}\right)\left(1-r^{4}\right)}\left(-2^{5}\right) \\
& B(r) \sim \frac{2 r^{2 \alpha}+2 r^{2(1-\alpha)}}{1-r^{2}}
\end{aligned}
$$

for some $A<-100$. The symbol $\varphi(r) \sim \psi(r)$ means that for any sufficiently small $\varepsilon>0$ one has $\varphi(r)-\psi(r)=\psi(r) o\left(r^{\varepsilon}\right)$.

In particular,

$$
\lim _{r \rightarrow 0^{+}} R_{P(r ; 1)}\left(r^{\alpha}\right)= \begin{cases}-\infty & \text { for } \alpha \in(1 / 3,2 / 3) \\ 2 & \text { for } \alpha \in(0,1 / 3] \cup[2 / 3,1)\end{cases}
$$

The above theorem gives a generalization of a result from Din 2010 (where the cases $\alpha=1 / 2, \alpha=0.3$ and $\alpha=0.7$ have been handled). Additionally, we present in Remark 4 the precise asymptotic behavior of $R_{P(r ; 1)}\left(r^{\alpha}\right)$ as $r \rightarrow 0^{+}$.

As in Din 2010, we can make use of Theorem 2 to construct an infinitely connected planar bounded domain with the supremum of the sectional curvature equal to 2 and its infimum equal to $-\infty$. The domain constructed by us is a Zalcman-type domain (unlike that in [Din 2010]) and the proof of the above fact does not use, in contrast to Din 2010, any sophisticated means.

Recall that the example from [Din 2010] (and certainly also the one in Corollary 3) may be seen as the final one in presenting examples where the supremum of the sectional curvature may be 2 (see Chen-Lee 2009) or its infimum may be equal to $-\infty$ (see [Her 2007]) - the example has both properties simultaneously.

Corollary 3. Let $\theta \in(0,1)$. Then there is a strictly increasing sequence $\left(n_{k}\right)_{k}$ of positive integers such that $\bar{\triangle}\left(\theta^{n_{k}}, \theta^{2 n_{k}}\right) \cap \bar{\triangle}\left(\theta^{n_{l}}, \theta^{2 n_{l}}\right)=\emptyset$ for $k \neq l$, $\bar{\triangle}\left(\theta^{n_{k}}, \theta^{2 n_{k}}\right) \subset \frac{1}{2} \mathbb{D}$ and

$$
\sup \left\{R_{D}(z): z \in D\right\}=2, \quad \inf \left\{R_{D}(z): z \in D\right\}=-\infty
$$

where $D=\frac{1}{2} \mathbb{D} \backslash\left(\bigcup_{k=1}^{\infty} \bar{\triangle}\left(\theta^{n_{k}}, \theta^{2 n_{k}}\right) \cup\{0\}\right)$ and $\bar{\triangle}(a, r):=\{z \in \mathbb{C}:|z-a| \leq r\}$.
Proof of Theorem 2. We start with the analysis of some more general situation. For $0<r<R$ denote $\alpha_{n}^{r, R}:=\left\|\lambda^{n}\right\|_{P(r, R)}^{2}, n \in \mathbb{Z}$.

Note that

$$
\frac{1}{2 \pi} \alpha_{n}^{r, R}= \begin{cases}\frac{R^{2(n+1)}-r^{2(n+1)}}{2(n+1)}, & n \neq-1 \\ \log R-\log r, & n=-1\end{cases}
$$

For $f \in L_{h}^{2}(P(r, R)), f(\lambda)=\sum_{n \in \mathbb{Z}} a_{n} \lambda^{n}$ we have the following identity:

$$
\|f\|_{P(r, R)}^{2}=\sum_{n \in \mathbb{Z}}\left|a_{n}\right|^{2} \alpha_{n}^{r, R}
$$

Assume now that $r<1<R$. Notice that

$$
\begin{aligned}
|f(1)|^{2} & =\left|\sum_{n \in \mathbb{Z}} a_{n}\right|^{2}=\left|\sum_{n \in \mathbb{Z}} a_{n} \sqrt{\alpha_{n}^{r, R}} \frac{1}{\sqrt{\alpha_{n}^{r, R}}}\right|^{2} \\
& \leq \sum_{n \in \mathbb{Z}}\left|a_{n}\right|^{2} \alpha_{n}^{r, R} \sum_{n \in \mathbb{Z}} \frac{1}{\alpha_{n}^{r, R}}=\|f\|_{P(r, R)}^{2} \sum_{n \in \mathbb{Z}} \frac{1}{\alpha_{n}^{r, R}} .
\end{aligned}
$$

Therefore, $J_{P(r, R)}^{(0)}(1) \leq \sum_{n \in \mathbb{Z}} 1 / \alpha_{n}^{r, R}$. In fact, we have equality above - it is sufficient to take $f \in L_{h}^{2}(P(r, R))$ with $a_{n}=1 / \alpha_{n}^{r, R}$.

Our next aim is to give a formula for $J_{P(r, R)}^{(1)}(1)$ (which together with the previous one and general properties of the Bergman metric gives a formula for the Bergman metric of an arbitrary annulus at any point-see Remark 4).

We prove the equality

$$
\begin{equation*}
J_{P(r, R)}^{(1)}(1)=\sum_{n \in \mathbb{Z}} \frac{(n-\beta)^{2}}{\alpha_{n}^{r, R}} \tag{1}
\end{equation*}
$$

for a suitably chosen $\beta \in \mathbb{R}$ (to be given precisely later).
Let us start with $f \in L_{h}^{2}\left(P_{r, R}\right)$ of the form $f(\lambda)=\sum_{n \in \mathbb{Z}} a_{n} \lambda^{n}$ such that $\sum_{n \in \mathbb{Z}} a_{n}=f(1)=0$. For such an f the following estimate holds:

$$
\begin{aligned}
\left|f^{\prime}(1)\right|^{2} & =\left|\sum_{n \in \mathbb{Z}} n a_{n}\right|^{2}=\left|\sum_{n \in \mathbb{Z}}(n-\beta) a_{n}\right|^{2}=\left|\sum_{n \in \mathbb{Z}} \frac{n-\beta}{\sqrt{\alpha_{n}^{r, R}}} a_{n} \sqrt{\alpha_{n}^{r, R}}\right|^{2} \\
& \leq \sum_{n \in \mathbb{Z}} \frac{(n-\beta)^{2}}{\alpha_{n}^{r, R}} \sum_{n \in \mathbb{Z}}\left|a_{n}\right|^{2} \alpha_{n}^{r, R}=\sum_{n \in \mathbb{Z}} \frac{(n-\beta)^{2}}{\alpha_{n}^{r, R}}\|f\|_{P(r, R)}^{2}
\end{aligned}
$$

This gives the inequality " \leq " (with arbitrary β). Now we take f with $a_{n}=$ $n-\beta / \alpha_{n}^{r, R}$, where β is such that $\sum_{n \in \mathbb{Z}} a_{n}=f(1)=0$. If such a β could be found we would get the equality in (1). But this means that we need to find a β such that $\sum_{n \in \mathbb{Z}}(n-\beta) / \alpha_{n}^{r, R}=0$, which is satisfied exactly if

$$
\beta=\frac{\sum_{n \in \mathbb{Z}} \frac{n}{\alpha_{n}^{r / R}}}{\sum_{n \in \mathbb{Z}} \frac{1}{\alpha_{n}^{r, R}}} .
$$

Consequently, with this β we get the equality

$$
\begin{aligned}
J_{P(r, R)}^{(1)}(1) & =\sum_{n \in \mathbb{Z}} \frac{(n-\beta)^{2}}{\alpha_{n}^{r, R}}=\sum_{n \in \mathbb{Z}} \frac{n^{2}-\beta n}{\alpha_{n}^{r, R}}+\beta \sum_{n \in \mathbb{Z}} \frac{\beta-n}{\alpha_{n}^{r, R}} \\
& =\sum_{n \in \mathbb{Z}} \frac{n^{2}-n \beta}{\alpha_{n}^{r, R}}=\frac{\varphi_{r, R}(2) \varphi_{r, R}(0)-\varphi_{r, R}(1)^{2}}{\varphi_{r, R}(0)}
\end{aligned}
$$

where $\varphi_{r, R}(j):=\sum_{n \in \mathbb{Z}} n^{j} / \alpha_{n}^{r, R}$.
Let us now go on to the case of the annulus $P(r, 1)$ where $0<r<1$. Our aim is to get the asymptotic behavior of the curvature of $P(r, 1)$ at r^{α} (for a fixed $\alpha \in(0,1)$) as $r \rightarrow 0^{+}$. First recall that

$$
J_{P(r, 1)}^{(j)}\left(r^{\alpha}\right)=r^{-2(j+1) \alpha} J_{P\left(r^{1-\alpha}, r^{-\alpha}\right)}^{(j)}(1)
$$

For simplicity we shall write $\alpha_{n}=\alpha_{n}^{r^{1-\alpha}, r^{-\alpha}}$ and $J^{(j)}(1)=J_{P\left(r^{1-\alpha}, r^{-\alpha}\right)}^{(j)}(1)$.

Then we get the following formulas:

$$
\frac{\alpha_{n}}{2 \pi}= \begin{cases}\frac{1-r^{2(n+1)}}{2(n+1) r^{2(n+1) \alpha}}, & n \neq-1 \\ -\log r, & n=-1\end{cases}
$$

From now on we forget about the constant 2π. Skipping the factor $1 /(2 \pi)$ is justified by the formula for $2-R(r, \alpha)$ in Remark 4.

Note that for $n \geq 0$ the following formula holds:

$$
\alpha_{-n-2}=\frac{1-r^{2(n+1)}}{2(n+1) r^{2(n+1)(1-\alpha)}} .
$$

Let us define (for $j=0,1, \ldots$)

$$
\begin{aligned}
\varphi(j) & :=\sum_{n \in \mathbb{Z}} \frac{n^{j}}{\alpha_{n}} \\
& =\frac{(-1)^{j}}{-\log r}+\sum_{n=0}^{\infty} \frac{2(n+1)}{1-r^{2(n+1)}}\left(n^{j} r^{2(n+1) \alpha}+(-1)^{j}(n+2)^{j} r^{2(n+1)(1-\alpha)}\right) \\
& =: \frac{(-1)^{j}}{-\log r}+\psi(j)
\end{aligned}
$$

Then we have

$$
J^{(0)}(1)=\varphi(0), \quad J^{(1)}(1)=\frac{\varphi(2) \varphi(0)-\varphi(1)^{2}}{\varphi(0)}
$$

Note that the above formulas depend on r and α.
Our next aim is to find a formula for $J^{(2)}(1)$. We proceed as above.
Let us start with $f \in \mathcal{O}\left(P\left(r^{1-\alpha}, r^{-\alpha}\right)\right)$ with $f(\lambda)=\sum_{n \in \mathbb{Z}} a_{n} \lambda^{n}$ such that $\sum_{n \in \mathbb{Z}} a_{n}=f(1)=0$ and $\sum_{n \in \mathbb{Z}} n a_{n}=f^{\prime}(1)=0$. Then

$$
\begin{aligned}
\left|f^{\prime \prime}(1)\right|^{2} & =\left|\sum_{n \in \mathbb{Z}} n(n-1) a_{n}\right|^{2}=\left|\sum_{n \in \mathbb{Z}}\left(n^{2}-\beta n-\gamma\right) a_{n}\right|^{2} \\
& =\left|\sum_{n \in \mathbb{Z}} \frac{n^{2}-\beta n-\gamma}{\sqrt{\alpha_{n}}} a_{n} \sqrt{\alpha_{n}}\right|^{2} \leq \sum_{n \in \mathbb{Z}} \frac{\left(n^{2}-\beta n-\gamma\right)^{2}}{\alpha_{n}} \sum_{n \in \mathbb{Z}}\left|a_{n}\right|^{2} \alpha_{n}
\end{aligned}
$$

As before if we find β, γ such that for $a_{n}=\left(n^{2}-\beta n-\gamma\right) / \alpha_{n}$ the equalities $\sum_{n \in \mathbb{Z}} n a_{n}=\sum_{n \in \mathbb{Z}} a_{n}=0$ hold then we shall have the equality

$$
J^{(2)}(1)=\sum_{n \in \mathbb{Z}} \frac{\left(n^{2}-\beta n-\gamma\right)^{2}}{\alpha_{n}}=\sum_{n \in \mathbb{Z}} \frac{n^{2}\left(n^{2}-\beta n-\gamma\right)}{\alpha_{n}}
$$

The above properties are satisfied iff for some $\beta, \gamma \in \mathbb{R}$,

$$
\sum_{n \in \mathbb{Z}} \frac{n^{2}-\beta n-\gamma}{\alpha_{n}}=0, \quad \sum_{n \in \mathbb{Z}} n \frac{n^{2}-\beta n-\gamma}{\alpha_{n}}=0
$$

The above is equivalent to the following system:

$$
\left\{\begin{array}{l}
\beta \sum_{n \in \mathbb{Z}} \frac{n}{\alpha_{n}}+\gamma \sum_{n \in \mathbb{Z}} \frac{1}{\alpha_{n}}=\sum_{n \in \mathbb{Z}} \frac{n^{2}}{\alpha_{n}}, \\
\beta \sum_{n \in \mathbb{Z}} \frac{n^{2}}{\alpha_{n}}+\gamma \sum_{n \in \mathbb{Z}} \frac{n}{\alpha_{n}}=\sum_{n \in \mathbb{Z}} \frac{n^{3}}{\alpha_{n}}
\end{array}\right.
$$

Since $\left(\sum_{n \in \mathbb{Z}} \frac{n}{\alpha_{n}}\right)^{2}-\sum_{n \in \mathbb{Z}} \frac{n^{2}}{\alpha_{n}} \sum_{n \in \mathbb{Z}} \frac{1}{\alpha_{n}}<0$, the above system has the unique solution

$$
\begin{aligned}
& \beta=\frac{\sum_{n \in \mathbb{Z}} \frac{n^{2}}{\alpha_{n}} \sum_{n \in \mathbb{Z}} \frac{n}{\alpha_{n}}-\sum_{n \in \mathbb{Z}} \frac{n^{3}}{\alpha_{n}} \sum_{n \in \mathbb{Z}} \frac{1}{\alpha_{n}}}{\left(\sum_{n \in \mathbb{Z}} \frac{n}{\alpha_{n}}\right)^{2}-\sum_{n \in \mathbb{Z}} \frac{n^{2}}{\alpha_{n}} \sum_{n \in \mathbb{Z}} \frac{1}{\alpha_{n}}}=\frac{\varphi(2) \varphi(1)-\varphi(3) \varphi(0)}{\varphi(1)^{2}-\varphi(2) \varphi(0)}, \\
& \gamma=\frac{\sum_{n \in \mathbb{Z}} \frac{n}{\alpha_{n}} \sum_{n \in \mathbb{Z}} \frac{n^{3}}{\alpha_{n}}-\left(\sum_{n \in \mathbb{Z}} \frac{n^{2}}{\alpha_{n}}\right)^{2}}{\left(\sum_{n \in \mathbb{Z}} \frac{n}{\alpha_{n}}\right)^{2}-\sum_{n \in \mathbb{Z}} \frac{n^{2}}{\alpha_{n}} \sum_{n \in \mathbb{Z}} \frac{1}{\alpha_{n}}}=\frac{\varphi(1) \varphi(3)-\varphi(2)^{2}}{\varphi(1)^{2}-\varphi(2) \varphi(0)} .
\end{aligned}
$$

Therefore, we may write

$$
\begin{aligned}
J^{(2)}(1) & =\varphi(4)-\beta \varphi(3)-\gamma \varphi(2) \\
& =\frac{\varphi(4) \varphi(1)^{2}-\varphi(4) \varphi(2) \varphi(0)-2 \varphi(3) \varphi(2) \varphi(1)+\varphi(3)^{2} \varphi(0)+\varphi(2)^{3}}{\varphi(1)^{2}-\varphi(2) \varphi(0)} .
\end{aligned}
$$

So let us fix $\alpha \in(0,1)$. Then for any $\varepsilon>0$ small enough,

$$
\varphi(0)=\frac{1}{-\log r}+\frac{2 r^{2 \alpha}}{1-r^{2}}+\frac{2 r^{2(1-\alpha)}}{1-r^{2}}+o\left(r^{2 \alpha+\varepsilon}\right)+o\left(r^{2(1-\alpha)+\varepsilon}\right)
$$

The asymptotic behavior of $\varphi(1)^{2}-\varphi(2) \varphi(0)$ is the following. The coefficient of the expression of highest order (i.e. of $\frac{1}{(-\log r)^{2}}$) vanishes and the coefficient of $\frac{1}{-\log r}$ is

$$
-(\psi(2)+\psi(0)+2 \psi(1))=-\sum_{n=0}^{\infty} \frac{2(n+1)^{3}}{1-r^{2(n+1)}}\left(r^{2(n+1) \alpha}+r^{2(n+1)(1-\alpha)}\right) .
$$

The remaining expressions are $\psi(1)^{2}-\psi(2) \psi(0)$. Therefore, one can easily verify that the asymptotic behavior is the following: for any $\varepsilon>0$ small enough,

$$
\varphi(1)^{2}-\varphi(2) \varphi(0)=\frac{1}{-\log r}\left(\frac{2 r^{2 \alpha}}{1-r^{2}}+\frac{2 r^{2(1-\alpha)}}{1-r^{2}}\right)+o\left(r^{2 \alpha+\varepsilon}\right)+o\left(r^{2(1-\alpha)+\varepsilon}\right)
$$

We still have to consider the asymptotic behavior of the expression $\varphi(4) \varphi(1)^{2}-\varphi(4) \varphi(2) \varphi(0)-2 \varphi(3) \varphi(2) \varphi(1)+\varphi(3)^{2} \varphi(0)+\varphi(2)^{3}$.

First note that the coefficients of the expressions $\frac{1}{(-\log r)^{j}}, j=2,3$, vanish. On the other hand, the coefficient of $\frac{1}{-\log r}$ is

$$
\begin{aligned}
& \psi(1)^{2}-2 \psi(1) \psi(4)-\psi(4) \psi(2)-\psi(4) \psi(0)-\psi(2) \psi(0) \\
& \quad-2(-\psi(2) \psi(1)+\psi(3) \psi(1)-\psi(2) \psi(3))+\psi^{2}(3)-2 \psi(0) \psi(3)+3 \psi(2)^{2}
\end{aligned}
$$

One can calculate that for any $\varepsilon>0$ small enough the last expression equals

$$
\begin{aligned}
\frac{r^{2}}{\left(1-r^{2}\right)^{2}} & \left(-2^{4}\right)+\frac{r^{6(1-\alpha)}}{\left(1-r^{2}\right)\left(1-r^{4}\right)}(A) \\
& +\frac{r^{6 \alpha}}{\left(1-r^{2}\right)\left(1-r^{4}\right)}\left(-2^{5}\right)+o\left(r^{2}\right)+o\left(r^{6(1-\alpha)+\varepsilon}\right)+o\left(r^{6 \alpha+\varepsilon}\right)
\end{aligned}
$$

for some $A<-100$.
Combining all the above results we easily get the desired asymptotic behavior as claimed in the theorem.

REMARK 4. Recall the formula for the curvature

$$
R_{P(r, 1)}\left(r^{\alpha}\right)=2-R(r, \alpha):=2-\frac{J^{(0)}(1) J^{(2)}(1)}{\left(J^{(1)}(1)\right)^{2}}
$$

Then the result of Theorem 2 gives, in particular, the asymptotic behavior of the expression $R(r, \alpha)$ (and consequently the asymptotic behavior of the holomorphic curvature) as $r \rightarrow 0^{+}$, which is as follows:

$$
\begin{cases}\frac{1}{-\log r} & \text { for } \alpha \in(0,1 / 3] \\ \frac{1}{r^{6 \alpha-2}(-\log r)} & \text { for } \alpha \in(1 / 3,1 / 2] \\ \frac{1}{r^{6(1-\alpha)-2}(-\log r)} & \text { for } \alpha \in(1 / 2,2 / 3), \\ \frac{1}{-\log r} & \text { for } \alpha \in[2 / 3,1)\end{cases}
$$

REmARK 5. Note that in the proof of Theorem 2 we have obtained a formula for the Bergman kernel and metric in the annulus (compare Her 1983, Jar-Pfl 1993]) and a relatively simple expression for the sectional curvature of the annulus.

Proof of Corollary 3. We construct inductively sequences $\left(n_{k}\right),\left(x_{k}\right),\left(y_{k}\right)$ and $\left(r_{k}\right)$ such that $\theta^{n_{1}}+\theta^{2 n_{1}}<x_{1}, y_{1}<1 / 2$ and for any $k=1,2, \ldots$ the following properties hold: $\theta^{n_{k+1}}+\theta^{2 n_{k+1}}<x_{k+1}, y_{k+1}<\theta^{n_{k}}-\theta^{2 n_{k}}$, $\theta^{n_{k+1}}+\theta^{2 n_{k+1}}<r_{k+1}<\theta^{n_{k}}-\theta^{2 n_{k}}$ and for any compact $L \subset \bar{\triangle}\left(0, r_{k+1}\right)$ for which $\Omega=\frac{1}{2} \mathbb{D} \backslash\left(\bigcup_{j=1}^{k} \bar{\triangle}\left(\theta^{n_{j}}, \theta^{2 n_{j}}\right) \cup L\right)$ is connected the inequalities $R_{\Omega}\left(x_{j}\right)>2-1 / j, R_{\Omega}\left(y_{j}\right)<-j$ hold for any $j=1, \ldots, k$.

Then we put $D:=\frac{1}{2} \mathbb{D} \backslash\left(\bigcup_{j=1}^{\infty} \bar{\triangle}\left(\theta^{n_{j}}, \theta^{2 n_{j}}\right) \cup\{0\}\right)$. From the properties stated above we will obtain the inequalities $R_{D}\left(x_{k}\right)>2-1 / k, R_{D}\left(y_{k}\right)<-k$, which finishes the proof.

We turn to the construction of the above sequences. We put $r_{1}:=1 / 4$. The possibility of choosing n_{1}, x_{1}, y_{1} as desired follows from Theorem 2 together with the biholomorphic invariance of the sectional curvature (we have to choose n_{1} sufficiently large). The possibility of choosing r_{2} follows from Proposition 1. Now assume the system as above has been chosen for $j=$ $1, \ldots, k$ (with the choice of $n_{j}, x_{j}, y_{j}, j=1, \ldots, k$, and $r_{j}, j=1, \ldots, k+1$).

First note that choosing $n_{k+1}>n_{k}$ so that $\theta^{n_{k+1}}+\theta^{2 n_{k+1}}<r_{k+1}$ we achieve that the recursively defined set $D_{k+1}=\frac{1}{2} \mathbb{D} \backslash\left(\bigcup_{j=1}^{k+1} \bar{\triangle}\left(\theta^{n_{j}}, \theta^{2 n_{j}}\right)\right)$ satisfies $R_{D_{k+1}}\left(x_{j}\right)>2-1 / j, R_{D_{k+1}}\left(y_{j}\right)<-j, j=1, \ldots, k$. Moreover, notice that after we choose n_{k+1} and x_{k+1}, y_{k+1} with $\theta^{n_{k+1}}+\theta^{2 n_{k+1}}<x_{k+1}, y_{k+1}<$ $\theta^{n_{k}}-\theta^{2 n_{k}}$ and $R_{D_{k+1}}\left(x_{k+1}\right)>2-1 /(k+1), R_{D_{k+1}}\left(y_{k+1}\right)<-(k+1)$ we easily get the existence of the desired r_{k+2} from Proposition 1. Therefore, what we need is to choose $n_{k+1} \gg n_{k}$ and properly select x_{k+1}, y_{k+1}. We define x_{k+1}, y_{k+1} to be equal to $\theta^{n_{k+1}}+\theta^{\alpha 2 n_{k+1}}$, where $\alpha=1 / 4$ in the case of x_{k+1} and $\alpha=1 / 2$ in the case of y_{k+1}.

Note that for $r<r^{\alpha}<s<a$,

$$
J_{P(r, s)}^{(j)}\left(r^{\alpha}\right)=J_{P(r / s, 1)}^{(j)}\left(\left(\frac{r}{s}\right)^{\beta}\right) s^{-2(j+1)}, \quad \text { where } \beta=\frac{\alpha \log r-\log s}{\log r-\log s}
$$

If $n_{k+1} \gg n_{k}$ then $s=r_{k+1}-\theta^{n_{k+1}}$ is very close to r_{k+1}, and $\beta \approx \alpha$. Then we obtain

$$
\begin{aligned}
& R_{D_{k+1}}\left(x_{k+1}\right)=2-\frac{J_{D_{k+1}}^{(0)}\left(x_{k+1}\right) J_{D_{k+1}}^{(2)}\left(x_{k+1}\right)}{\left(J_{D_{k+1}}^{(1)}\left(x_{k+1}\right)\right)^{2}} \\
& \geq 2-\frac{J_{P\left(\theta^{n_{k+1}, \theta^{\left.2 n_{k+1}, s\right)}}(0)\right.}^{(0)}\left(x_{k+1}\right) J_{P\left(\theta^{n} k+1, \theta^{\left.2 n_{k+1}, s\right)}\right.}^{(2)}\left(x_{k+1}\right)}{\left(J_{P\left(\theta^{n_{k+1}, \theta^{\left.2 n_{k+1}, 1\right)}}\left(x_{k+1}\right)\right)^{2}}^{(1)}\right.}
\end{aligned}
$$

Substituting in the last formula $\alpha=1 / 4$ we find that, in view of Theorem 2 , if $n_{k+1} \gg n_{k}$ then the last expression is greater than $2-1 /(k+1)$. Analogously we get the desired estimate for $R_{D_{k+1}}\left(y_{k+1}\right)$ (but in this case we substitute $\alpha=1 / 2)$.

REMARK 6. It would be interesting to find a precise description of Zalc-man-type domains having the property as stated in Corollary 3. Note that such a description (complete or at least partial) has been given for the boundary behavior of the Bergman kernel, Bergman metric or Bergman completeness (see [Juc 2004], Pfl-Zwo 2003], [Zwo 2002]).

The construction presented in Corollary 3 is similar to the one presented in Jar-Pfl-Zwo 2000] where the first example of a fat bounded planar domain which is not Bergman exhaustive has been given.

Acknowledgments. This research was partially supported by the Research Grant No. N N201 361436 of the Polish Ministry of Science and Higher Education.

References

[Chen-Lee 2009] B. Y. Chen and H. J. Lee, Bergman kernel and complex singularity exponent, Sci. China 52 (2009), 2590-2603.
[Din 2010] Ż. Dinew, An example for the holomorphic sectional curvature of the Bergman metric, Ann. Polon. Math. 98 (2010), 147-167.
[Her 1983] G. Herbort, Über die Geodätischen der Bergmanmetrik, Schriftenreihe Math. Inst. Univ. Münster (2) 46 (1983).
[Her 2007] - An example of a pseudoconvex domain whose holomorphic sectional curvature of the Bergman metric is unbounded, Ann. Polon. Math. 92 (2007), 29-39.
[Jar-Pfl 1993] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, 1993.
[Jar-Pfl-Zwo 2000] M. Jarnicki, P. Pflug and W. Zwonek, On Bergman completeness of non-hyperconvex domains, Univ. Iagel. Acta Math. 38 (2000), 169184.
[Juc 2004] P. Jucha, Bergman completeness of Zalcman type domains, Studia Math. 163 (2004), 71-83.
[Pfl-Zwo 2003] P. Pflug and W. Zwonek, Logarithmic capacity and Bergman functions, Arch. Math. (Basel) 80 (2003), 536-552.
[Zwo 2002] W. Zwonek, Wiener's type criterion for Bergman exhaustiveness, Bull. Polish Acad. Sci. Math. 50 (2002), 297-311.

Włodzimierz Zwonek
Instytut Matematyki
Uniwersytet Jagielloński
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: Wlodzimierz.Zwonek@im.uj.edu.pl

Received 12.10.2009
and in final form 7.12.2009

[^0]: 2010 Mathematics Subject Classification: Primary 32F45; Secondary 32A36, 30C40. Key words and phrases: annulus, Bergman metric, holomorphic sectional curvature.

