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Multiplicity of solutions for a singular
p-laplacian elliptic equation

by Wen-shu Zhou and Xiao-dan Wei (Dalian)

Abstract. The existence of two continuous solutions for a nonlinear singular elliptic
equation with natural growth in the gradient is proved for the Dirichlet problem in the
unit ball centered at the origin. The first continuous solution is positive and maximal; it
is obtained via the regularization method. The second continuous solution is zero at the
origin, and follows by considering the corresponding radial ODE and by sub-sup solutions
method.

1. Introduction. Consider the nonlinear problem

(1.1)

 − div(|∇u|p−2∇u) = f(x)− λ

um
|∇u|p, u > 0, in Ω,

u = 0 on ∂Ω.

Here Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω,
1 < p < ∞, λ 6= 0, m ∈ R, and f(x) is measurable in Ω. Such problems
arise in the theory of non-Newtonian fluids (see [AM], [MP], [MRS]).

For m > 0, the equation in (1.1) is singular at points where u = 0.
When the lower order term B(x, u, η) has no singularity at u = 0, the

following nonlinear elliptic problems have been studied extensively (see [A],
[AAA], [AB], [ADP], [BBM], [BMP1], [BMP2], [BO], [BST], [CC], [DGP],
[DB], [DN], [FPR], [G], [GT], [L], [LU], [OP], [P], [PS], [T], [Tr], [YC] and
references therein): Find u ∈W 1,p(Ω) ∩ L∞(Ω), such that{

− divA(x, u,∇u) +B(x, u,∇u) = 0 in D′(Ω),

u− h ∈W 1,p
0 (Ω),

where h∈W 1,p(Ω)∩L∞(Ω), −divA is a Leray–Lions operator from W 1,p
0 (Ω)

into W−1,p′(Ω) (p > 1, p′ > 1, 1/p + 1/p′ = 1), which includes the p-
laplacian, and B is a nonlinear lower order term with natural growth in
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the gradient. Under some additional assumptions on A and B, the existence
and regularity of solutions were studied in a large number of papers: see for
instance Abdellaoui, Dall’Aglio and Peral [ADP], Amann [A], Bensoussan,
Boccardo and Murat [BBM], Boccardo, Murat and Puel [BMP1, BMP2],
Cho and Choe [CC], Dall’Aglio, Giachetti and Puel [DGP], Drábek and
Nicolosi [DN], Ferone, Posteraro and Rakotoson [FPR], Grenon and Trom-
betti [GT], Orsina and Puel [OP] and Porretta and Segura de León [PS] for
the existence and DiBenedetto [DB], Ladyzhenskaya and Ural’tseva [LU],
Lieberman [L] and Tolksdorf [T] for the regularity.

When the lower order term B may be singular at u = 0, to the best of
our knowledge, the problem has received little attention. In [MRS], Michaux,
Rakotoson and Shen studied a class of quasilinear mixed equations of Leray–
Lions type; however, they only considered the case where the boundary
function has a positive lower bound and established the existence and local
regularity of solutions with the same lower bound, whereas the positive
lower bound means disappearance of singularity of the lower order term
and plays a dominant role in their proof. It is of interest to consider the
singularity of the lower order term and to study the existence of solutions
in W 1,p

0 (Ω) ∩ L∞(Ω).
In the present paper, we investigate the existence and multiplicity of

solutions of problem (1.1) with m > 1 and λ > 0; we extend the existence
results of [AMA, PV, Z1] and the multiplicity result of [Z2].

In [Z1], Zhou considered a class of nonlinear singular elliptic problems in-
cluding (1.1) with m = 1, and established the existence of a positive solution
under the assumptions λ ≥ (p− 1)/p and f ∈ L∞(Ω) with ess infΩf > 0. In
the case of p = 2, problem (1.1) was studied in [AMA], [PV] and [Z2]. For
0 < m ≤ 1, Arcoya and Mart́ınez-Aparicio [AMA] proved the existence of a
positive distributional solution under the assumptions λ > 0 and f ∈ L∞(Ω)
with infΩ′f > 0 for any Ω′ ⊂⊂ Ω. For m = 1, Porru and Vitolo [PV] es-
tablished the existence of a positive classical solution via a substitution if
λ > 0 and f ≡ const > 0. For 4/3 > m > 1, Zhou [Z2] obtained two dif-
ferent continuous solutions: one that is maximal and positive and another
that is zero at the origin, if Ω = B1 := {x ∈ RN ; |x| < 1}, f(x) = f(|x|),
f ∈ C[0, 1] with f > 0 on [0, 1] and λ > infr≥1H(r), where

H(r) =
2(m− 1) +N(2−m)

2
rm−1 +

(2−m)2 max[0,1] f

4
rm−2.

The second solution can be obtained by considering the corresponding ODE
with mixed boundary conditions and by the sub-sup solutions method.

We point out that in the case of m = 1, by a certain transformation (see
[Z1]), problem (1.1) can be transformed into either a Dirichlet problem or
a boundary blowup problem without a gradient term; such problems have
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been studied extensively in the past years (see the references cited in [Z1]).
It is worth noting that for m > 1, it seems to be impossible to transform
the equation in (1.1) into an equation without a gradient term.

As seen in Section 2, the case m ≥ 1 is essentially different from the case
0 < m < 1. Indeed, we show that in the latter case, problem (1.1) admits
at most one solution (see Corollary 2.5), while in the former case it has at
least two solutions. The main idea of dealing with the multiplicity is similar
to that in [Z2]. Roughly speaking, the proof consists of two steps. In the
first step, we obtain a maximal, positive, continuous solution for a general
domain Ω (see Theorem 2.6), for which our idea is based on the regulariza-
tion method, monotonicity technique and Lemma 3.7. In the second step,
we will assume Ω = B1 and f(x) = f(|x|) and consider the radial ODE
corresponding to the equation in (1.1):

(1.2) (|u′|p−2u′)′ +
N − 1
r
|u′|p−2u′ − λ

um
|u′|p + f(r) = 0, 0 < r < 1.

To get the second solution, we consider (1.2) with the boundary conditions

(1.3) u(1) = u(0) = u′(0) = 0.

A function u ∈ C1[0, 1] is called a solution to problem (1.2) and (1.3) if
u > 0 in (0, 1), |u′|p−2u′ ∈ C1(0, 1), and it satisfies (1.2) and (1.3). By the
sub-sup solutions method, we prove that under some additional assumptions
on m,λ and f , problem (1.2) and (1.3) has a positive solution u (see the
proof of Theorem 2.7). Let w(x) = u(r) with r = |x|. Then w(x) is a solution
with w(0) = 0 if Ω = B1 and some assumptions on m,λ and f are satisfied
(see Theorem 2.7). Thus problem (1.1) may have at least two solutions (see
Theorem 2.8).

This paper is organized as follows. In Section 2, we state the main results.
The other sections are devoted to the proofs of these results.

2. Main results. Denote

F = W 1,p(Ω) ∩ L∞(Ω), F0 = W 1,p
0 (Ω) ∩ L∞(Ω),

F+
0 = {w ∈ F0; w ≥ 0 a.e. in Ω}.

Definition 2.1. A function u ∈ F is called a sup-solution of the equa-
tion in (1.1) if u > 0 a.e. in Ω, |∇u|p/um ∈ L1(Ω), and

�

Ω

(
|∇u|p−2∇u∇ϕ+

λ

um
|∇u|pϕ− f(x)ϕ

)
dx ≥ 0, ∀ϕ ∈ F+

0 .

Similarly, a function u ∈ F is called a sub-solution of the equation in (1.1) if
u > 0 a.e. in Ω, |∇u|p/um ∈ L1(Ω), and it satisfies the converse inequality.
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Definition 2.2. A function u ∈ F0 is called a solution of problem (1.1)
if u > 0 a.e. in Ω, |∇u|p/um ∈ L1(Ω), and

�

Ω

(
|∇u|p−2∇u∇ϕ+

λ

um
|∇u|pϕ− f(x)ϕ

)
dx = 0, ∀ϕ ∈ F0.

Proposition 2.3. Let λ > 0 and f ∈ L1(Ω) with f ≤ 0 a.e. in Ω. Then
problem (1.1) has no solution.

Proof. Assume that u is a solution of problem (1.1). Then u ∈ F+
0 . Sub-

stituting ϕ = u into the integral equality in Definition 2.2 yields
	
Ω |∇u|

p dx
= 0, which implies that u = 0 a.e. in Ω, a contradiction.

Proposition 2.4. Let λ ≥ 0 and m > 0 be constants, and let f ∈ Lq(Ω)
with f(x) ≥ 0 a.e. in Ω, where 1/p + 1/q = 1. Assume that u2 and u1 are
a sup-solution and a sub-solution of the equation in (1.1), respectively, with
u2 ≥ u1 on ∂Ω.

(i) If 0 < m < 1, then u2 ≥ u1 a.e. in Ω.
(ii) If m ≥ 1, and if there exist positive constants c2, c1 such that ui ≥

ci (i = 1, 2), then u2 ≥ u1 a.e. in Ω.

Here the precise meaning of “u2 ≥ u1 on ∂Ω” is that “(u1 − u2)+ ∈
W 1,p

0 (Ω)”, where s+ = max{0, s}.
Proof. Let ξ = λ/(p− 1), µm = 0 if 0 < m < 1 and µm = min{c2, c1} if

m ≥ 1, and define g : [µm,∞)→ R by

g(s) =
s�

µm

e
ξ

m−1
y1−mdy if m 6= 1,

g(s) =


s1−ξ

1− ξ
(ξ 6= 1)

ln(s) (ξ = 1)
if m = 1.

Clearly, g′(s) > 0 and g′′(s) ≤ 0, for all s > µm. Then it follows from
Definition 2.1 that�

Ω

(|∇g(u2)|p−2∇g(u2)∇ϕ− (g′(u2))p−1f(x)ϕ) dx ≥ 0,

�

Ω

(|∇g(u1)|p−2∇g(u1)∇ϕ− (g′(u1))p−1f(x)ϕ) dx ≤ 0

for any ϕ ∈ F+
0 , so

�

Ω

(|∇g(u1)|p−2∇g(u1)− |∇g(u2)|p−2∇g(u2))∇ϕdx

+
�

Ω

f(x)((g′(u2))p−1 − (g′(u1))p−1)ϕdx ≤ 0.
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Note that ϕ = (g(u1)−g(u2))+ ∈ F+
0 . Substituting it into the above integral

inequality yields
�

Ω

(|∇g(u1)|p−2∇g(u1)− |∇g(u2)|p−2∇g(u2))∇(g(u1)− g(u2))+ dx

+
�

Ω

f(x)((g′(u2))p−1 − (g′(u1))p−1)(g(u1)− g(u2))+ dt ≤ 0.

Since g′ > 0 and g′′ ≤ 0 in (µm,∞), we obtain

f(x)((g′(u2))p−1 − (g′(u1))p−1)(g(u1)− g(u2))+ ≥ 0 a.e. in Ω,

and hence�

Ω

(|∇g(u1)|p−2∇g(u1)− |∇g(u2)|p−2∇g(u2))∇(g(u1)− g(u2))+dx ≤ 0.

By the inequality (cf. [D])

(2.1) (|η|p−2η − |η′|p−2η′) · (η − η′) ≥ C(|η|+ |η′|)p−2|η − η′|2

for any η, η′ ∈ RN , where C is a positive constant depending only on p, one
arrives at �

Ω

(|∇g(u1)|+ |∇g(u2)|)p−2|∇(g(u1)− g(u2))+|2 dx = 0.

This shows that (g(u1)− g(u2))+ = 0 a.e. in Ω, which implies that u2 ≥ u1

a.e. in Ω.

As an immediate consequence of Proposition 2.4, we obtain

Corollary 2.5. Let λ > 0 and 0 < m < 1 be constants, and let f ∈
Lq(Ω) with f ≥ 0 a.e. in Ω, where 1/p+1/q = 1. Then problem (1.1) admits
at most one solution in F+

0 .

The present paper will focus on the case of m > 1. We first obtain the
existence of a solution for the general domain Ω.

Theorem 2.6. Let p > 1, λ > 0, 2p/(p+ 1) > m > 1, and assume
f ∈ L∞(Ω) with ess infΩ f(x) > 0. Then problem (1.1) admits one maximal,
positive solution u in Cαloc(Ω) ∩ C(Ω) for some α ∈ (0, 1).

For Ω = B1 ≡ {x ∈ RN ; |x| < 1}, we establish the existence of the
second solution of problem (1.1), which can be stated as follows.

Theorem 2.7. Let Ω = B1 and f(x) ≡ f(|x|), and let p > m > 1.
Assume that f ∈ C[0, 1] with f > 0 on [0, 1]. If λ > infr≥1X (r), then
problem (1.1) admits one solution w in C1(Ω) with w > 0 in Ω \ {0}
and w(0) = 0. Moreover, there exist two positive constants C2 and C1 with
C2 ≥ C1 such that

(2.2) C1 ≤ |x|(m−p)/pw(x) ≤ C2, 0 ≤ |x| ≤ 1/4.
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Here X : R+ → R+ is defined by

X (r) =
p(m− 1) +N(p−m)

p
rm−1 +

(p−m)p max[0,1] f

pp
rm−p.

By Theorems 2.6–2.7, we immediately obtain the following multiplicity
result.

Theorem 2.8. Let Ω = B1 and f(x) ≡ f(|x|), and let p > 1, 2p/(p+ 1)
> m > 1. Assume that f ∈ C[0, 1] with f > 0 on [0, 1]. If λ > infr≥1X (r),
then problem (1.1) has at least two solutions.

Remark 2.9. Let p > m > 1, and denote

S∗ =

{
S0, S0 ≥ 1,
1, S0 < 1,

S0 =
(

(p−m)p+1 max[0,1] f

pp−1(m− 1)[p(m− 1) +N(p−m)]

)1/(p−1)

.

Then infs≥1X (s) = X (S∗). Indeed, since lims→0+ X (s) = lims→∞X (s) =
∞, X (s) must reach a minimum at some s ∈ (0,∞) satisfying X ′(s) = 0,
which gives s = S0, so infs>0X (s) = X (S0). Since X ′(s) ≥ 0 for all s ≥ S0,
we see that infs≥1X (s) = X (S0) if S0 ≥ 1, and infs≥1X (s) = X (1) if S0 < 1.

3. Proof of Theorem 2.6. Let ε ∈ (0, 1/2), and define Hε : Ω × R ×
RN → R by

Hε(x, s, ξ) = λ
sgn(s)

[I(s) + ε]m
|ξ|p − f(x),

where I(s) = s if s ≥ 0, I(s) = 0 if s < 0. Clearly, we have

|Hε(x, s, ξ)| ≤
λ

εm
|ξ|p + |f |∞

for almost every (x, s, ξ) ∈ Ω×R×RN . Hence it follows from Theorem 1 in
[BMP1] that for any fixed ε ∈ (0, 1/2), there exists a function uε ∈ F0 such
that

(3.1)
�

Ω

(|∇uε|p−2∇uε∇ϕ+Hε(x, uε,∇uε)ϕ) dx = 0, ∀ϕ ∈ F0.

Lemma 3.1. uε ≥ 0 a.e. in Ω for all ε ∈ (0, 1/2).

Proof. Since uε ∈ F0, we have (uε)− ∈ F0, where s− = max{0,−s}.
Substituting ϕ = (uε)− into (3.1) yields

�

Ω

(
|∇uε|p−2∇uε∇(uε)− + λ

sgn(uε)(uε)−
[I(uε) + ε]m

|∇uε|p − f(x)(uε)−

)
dx = 0.

This leads to
�

Ω

(
|∇(uε)−|p + λ

|(uε)−|
[I(uε) + ε]m

|∇uε|p
)
dx = −

�

Ω

f(x)(uε)− dx ≤ 0,
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which implies that �

Ω

|∇(uε)−|p dx = 0,

therefore, (uε)− = 0 a.e. in Ω, i.e. uε ≥ 0 a.e. in Ω.

By Lemma 3.1, one derives from (3.1) that

(3.2)
�

Ω

(
|∇uε|p−2∇uε∇ϕ+

λ

(uε + ε)m
|∇uε|pϕ−f(x)ϕ

)
dx = 0, ∀ϕ∈F0.

Denote Uε = uε + ε. Then Uε ≥ ε, and

(3.3)
�

Ω

(
|∇Uε|p−2∇Uε∇ϕ+

λ

Umε
|∇Uε|pϕ− f(x)ϕ

)
dx = 0, ∀ϕ ∈ F0.

Next our aim is to show that the limit limε→0+ uε(x) = u(x) exists for
almost every x ∈ Ω, and the limit function u is a solution of problem (1.1).
Before giving the proof, we emphasize that the main difficulty is twofold:
singularity and natural growth of the nonlinear lower order term. To over-
come the difficulties, we will establish a locally uniform positive lower bound
of uε and prove the strong compactness:

(3.4) ∇U (p−m)/p
ε → ∇u(p−m)/p strongly in L1(Ω) (ε→ 0+).

Due to the singularity, it seems difficult to deal with (3.4) as in the papers
mentioned above. Our method relies on the monotonicity of uε in ε, Lemma
3.7 and a compactness argument.

It is worth noting that, to establish (3.4), the condition λ ≥ (p − 1)/p
is needed in [Z1] for m = 1, while for m > 1 the present paper does not
impose any condition on λ except λ > 0 (see the proof of Lemma 3.6).
Moreover, we have to require m < 2p/(p + 1) in order to apply Lebesgue’s
dominated convergence theorem to the proof of (3.4). To show (3.4), we
need to establish some nontrivial, uniform estimates on uε. The following
lemma gives uniform upper and lower bounds for uε.

Lemma 3.2. For all ε ∈ (0, 1/2),

(3.5) Φ ≥ uε ≥ CΦp/(p−m) a.e. in Ω,

where C > 0 is independent of ε, and Φ ∈ C1
0 (Ω) denotes the unique positive

solution of the problem

−div(|∇v|p−2∇v) = |f |∞ in D′(Ω), v ∈ C1
0 (Ω),

(see [BMP1] for the existence of Φ in W 1,p
0 (Ω) ∩ L∞(Ω), [L] for the global

C1,α regularity and [D] for the positivity).
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Proof. As λ > 0, it follows from (3.2) that�

Ω

(|∇uε|p−2∇uε∇ϕ− |f |∞ϕ) dx ≤ 0, ∀ϕ ∈ F+
0 ,

thus, by Proposition 2.4, one obtains uε ≤ Φ a.e. in Ω.
Below we show the second estimate in (3.5). Let Wε = V + ε with V =

CΦp/(p−m), where C ∈ (0, 1) satisfies(
Cp

p−m

)p−1
|f |∞max

Ω
Φm(p−1)/(p−m) +

λCp−mpp

(p−m)p
max
Ω
|∇Φ|p ≤ ess inf

Ω
f(x).

Clearly, Wε ∈W 1,p(Ω)∩L∞(Ω). By simple calculations and using the prop-
erties of Φ, we deduce that

−div(|∇Wε|p−2∇Wε) + λ
|∇Wε|p

Wm
ε

− f(x)

≤ − div(|∇V |p−2∇V ) + λ
|∇V |p

V m
− ess inf

Ω
f(x)

= −
(

Cp

p−m

)p−1

Φm(p−1)/(p−m)div(|∇Φ|p−2∇Φ)

− m(p− 1)(Cp)p−1

(p−m)p
Φp(m−1)/(p−m)|∇Φ|p +

λCp−mpp

(p−m)p
|∇Φ|p − ess inf

Ω
f(x)

=
(

Cp

p−m

)p−1

|f |∞Φm(p−1)/(p−m) − m(p− 1)(Cp)p−1

(p−m)p
Φp(m−1)/(p−m)|∇Φ|p

+
λCp−mpp

(p−m)p
|∇Φ|p − ess inf

Ω
f(x)

≤
(

Cp

p−m

)p−1

|f |∞max
Ω

Φm(p−1)/(p−m)+
λCp−mpp

(p−m)p
max
Ω
|∇Φ|p− ess inf

Ω
f(x)

≤ 0 in D′(Ω).

By Proposition 2.4 and (3.3), we derive that Uε ≥Wε a.e. in Ω, i.e. uε ≥ V
a.e. in Ω.

By (3.5), it is easy to derive that for any compact subset Ω′ of Ω, there
exists a positive constant C0, independent of ε, such that

uε ≥ C0 a.e. in Ω′,

therefore

|Hε(x, uε(x), ξ)| ≤ λ

Cm0
|ξ|p + |f |∞

for almost every x ∈ Ω′ and for all ξ ∈ RN . Consequently, all assumptions
of Theorem 6.1 in [MRS] (see also [R], [RT]) for local Hölder continuity
are satisfied. We conclude that uε is uniformly bounded in Cα(Ω′) for some
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α ∈ (0, 1). Using the Arzelà–Ascoli theorem, there exist a subsequence of
{uε}, still denoted by {uε}, and a function u ∈ Cαloc(Ω), such that, as ε→ 0+,

(3.6) uε → u uniformly in Ω′.

Hence, u is continuous in Ω and satisfies, by (3.5),

(3.7) Φ ≥ u ≥ CΦp/(p−m) in Ω.

Then limx→∂Ω u(x) = 0. Define u = 0 on ∂Ω. Then u ∈ C(Ω).
The following lemma shows the monotonicity of uε in ε.

Lemma 3.3. uε2 ≥ uε1 in Ω for 1/2 > ε2 > ε1 > 0.

Proof. Let Vε2 = uε2 + ε1. Then Uε1 − Vε2 ∈ F0. It follows from the
equality (3.3) with ε = ε2 that

�

Ω

(
|∇Vε2 |p−2∇Vε2∇ϕ+

λ

V m
ε2

|∇Vε2 |pϕ− f(x)ϕ
)
dx ≥ 0, ∀ϕ ∈ F+

0 .

By Proposition 2.4, we see that Vε2 ≥ Uε1 in Ω, that is, uε2 ≥ uε1 in Ω.

From Lemma 3.3 and (3.6), we derive that

uε ≥ u in Ω,(3.8)

uε → u in Ω (ε→ 0+).(3.9)

Lemma 3.4. ∇uε → ∇u strongly in Lp(Ω) (ε→ 0+).

Proof. Substituting ϕ = uε into (3.2) yields�

Ω

|∇uε|p dx+ λ
�

Ω

uε
(uε + ε)m

|∇uε|p dx =
�

Ω

f(x)uε dx,

therefore, using the first estimate of (3.5) yields

(3.10)
�

Ω

|∇uε|p dx ≤ C,

from which and (3.9) we deduce that ∇u ∈ Lp(Ω), and up to a subsequence

∇uε → ∇u weakly in Lp(Ω) (ε→ 0+).

Then substituting ϕ = uε − u into (3.2) yields
�

Ω

|∇uε|p−2∇uε(∇uε −∇u) dx

+ λ
�

Ω

uε − u
(uε + ε)m

|∇uε|p dx =
�

Ω

f(x)(uε − u) dx.

By (3.8), we have�

Ω

|∇uε|p−2∇uε(∇uε −∇u) dx ≤
�

Ω

f(x)(uε − u) dx,
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therefore
lim
ε→0+

�

Ω

|∇uε|p−2∇uε(∇uε −∇u) dx ≤ 0.

Noticing
lim
ε→0+

�

Ω

|∇u|p−2∇u(∇uε −∇u) dx = 0,

we obtain

lim
ε→0+

�

Ω

(|∇uε|p−2∇uε − |∇u|p−2∇u)(∇uε −∇u) dx ≤ 0.

Recalling the inequality (2.1), we find that

(3.11) lim
ε→0+

�

Ω

(|∇uε|p−2∇uε − |∇u|p−2∇u)(∇uε −∇u) dx = 0,

so �

Ω

(|∇uε|+ |∇u|)p−2|∇uε −∇u|2 dx→ 0 (ε→ 0+).

From this and using Hölder’s inequality we get
�

Ω

|∇uε −∇u|p dx

≤
�

Ω

(|∇uε|+ |∇u|)p−1|∇uε −∇u| dx

=
�

Ω

(|∇uε|+ |∇u|)p/2
|∇uε −∇u|

(|∇uε|+ |∇u|)1−p/2
dx

≤
( �

Ω

(|∇uε|+ |∇u|)p dx
)1/2

·
( �

Ω

|∇uε −∇u|2

(|∇uε|+ |∇u|)2−p
dx

)1/2

≤ C
( �

Ω

|∇uε −∇u|2

(|∇uε|+ |∇u|)2−p
dx

)1/2

→ 0 (ε→ 0+).

Lemma 3.4 immediately implies that

(3.12) ∇uε → ∇u a.e. in Ω (ε→ 0+).

Lemma 3.5. For all ε ∈ (0, 1/2), we have

(3.13)
�

Ω

|∇uε|p

(uε + ε)m
dx ≤ 1

λ

�

Ω

f(x) dx,

i.e. �

Ω

|∇U (p−m)/p
ε |p dx ≤ (p−m)p

λpp

�

Ω

f(x) dx.
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Proof. Clearly, uε
uε+σ

∈ F0 for any σ > 0. Substituting it into (3.2) yields

σ
�

Ω

|∇uε|p

(uε + σ)2
dx+ λ

�

Ω

|∇uε|p

(uε + ε)m
uε

uε + σ
dx =

�

Ω

f(x)
uε

uε + σ
dx,

therefore

λ
�

Ω

|∇uε|p

(uε + ε)m
uε

uε + σ
dx ≤

�

Ω

f(x)
uε

uε + σ
dx.

Note that uε > 0 in Ω. Then for any fixed ε ∈ (0, 1/2) we have
uε

uε + σ
→ 1 in Ω (σ → 0+).

Letting σ → 0+ and using Lebesgue’s dominated convergence theorem, we
obtain

λ
�

Ω

|∇uε|p

(uε + ε)m
dx ≤

�

Ω

f(x) dx.

Now passing to the limit in (3.13) as ε → 0+ and using Fatou’s lemma
and noticing (3.9), (3.7) and (3.12) yield

�

Ω

|∇u|p

um
dx ≤ 1

λ

�

Ω

f(x) dx.

This shows that

(3.14) |∇u|p/um ∈ L1(Ω) (i.e. |∇u(p−m)/p| ∈ Lp(Ω)).

The following lemma is the key to the whole proof.

Lemma 3.6. ∇U (p−m)/p
ε → ∇u(p−m)/p strongly in Lp(Ω) (ε→ 0+).

To show Lemma 3.6, we need the following

Lemma 3.7. Let Φ be as in Lemma 3.2. Then�

Ω

[Φ(x)]−s dx <∞ if and only if s < 1.

Proof. We first claim that

(3.15)
�

Ω

[d(x)]−s dx <∞ if and only if s < 1,

where d(x) = dist(x, ∂Ω). Denote by Ψ1 the eigenfunction corresponding to
the first eigenvalue λ1 of −∆ in Ω with homogeneous Dirichlet boundary
condition. Theorem 2 from [V] yields ∂Ψ1/∂ν > 0 on ∂Ω, where ν denotes
the interior unit normal to ∂Ω, so Ψ1(x) ≥ Cd(x) for all x ∈ Ω. On the other
hand, since Ψ1 ∈ C1(Ω), we have Ψ1(x) ≤ C|x−x0| for any x0 ∈ ∂Ω and for
all x ∈ Ω. In addition, there exists some x ∈ ∂Ω such that d(x) = |x − x|,
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and hence Ψ1(x) ≤ Cd(x) for all x ∈ Ω. Since (see [LM])�

Ω

[Ψ1(x)]−s dx <∞ if and only if s < 1,

we find that (3.15) holds.
Theorem 5 from [V] yields ∂Φ/∂ν > 0 on ∂Ω, hence Φ(x) ≥ Cd(x) for all

x ∈ Ω. By the same reasoning as for Ψ1, one can derive that Φ(x) ≤ Cd(x)
for all x ∈ Ω. Therefore, there exist two positive constants C2, C1 with
C2 ≥ C1 such that

C1d(x) ≤ Φ(x) ≤ C2d(x), ∀x ∈ Ω.
This and (3.15) imply the desired result.

Proof of Lemma 3.6. Clearly, we have

∇U (p−m)/p
ε → ∇u(p−m)/p weakly in Lp(Ω) (ε→ 0+).

Let Vε = u+ ε. Note that for fixed ε ∈ (0, 1/2),

ϕ =
(
p−m
p

)p−1

U−(p−1)m/p
ε (U (p−m)/p

ε − V (p−m)/p
ε ) ∈ F0.

Substituting it into (3.3) yields

(3.16)
�

Ω

|∇U (p−m)/p
ε |p−2∇U (p−m)/p

ε ∇(U (p−m)/p
ε − V (p−m)/p

ε ) dx

=
(
p−m
p

)p−1 (p− 1)m
p

�

Ω

|∇Uε|p

U
(p+(p−1)m)/p
ε

(U (p−m)/p
ε − V (p−m)/p

ε ) dx

− λ
(
p−m
p

)p−1 �

Ω

|∇Uε|p

U
(2p−1)m/p
ε

(U (p−m)/p
ε − V (p−m)/p

ε ) dx

+
(
p−m
p

)p−1 �

Ω

f(x)U−(p−1)m/p
ε (U (p−m)/p

ε − V (p−m)/p
ε ) dx

:= I1ε + I2ε + I3ε.

Below we shall show that

(3.17) lim
ε→0+

�

Ω

|∇U (p−m)/p
ε |p−2∇U (p−m)/p

ε ∇(U (p−m)/p
ε − V (p−m)/p

ε ) dx ≤ 0.

By the first estimate in (3.5), there exists a constant δ ∈ (0, 1) such that for
all ε ∈ (0, τ), where τ = min

{
1
2 ,

1
2

( pλ
(p−1)m

)1/(m−1)}, we have

uε < τ in Ωδ := {x ∈ Ω; dist(x, ∂Ω) < δ},
thus, for all ε ∈ (0, τ),

Um−1
ε = (uε + ε)m−1 < (2τ)m−1 ≤ pλ

(p− 1)m
in Ωδ.
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This and Uε ≥ Vε imply that

�

Ωδ

|∇Uε|p

U
(p+(p−1)m)/p
ε

(U (p−m)/p
ε − V (p−m)/p

ε ) dx

=
�

Ωδ

|∇Uε|p

U
(2p−1)m/p
ε

Um−1
ε (U (p−m)/p

ε − V (p−m)/p
ε ) dx

≤ pλ

(p− 1)m

�

Ωδ

|∇Uε|p

U
(2p−1)m/p
ε

(U (p−m)/p
ε − V (p−m)/p

ε ) dx

for all ε ∈ (0, τ), therefore

I1ε=
(
p−m
p

)p−1 (p− 1)m
p

�

Ωδ

|∇Uε|p

U
(p+(p−1)m)/p
ε

(U (p−m)/p
ε − V (p−m)/p

ε ) dx

+
(
p−m
p

)p−1 (p− 1)m
p

�

Ω−Ωδ

|∇Uε|p

U
(p+(p−1)m)/p
ε

(U (p−m)/p
ε − V (p−m)/p

ε ) dx

≤ λ
(
p−m
p

)p−1 �

Ωδ

|∇Uε|p

U
(2p−1)m/p
ε

(U (p−m)/p
ε − V (p−m)/p

ε ) dx

+
(
p−m
p

)p−1 (p− 1)m
p

�

Ω−Ωδ

|∇Uε|p

U
(p+(p−1)m)/p
ε

(U (p−m)/p
ε − V (p−m)/p

ε ) dx

≤−I2ε+
(
p−m
p

)p−1 (p−1)m
p

�

Ω−Ωδ

|∇Uε|p

U
(p+(p−1)m)/p
ε

(U (p−m)/p
ε −V (p−m)/p

ε ) dx,

i.e.

(3.18) I1ε + I2ε

≤
(
p−m
p

)p−1 (p− 1)m
p

�

Ω−Ωδ

|∇Uε|p

U
(p+(p−1)m)/p
ε

(U (p−m)/p
ε − V (p−m)/p

ε ) dx.

On the other hand, by (3.13) and (3.6), we have

�

Ω−Ωδ

|∇Uε|p

U
(p+(p−1)m)/p
ε

(U (p−m)/p
ε − V (p−m)/p

ε ) dx

=
�

Ω−Ωδ

|∇Uε|p

Umε

[
1−

(
Vε
Uε

)(p−m)/p]
dx

≤ C max
Ω−Ωδ

[
1−

(
Vε
Uε

)(p−m)/p]
→ 0 (ε→ 0+).
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This together with (3.18) implies that

(3.19) lim
ε→0+

(I1ε + I2ε) ≤ 0.

Next let us estimate I3ε. Since 1 < m < 2p/(p+ 1), it follows that
p(m− 1)/(p−m) < 1. By Lemma 3.7, one obtains

�

Ω

Φp(1−m)/(p−m) dx <∞ (i.e. Φp(1−m)/(p−m) ∈ L1(Ω)).

Since Uε ≥ Vε ≥ ε, by noticing m > 1 and by using the second estimate in
(3.5), we have

0 ≤ U−(p−1)m/p
ε (U (p−m)/p

ε − V (p−m)/p
ε ) ≤ U1−m

ε ≤ CΦp(1−m)/(p−m) in Ω.

Note that

U−(p−1)m/p
ε (U (p−m)/p

ε − V (p−m)/p
ε )→ 0 in Ω (ε→ 0+).

Using Lebesgue’s dominated convergence theorem, we get

I3ε =
�

Ω

f(x)U−(p−1)m/p
ε (U (p−m)/p

ε − V (p−m)/p
ε ) dx→ 0 (ε→ 0+).

This together with (3.16) and (3.19) implies (3.17).
Noticing

0 ≤ 1−
(
u

Vε

)m/p
≤ 1 in Ω, 1−

(
u

Vε

)m/p
→ 0 in Ω (ε→ 0+),

and using Lebesgue’s dominated convergence theorem and (3.14), we obtain,
as ε→ 0+,

�

Ω

|∇(u(p−m)/p−V (p−m)/p
ε )|p dx =

(
p−m
p

)p �
Ω

|∇u|p

um

∣∣∣∣1−( u

Vε

)m/p∣∣∣∣p dx→ 0,

therefore, by Hölder’s inequality and by using (3.13), we have∣∣∣∣ �
Ω

|∇U (p−m)/p
ε |p−2∇U (p−m)/p

ε ∇(u(p−m)/p − V (p−m)/p
ε ) dx

∣∣∣∣
≤
( �

Ω

|∇U (p−m)/p
ε |p dx

)(p−1)/p
·
( �

Ω

|∇(u(p−m)/p − V (p−m)/p
ε )|p dx

)1/p

≤ C
( �

Ω

|∇(u(p−m)/p − V (p−m)/p
ε )|p dx

)1/p
→ 0 (ε→ 0+).

From this and (3.17) it follows that
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lim
ε→0

�

Ω

|∇U (p−m)/p
ε |p−2∇U (p−m)/p

ε ∇(U (p−m)/p
ε − u(p−m)/p) dx ≤ 0.

Since

lim
ε→0+

�

Ω

|∇u(p−m)/p|p−2∇u(p−m)/p∇(U (p−m)/p
ε − u(p−m)/p) dx = 0,

we derive that

lim
ε→0+

�

Ω

(|∇U (p−m)/p
ε |p−2∇U (p−m)/p

ε − |∇u(p−m)/p|p−2∇u(p−m)/p)

×∇(U (p−m)/p
ε − u(p−m)/p) dx ≤ 0.

Recalling the inequality (2.1), we have

lim
ε→0+

�

Ω

(|∇U (p−m)/p
ε |p−2∇U (p−m)/p

ε − |∇u(p−m)/p|p−2∇u(p−m)/p)

×∇(U (p−m)/p
ε − u(p−m)/p) dx = 0.

Then the same reasoning as in Lemma 3.4 completes the proof.
Lemma 3.6 immediately implies that

�

Ω

|∇uε|p

(uε + ε)m
dx→

�

Ω

|∇u|p

um
dx (ε→ 0+).

Then it is easy to check that u is a solution of problem (1.1).
It remains to show that u is maximal. Let w be a solution of problem

(1.1). Then wε = w + ε satisfies
�

Ω

(
|∇wε|p−2∇wε∇ϕ+

λ

wmε
|∇wε|pϕ− f(x)ϕ

)
dx ≤ 0, ∀ϕ ∈ F+

0 .

Recalling Proposition 2.4 and (3.3), we see that

Uε = uε + ε ≥ wε = w + ε a.e. in Ω,

i.e. uε ≥ w a.e. in Ω and passing to the limit in ε gives u ≥ w a.e. in Ω. The
proof of Theorem 2.6 is complete.

4. Proof of Theorem 2.7. Under the hypotheses of Theorem 2.7, we
first show the existence of a positive solution for problem (1.2) and (1.3).
Let ε ∈ (0, 1), and define Hε : (0, 1)× R× R→ R by

Hε(r, v, ξ) = − N − 1
r + ε1/α

|ξ|p−2ξ + λ
|ξ|p

[Iε(v)]m
− f(r),
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where α = p/(p−m), and Iε(v) = v + ε2 if v ≥ 0, Iε(v) = ε2 if v < 0. By
the inequality ap−1 ≤ ap + 1 (a ≥ 0), we have

|Hε(r, v, ξ)| ≤
N − 1
ε1/α

|ξ|p−1 +
λ

ε2m
|ξ|p + max

[0,1]
f(4.1)

≤ N − 1
ε1/α

(1 + |ξ|p) +
λ

ε2m
|ξ|p + max

[0,1]
f

≤
(
N − 1
ε1/α

+
λ

ε2m
+ max

[0,1]
f

)
H(|ξ|)

for all (r, v, ξ) ∈ (0, 1) × R × R, where H(s) = 1 + sp for s ≥ 0. Denote
M = {u ∈ C1(0, 1); |u′|p−2u′ ∈ C1(0, 1)} and define an operator Lε :M→
C(0, 1) by

(Lεu)(r) = −(|u′|p−2u′)′ +Hε(r, u, u′), 0 < r < 1.

Consider the problem

(4.2)

{
(Lεu)(r) = 0, 0 < r < 1,

u(1) = u(0) = 0.

A function u is called a sup-solution [sub-solution] of problem (4.2) if Lεu ≥
[≤] 0 in (0, 1), and u(r) ≥ [≤] 0 at r = 0, 1.

We will apply the sub-sup solutions method (cf. Theorem 1 and Re-
mark 2.4 in [JG]) to show the existence of solutions of problem (4.2). Since	∞
0 (sp−1/H(r)) dr =∞, the condition (2.3) in [JG] is satisfied. Then it suf-

fices to find a sub-solution and a sup-solution to obtain a solution.

Lemma 4.1. Let W = CΨα with α = p/(p−m), where

(4.3) Ψ(r) =
p− 1
p

[(
1
2

)p/(p−1)

−
∣∣∣∣12 − r

∣∣∣∣p/(p−1)]
,

and the constant C ∈ (0, 1) is such that

(Cα)p−1 + (N − 1)(Cα)p−12(α−1)(p−1)−1 + λCp−mαp ≤ min
[0,1]

f.

Then W is a sub-solution of problem (4.2).

Proof. It is easy to check that Ψ has the following properties:

(i) Ψ > 0 in (0, 1), Ψ ∈ C1[0, 1],
(ii) (|Ψ ′|p−2Ψ ′)′ = −1 in (0, 1), Ψ(1) = Ψ(0) = 0,

(iii) |Ψ(r)| ≤ r and |Ψ ′(r)| ≤ 1, for all r ∈ [0, 1].
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Using the properties of Ψ and noticing (α− 1)(p− 1) > 1, one arrives at

LεW = − (|W ′|p−2W ′)′ − N − 1
r + ε1/α

|W ′|p−2W ′ +
λ

(W + ε2)m
|W ′|p − f(r)

≤ − (|W ′|p−2W ′)′ − N − 1
r + ε1/α

|W ′|p−2W ′ +
λ

Wm
|W ′|p − f(r)

= − (Cα)p−1Ψ (α−1)(p−1)(|Ψ ′|p−2Ψ ′)′

− (Cα)p−1(α− 1)(p− 1)Ψ (α−1)(p−1)−1|Ψ ′|p

− (N − 1)(Cα)p−1Ψ
(α−1)(p−1)

r + ε1/α
|Ψ ′|p−2Ψ ′ + λCp−mαp|Ψ ′|p − f(r)

= (Cα)p−1Ψ (α−1)(p−1) − (Cα)p−1(α− 1)(p− 1)Ψ (α−1)(p−1)−1|Ψ ′|p

− (N − 1)(Cα)p−1Ψ
(α−1)(p−1)

r + ε1/α
|Ψ ′|p−2Ψ ′ + λCp−mαp|Ψ ′|p − f(r)

≤ (Cα)p−1Ψ (α−1)(p−1) + (N − 1)(Cα)p−1(r + ε1/α)(α−1)(p−1)−1|Ψ ′|p−1

+ λCp−mαp|Ψ ′|p −min
[0,1]

f(r) (note Ψ(r) ≤ r + ε1/α)

≤ (Cα)p−1 + (N − 1)(Cα)p−12(α−1)(p−1)−1 + λCp−mαp −min
[0,1]

f(r)

≤ 0, 0 < r < 1.

Thus the lemma follows.

Let infr≥1X (r) ≡ δ. Then it follows from the definition of infimum and
λ > δ that for δ0 = (λ− δ)/2 > 0, there exists some C∗ ≥ 1, such that

X (C∗) < δ + δ0 < λ.

Lemma 4.2. There exists a constant ε0 ∈ (0, 1) such that for any ε ∈
(0, ε0), Vε = C∗(r + ε1/α)α is a sup-solution of problem (4.2).

Proof. Noticing Vε ≥ ε and (α− 1)p = αm, one has

LεVε = − (|V ′ε |p−2V ′ε )′ − N − 1
r + ε1/α

|V ′ε |p−2V ′ε +
λ

(Vε + ε2)m
|V ′ε |p − f

= − (C∗α)p−1(α− 1)(p− 1)(r + ε1/α)(α−1)(p−1)−1

− (N − 1)(C∗α)p−1(r + ε1/α)(α−1)(p−1)−1

+
λCp−m∗ αp

[1 + C−1
∗ (r + ε1/α)−αε2]m

− f.
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Since (α− 1)(p− 1) > 1, one obtains

LεVε ≥ − (C∗α)p−1(α− 1)(p− 1)(1 + ε1/α)(α−1)(p−1)−1

− (N − 1)(C∗α)p−1(1 + ε1/α)(α−1)(p−1)−1 +
λCp−m∗ αp

(1 + C−1
∗ ε)m

−max
[0,1]

f

= λCp−m∗ αp − (C∗α)p−1[(α− 1)(p− 1) +N − 1]−max
[0,1]

f + r(ε)

= Cp−m∗ αp[λ−X (C∗)] + r(ε), 0 < r < 1,

where

r(ε) = (C∗α)p−1[(α− 1)(p− 1) +N − 1][1− (1 + ε1/α)(α−1)(p−1)−1]

+ λαpCp−m∗ [(1 + C−1
∗ ε)−m − 1].

Clearly, r(ε) → 0 as ε → 0+. Since λ > X (C∗), there exists a constant
ε0 ∈ (0, 1) such that for any ε ∈ (0, ε0),

C∗
p−mαp[λ−X (C∗)] + r(ε) ≥ 0, 0 < r < 1.

Therefore for any ε ∈ (0, ε0),

LεVε ≥ 0, 0 < r < 1.

This shows that for any ε ∈ (0, ε0), Vε is a sup-solution of (4.2).

By Theorem 1 and Remark 2.4 in [JG] and Lemmas 4.1–4.2, we see that
for any fixed ε ∈ (0, ε0), problem (4.2) has a solution uε ∈ C1[0, 1]∩M with

(4.4) C∗(r + ε1/α)α ≥ uε ≥ CΨα, r ∈ [0, 1].

Hence uε satisfies

(4.5) −(|u′ε|p−2u′ε)
′ − (N − 1)

|u′ε|p−2u′ε
r + ε1/α

+ λ
|u′ε|p

(uε + ε2)m
= f(r), r ∈ (0, 1).

Next we estimate u′ε. We first obtain

Lemma 4.3. There exists a positive constant C, independent of ε, such
that for all ε ∈ (0, ε0),

(4.6) |u′ε(r)| ≤ C, ∀r ∈ [0, 1].

Proof. Noticing uε(1) = uε(0) = 0 and uε ≥ 0 on [0, 1], we have

(4.7) u′ε(0) ≥ 0 ≥ u′ε(1).

Integrating (4.5) over (0, 1) yields

−(|u′ε|p−2u′ε)|10 + λ

1�

0

|u′ε|p

(uε + ε2)m
dr = (N − 1)

1�

0

|u′ε|p−2u′ε
r + ε1/α

dr +
1�

0

f(r) dr,
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and by (4.7), we derive that

(4.8) λ

1�

0

|u′ε|p

(uε + ε2)m
dr ≤ (N − 1)

1�

0

|u′ε|p−1

r + ε1/α
dr +

1�

0

f(r) dr.

Using Young’s inequality ab ≤ σal + σ−q/lbq (a, b ≥ 0, σ > 0, q, l > 1,
1/l + 1/q = 1) and taking l = p/(p− 1) and q = p, we deduce that

(4.9)
|u′ε|p−1

r + ε1/α
≤ σ |u′ε|p

(r + ε1/α)p/(p−1)
+ σ1−p.

On the other hand, by the first estimate in (4.4) we obtain

(4.10) uε(r) + ε2 ≤ C∗(r + ε1/α)α + ε2 ≤ 2C∗(r + ε1/α)α, r ∈ [0, 1],

therefore, due to (p−m)/(p− 1) < m, we get

|u′ε|p

(r + ε1/α)p/(p−1)
≤ C |u′ε|p

(uε + ε2)(p−m)/(p−1)
≤ C |u′ε|p

(uε + ε2)m
, r ∈ [0, 1],

where C > 0 are constants independent of ε. Combining this and (4.9) yields

(4.11)
|u′ε|p−1

r + ε1/α
≤ σC |u′ε|p

(uε + ε2)m
+ σ1−p, r ∈ [0, 1].

Now taking σ = λ
2(N−1)C in (4.11), we deduce from (4.8) that

(4.12)
λ

2

1�

0

|u′ε|p

(uε + ε2)m
dr ≤ (N − 1)

(
λ

2(N − 1)C

)1−p
+

1�

0

f(r) dr ≤ C.

This and (4.11) imply that

(4.13)
1�

0

|u′ε|p−1

r + ε1/α
dr ≤ C.

Integrating (4.5) over (r1, r2) and integrating by parts, we have

(|u′ε|p−2u′ε)|r2r1 =
r2�

r1

(
λ

(uε + ε2)m
|u′ε|p −

N − 1
r + ε1/α

|u′ε|p−2u′ε − f(r)
)
.

Combining this with (4.12) and (4.13), we find that there exists a positive
constant C, independent of ε, such that

(4.14)
∣∣|u′ε(r2)|p−2u′ε(r2)− |u′ε(r1)|p−2u′ε(r1)

∣∣ ≤ C, ∀r2, r1 ∈ [0, 1].

Since uε(0) = uε(1) = 0 and uε ∈ C1[0, 1], by the mean value theorem there
exists rε ∈ (0, 1) such that u′ε(rε) = 0. Then taking r1 = rε in (4.14) gives∣∣|u′ε(r)|p−2u′ε(r)

∣∣ ≤ C, ∀r ∈ [0, 1].

This shows that |u′ε(r)| ≤ C for all r ∈ [0, 1].
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Lemma 4.4. For any δ ∈ (0, 1/2), there exists a positive constant Cδ,
independent of ε, such that for all ε ∈ (0, ε0),

(4.15) |u′ε(r2)− u′ε(r1)| ≤ Cδ|r2 − r1|β, ∀r2, r1 ∈ [δ, 1− δ],

where β = 1/(p− 1) if p ≥ 2, β = 1 if 1 < p < 2.

Proof. By (4.4) and (4.6), one derives from (4.5) that for any δ ∈ (0, 1/2),
there exists a positive constant Cδ, independent of ε, such that for all ε ∈
(0, ε0),

(4.16) |(|u′ε|p−2u′ε)
′| ≤ Cδ, δ ≤ t ≤ 1− δ.

Recalling the inequality (2.1) and using (4.16), one derives that if p ≥ 2,
then

|u′ε(r2)− u′ε(r1)|p

≤ C−1[u′ε(r2)− u′ε(r1)] · [|u′ε(r2)|p−2u′ε(r2)− |u′ε(r1)|p−2u′ε(r1)]
≤ Cδ|u′ε(r2)− u′ε(r1)| |r2 − r1|, ∀r2, r1 ∈ [δ, 1− δ],

so
|u′ε(r2)− u′ε(r1)| ≤ Cδ|r2 − r1|1/(p−1), ∀r2, r1 ∈ [δ, 1− δ],

and if p ∈ (1, 2), then

|u′ε(r2)− u′ε(r1)|2[|u′ε(r2)|+ |u′ε(r1)|]p−2

≤ C−1[u′ε(r2)− u′ε(r1)] · [|u′ε(r2)|p−2u′ε(r2)− |u′ε(r1)|p−2u′ε(r1)]
≤ Cδ|u′ε(r2)− u′ε(r1)| |r2 − r1|, ∀r2, r1 ∈ [δ, 1− δ],

therefore, using (4.6) yields

|u′ε(r2)− u′ε(r1)| ≤ Cδ|r2 − r1|[|u′ε(r2)|+ |u′ε(r1)|]2−p ≤ Cδ|r2 − r1|

for all r2, r1 ∈ [δ, 1− δ].

Using (4.6) and (4.15) and the Arzelà–Ascoli theorem, there exists a
subsequence of {uε}, still denoted by {uε}, and a function u ∈ C1(0, 1) ∩
C[0, 1] such that, as ε→ 0+,

(4.17)
uε → u uniformly in C[0, 1],

uε → u uniformly in C1[δ, 1− δ],

where δ ∈ (0, 1/2), and hence it follows from uε(1) = uε(0) = 0 and (4.4)
that u(1) = u(0) = 0, and

(4.18) Crp/(p−m) ≥ u(r) ≥ C[Ψ(r)]p/(p−m), r ∈ [0, 1],

therefore u > 0 in (0, 1) and u′(0) = limr→0 u(r)/r = 0. Thus, (1.3) is
satisfied.
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We now show that u satisfies (1.2). Integrating (4.5) over (r0, r) (0 <
r0, r < 1) and integrating by parts gives

|u′ε(r)|p−2u′ε(r) =
r�

r0

(
λ
|u′ε|p

(uε + ε2)m
− N − 1
r + ε1/α

|u′ε|p−2u′ε − f(r)
)
dr

+ |u′ε(r0)|p−2u′ε(r0).

Letting ε→ 0+ and using Lebesgue’s dominated convergence theorem yield

|u′(r)|p−2u′(r) =
r�

r0

(
λ
|u′|p

um
− N − 1

r
|u′|p−2u′ − f(r)

)
dr(4.19)

+ |u′(r0)|p−2u′(r0).

This shows that |u′(r)|p−2u′(r) ∈ C1(0, 1), hence (1.2) is satisfied.
Next we prove that u ∈ C1[0, 1]. Letting ε→ 0+ in (4.12) and (4.13) and

using Fatou’s lemma yield

(4.20)
1�

0

|u′|p

um
dr ≤ C,

1�

0

|u′|p−1

r
dr ≤ C.

So, |u′|p/um, |u′|p−2u′/r∈L1[0,1]. By (4.19), the function ω(r)= |u′(r)|p−2u′(r)
= φp(u′(r)) is absolutely continuous on [0, 1]. Since u′(r) = φq(ω(r)), where
1/p + 1/q = 1, we see that u′ ∈ C[0, 1]. Thus u is a positive solution of
problem (1.2) and (1.3).

Proof of Theorem 2.7. Let w(x) = u(r) with r = |x|. Clearly, w(0) = 0.
Some calculations give

∇w = u′(r)
x

|x|
, |∇w| = |u′(r)|, in B1 \ {0},

div(|∇w|p−2∇w) = (|u′|p−2u′)′ +
N − 1
r
|u′|p−2u′ in B1 \ {0}.

Thus w satisfies

−div
(
|∇w|p−2∇w

)
+

λ

wm
|∇w|p − f(|x|) = 0 in B1 \ {0}.

Since u ∈ C1[0, 1] and u′(0) = 0, |∇w(0)| = 0 and w ∈ C1(B1).
By the first estimate in (4.20), one obtains |∇w|p/wm ∈ L1(B1).
In virtue of the above facts, it is not difficult to check that w is a solution

of problem (1).
It remains to show (2.2). By a simple calculation, we obtain

Ψ ′(r) =
(

1
2
− r
)1/(p−1)

≥
(

1
4

)1/(p−1)

, ∀0 ≤ r ≤ 1
4
.
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Then

Ψ(r) ≥
(

1
4

)1/(p−1)

r, ∀0 ≤ r ≤ 1
4
.

This together with (4.18) implies (2.2).
The proof of Theorem 2.7 is complete.
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