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Region of variability for functions with positive real part

by Saminathan Ponnusamy and Allu Vasudevarao (Chennai)

Abstract. For γ ∈ C such that |γ| < π/2 and 0 ≤ β < 1, let Pγ,β denote the class of
all analytic functions P in the unit disk D with P (0) = 1 and

Re(eiγP (z)) > β cos γ in D.

For any fixed z0 ∈ D and λ ∈ D, we shall determine the region of variability VP(z0, λ) for	z0
0
P (ζ) dζ when P ranges over the class

P(λ) = {P ∈ Pγ,β : P ′(0) = 2(1− β)λe−iγ cos γ}.

As a consequence, we present the region of variability for some subclasses of univalent
functions. We also graphically illustrate the region of variability for several sets of param-
eters.

1. Introduction. We denote by H the class of analytic functions in the
unit disk D = {z ∈ C : |z| < 1}, and think of H as a topological vector space
endowed with the topology of uniform convergence over compact subsets
of D. We consider the subclass of functions φ ∈ H with φ(0) = 0 = φ′(0)− 1
such that φ maps D univalently onto a domain that is starlike (with respect
to the origin). That is, tφ(z) ∈ φ(D) for each t ∈ [0, 1]. We denote the class
of such functions by S∗. Analytically, each φ ∈ S∗ is characterized by the
condition

Re
(
zφ′(z)
φ(z)

)
> 0, z ∈ D.

Functions in S∗ are referred to as starlike functions. A function φ ∈ H with
φ(0) = 0 = φ′(0) − 1 is said to belong to C if and only if φ(D) is a convex
domain. It is well-known that φ ∈ C if and only if zφ′ ∈ S∗. Functions in C
are referred to as convex functions.

Let Pγ,β denote the class of functions P ∈ H with P (0) = 1 and

Re(eiγP (z)) > β cos γ in D
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for some β with β < 1 and γ ∈ C with |γ| < π/2. Let A denote the class of
functions f in H such that f(0) = 0 = f ′(0)− 1. When P (z) = zf ′(z)/f(z)
and β = 0, the class Pγ,β becomes

Sγ(0) =
{
f ∈ A : Re

(
eiγ

zf ′(z)
f(z)

)
> 0 in D

}
for some γ with |γ| < π/2. Functions in Sγ(0) are known to be univalent in D
and S0(0) ≡ S∗. Functions in Sγ(0) are called spirallike functions (see [S]).

2. Preliminary investigation about the class Pγ,β. Herglotz rep-
resentation for analytic functions with positive real part in D shows that if
P ∈ Pγ,β, then there exists a unique positive unit measure µ on (−π, π] such
that

P (z) =
π�

−π

1 + [1− 2βe−iγ cos γ]ze−it

1− ze−it
dµ(t).

Let B0 be the class of analytic functions ω in D such that |ω(z)| < 1 in D
and ω(0) = 0. Then it is a simple exercise to see that for each P ∈ Pγ,β
there exists an ωP ∈ B0 such that

(2.1) ωP (z) =
eiγP (z)− eiγ

eiγP (z)− (2β cos γ − e−iγ)
, z ∈ D,

and conversely. Clearly, we have

P ′(0) = 2e−iγω′P (0)(1− β) cos γ.

Suppose that P ∈ Pγ,β. Then, because |ω′P (0)| ≤ 1, by the classical Schwarz
lemma (see for example [Di, Du, Po2, PS]) we may let

P ′(0) = 2λe−iγ(1− β) cos γ

for some λ ∈ D, with ω′P (0) = λ. Using (2.1), one can compute

(2.2)
ω′′P (0)

2
=

eiγP ′′(0)
4(1− β) cos γ

− λ2.

Also if we let

g(z) =


ωP (z)/z − λ
1− λωP (z)/z

for |λ| < 1,

0 for |λ| = 1,

then we see that

g′(0) =


1

1− |λ|2

(
ωP (z)
z

)′∣∣∣∣
z=0

=
1

1− |λ|2
ω′′P (0)

2
for |λ| < 1,

0 for |λ| = 1.
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By the Schwarz lemma, |g(z)| ≤ |z| and |g′(0)| ≤ 1. Equality holds in both
the cases if and only if g(z) = eiαz for some α ∈ R. The condition |g′(0)| ≤ 1
shows that there exists an a ∈ D such that g′(0) = a.

In view of (2.2) we may represent P ′′(0) as

(2.3) P ′′(0) = 4(1− β)[(1− |λ|2)a+ λ2]e−iγ cos γ

for some a ∈ D. Consequently, for λ ∈ D = {z ∈ C : |z| ≤ 1} and z0 ∈ D
fixed, it is natural to introduce (for convenience with the notation P(λ)
instead of Pγ,β(λ))

P(λ) = {P ∈ Pγ,β : P ′(0) = 2(1− β)e−iγλ cos γ},

VP(z0, λ) =
{ z0�

0

P (ζ) dζ : P ∈ P(λ)
}
.

Obviously, each f ∈ P(λ) has to satisfy condition (2.3) for some a ∈ D and
so we do not need to include it in the definition of P(λ).

For each fixed z0 ∈ D, using extreme function theory, it has been shown
by Grunsky [Du, Theorem 10.6] that the region of variability of

V (z0) =
{

log
f(z0)
z0

: f ∈ S
}

is precisely a closed disk, where S = {f ∈ A : f is univalent in D}. It is also
well-known that the region of variability

V (z0) = {log φ′(z0) : φ ∈ C}
is the set {log(1− z)−2 : |z| ≤ |z0|}. Several authors have studied region of
variability problems for various subclasses of univalent functions in H; see
[Pa, Pi, PV, PVV1, PVV2, PVY1, PVY2, Y1, Y2].

The main aim of this paper is to determine the region of variability of
VP(z0, λ) for

	z0
0 P (ζ) dζ when P ranges over the class P(λ). In Section 3,

we present some basic properties of VP(z0, λ), whereas in Section 4, we in-
vestigate the growth condition for functions in P(λ). The precise geometric
description of the set VP(z0, λ) is established in Theorem 5.1 in Section 5.
Two interesting special cases are presented in Section 6. Finally, in Sec-
tion 7, we graphically represent the region of variability for several sets of
parameters.

3. Basic properties of VP(z0, λ). For a positive integer p, let (S∗)p =
{f = fp0 : f0 ∈ S∗}. A sufficient condition (see [Y1]) for an analytic function
f in D with f(z) = zp + · · · to be in (S∗)p is

(3.1) Re
(

1 + z
f ′′(z)
f ′(z)

)
> 0, z ∈ D.

This fact will be used in the following result.
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Proposition 3.1.

(1) VP(z0, λ) is a compact subset of C.
(2) VP(z0, λ) is a convex subset of C.
(3) For |λ| = 1 or z0 = 0,

(3.2) VP(z0, λ) =
{
z0 − 2(1− β)e−iγ(cos γ)

(
z0 +

1
λ

log(1− λz0)
)}

.

(4) For |λ| < 1 and z0 ∈ D \ {0}, VP(z0, λ) has

z0 − 2(1− β)e−iγ(cos γ)
(
z0 +

1
λ

log(1− λz0)
)

as an interior point.

Proof. (1) Since P(λ) is a compact subset of H, it follows that VP(z0, λ)
is also compact.

(2) If p1, p2 ∈ P(λ) and 0 ≤ t ≤ 1, then the function

Pt(z) = (1− t)p1(z) + tp2(z)

is evidently in P(λ). Also, because of the representation of Pt, we easily see
that the set VP(z0, λ) is convex.

(3) If z0 = 0, (3.2) trivially holds. If |λ| = 1, then from our earlier
observation ωP (z) = λz, and so P ∈ P(λ) defined by (2.1) takes the form

P (z) =
1 + λz[2(1− β)e−iγ cos γ − 1]

1− λz
,

or equivalently,

P (z) = 1− 2(1− β)e−iγ(cos γ)
(

1− 1
1− λz

)
.

Consequently,

VP(z0, λ) =
{
z0 − 2(1− β)e−iγ(cos γ)

(
z0 +

1
λ

log(1− λz0)
)}

.

(4) For |λ| < 1 and a ∈ D, we let

(3.3) δ(z, λ) =
z + λ

1 + λz
,

and in order to get the extremal function in P(λ), we define

(3.4) Ha,λ(z) = 1 + 2(1− β)e−iγ cos γ
δ(az, λ)z

1− δ(az, λ)z
.

Clearly Ha,λ(0) = 1. Since δ(az, λ) lies in the unit disk D and ϕ(w) =
w/(1− w) maps |w| < 1 onto Reϕ(w) > −1/2, we obtain

Re(eiγHa,λ(z)) > β cos γ in D.
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Also, from (3.4), we have the normalization condition

H ′a,λ(0) = 2(1− β)e−iγλ cos γ.

Thus, Ha,λ ∈ P(λ). We observe that

(3.5) ωHa,λ(z) = zδ(az, λ).

We claim that the mapping

D 3 a 7→
z0�

0

Ha,λ(ζ) dζ

is a non-constant analytic function of a for each fixed z0 ∈ D\{0} and λ ∈ D.
To see this, we introduce

h(z) =
3eiγ

2(1− β)(1− |λ|2) cos γ
∂

∂a

{ z�

0

Ha,λ(ζ) dζ
}∣∣∣∣
a=0

so that

h(z) =
3

1− |λ|2
∂

∂a

{ z�

0

δ(aζ, λ)ζ
1− δ(aζ, λ)ζ

dζ

}∣∣∣∣
a=0

.

A computation gives

h(z) = 3
∂

∂a

{ z�

0

ζ2

(1− λζ)2
dζ

(1− aδ(aζ, λ)ζ)2

}∣∣∣∣
a=0

,

which clearly implies

h(z) = 3
z�

0

ζ2

(1− λζ)2
dζ = z3 + · · · ,

from which it is easy to see that

Re
{
zh′′(z)
h′(z)

}
= 2 Re

{
1

1− λz

}
>

2
1 + |λ|

≥ 1, z ∈ D.

By (3.1), there exists a function h0 ∈ S∗ with h = h3
0. The univalence

of h0 together with the condition h0(0) = 0 implies that h(z0) 6= 0 for
z0 ∈ D \ {0}. Consequently, the mapping D 3 a 7→

	z0
0 Ha,λ(ζ) dζ is a non-

constant analytic function of a, and hence it is an open mapping. Thus,
VP(z0, λ) contains the open set{ z0�

0

Ha,λ(ζ) dζ : |a| < 1
}
.

In particular,
z0�

0

H0,λ(ζ) dζ = z0 − 2(1− β)e−iγ(cos γ)
(
z0 +

1
λ

log(1− λz0)
)
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is an interior point of{ z0�

0

Ha,λ(ζ) dζ : a ∈ D
}
⊂ VP(z0, λ).

We remark that, since VP(z0, λ) is a compact convex subset of C and has
non-empty interior, the boundary ∂VP(z0, λ) is a Jordan curve and VP(z0, λ)
is the union of ∂VP(z0, λ) and its inner domain.

4. Growth condition for functions in P(λ)

Proposition 4.1. For P ∈ P(λ) with λ ∈ D, we have

(4.1) |P (z)− c(z, λ)| ≤ r(z, λ), z ∈ D,

where

c(z, λ) =
(1 + λz(e−iγ − 2β cos γ)e−iγ)(1− λz)

(1− |z|2)(1 + |z|2 − 2 Re(λz))

+
|z|2(z − λ)(λ+ z(e−iγ − 2β cos γ)e−iγ)

(1− |z|2)(1 + |z|2 − 2 Re(λz))
,

r(z, λ) =
2(1− |λ|2)(1− β)|z|2 cos γ

(1− |z|2)(1 + |z|2 − 2 Re(λz))
.

For each z ∈ D\{0}, equality holds if and only if P = Heiθ,λ for some θ ∈ R.

Proof. Let P ∈ P(λ). Then there exists ωP ∈ B0 satisfying (2.1). As
observed in Section 2 (|g(z)| ≤ |z|), we have

(4.2)
∣∣∣∣ ωP (z)/z − λ
1− λωP (z)/z

∣∣∣∣ ≤ |z|, z ∈ D.

From (2.1) this is equivalent to

(4.3)
∣∣∣∣P (z)−A(z, λ)
P (z) +B(z, λ)

∣∣∣∣ ≤ |z| |τ(z, λ)|,

where

(4.4)



A(z, λ) =
1 + e−iγλz(e−iγ − 2β cos γ)

1− λz
,

B(z, λ) =
λ+ e−iγz(e−iγ − 2β cos γ)

z − λ
,

τ(z, λ) =
z − λ
1− λz

.
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A simple calculation shows that the inequality (4.3) is equivalent to

(4.5)
∣∣∣∣P (z)− A(z, λ) + |z|2 |τ(z, λ)|2B(z, λ)

1− |z|2 |τ(z, λ)|2

∣∣∣∣
≤ |z| |τ(z, λ)| |A(z, λ) +B(z, λ)|

1− |z|2 |τ(z, λ)|2
.

Using (4.4) we can easily see that

1− |z|2 |τ(z, λ)|2 =
(1− |z|2)(1 + |z|2 − 2 Re(λz))

|1− λz|2
,

A(z, λ) +B(z, λ) =
2(1− |λ|2)(1− β)(cos γ)e−iγz

(1− λz)(z − λ)

and

A(z, λ) + |z|2|τ(z, λ)|2B(z, λ)

=
(1 + λz(e−iγ − 2β cos γ)e−iγ)(1− λz)

|1− λz|2

+
|z|2(z − λ)(λ+ z(e−iγ − 2β cos γ)e−iγ)

|1− λz|2
.

Thus, by a simple computation, we see that

A(z, λ) + |z|2|τ(z, λ)|2B(z, λ)
1− |z|2|τ(z, λ)|2

= c(z, λ),

|z| |τ(z, λ)| |A(z, λ) +B(z, λ)|
1− |z|2|τ(z, λ)|2

= r(z, λ).

Now the inequality (4.1) follows from these equalities and (4.5).
It is easy to see that equality occurs in (4.1) for a z ∈ D when P = Heiθ,λ

for some θ ∈ R. Conversely if equality occurs in (4.1) for some z ∈ D \ {0},
then equality must hold in (4.2). Thus from the Schwarz lemma there exists a
θ ∈ R such that ωP (z) = zδ(eiθz, λ) for all z ∈ D. This implies P = Heiθ,λ.

The choice of λ = 0 gives the following result which may deserve a special
mention.

Corollary 4.2. For P ∈ P(0) we have

(4.6)
∣∣∣∣P (z)− 1 + (1− 2β)|z|4

1− |z|4

∣∣∣∣ ≤ 2(1− β)|z|2

1− |z|4
, z ∈ D.

For each z ∈ D\{0}, equality holds if and only if P = Heiθ,0 for some θ ∈ R.
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Corollary 4.3. Let γ : z(t), 0 ≤ t ≤ 1, be a C1-curve in D with
z(0) = 0 and z(1) = z0. Then

VP(z0, λ) ⊂ {w ∈ C : |w − C(λ, γ)| ≤ R(λ, γ)},

where

C(λ, γ) =
1�

0

c(z(t), λ)z′(t) dt and R(λ, γ) =
1�

0

r(z(t), λ)|z′(t)| dt.

Proof. The proof follows as in [PVV2].

For the proof of our next result, we need the following lemma.

Lemma 4.4. For θ ∈ R and λ ∈ D, the function

G(z) =
z�

0

eiθζ2

{1 + (λeiθ − λ)ζ − eiθζ2}2
dζ, z ∈ D,

has a zero of order three at the origin and no zeros elsewhere in D. Further-
more there exists a starlike univalent function G0 in D such that G = 1

3e
iθG3

0

and G0(0) = G′0(0)− 1 = 0.

Proof. For a proof, we refer to [PVV2, Lemma 3.4] with β = 1 there.

Proposition 4.5. Let z0 ∈ D \ {0}. Then for θ ∈ (−π, π] we have
z0�

0

Heiθ,λ(ζ) dζ ∈ ∂VP(z0, λ).

Furthermore if
	z0
0 P (ζ) dζ =

	z0
0 Heiθ,λ(ζ) dζ for some P ∈ P(λ) and θ ∈

(−π, π], then P = Heiθ,λ.

Proof. From (3.4) we have

Ha,λ(z) =
1 + [2(1− β)(cos γ)e−iγ − 1]δ(az, λ)z

1− δ(az, λ)z

=
1 + λaz + (λz + az2)(2(1− β)(cos γ)e−iγ − 1)

1 + (λa− λ)z − az2
.

Using (4.4) we compute

Ha,λ(z)−A(z, λ) =
2(1− β)(1− |λ|2)(cos γ)e−iγaz2

(1− λz)(1 + (λa− λ)z − az2)
,

Ha,λ(z) +B(z, λ) =
2(1− β)(1− |λ|2)(cos γ)e−iγz
(z − λ)(1 + (λa− λ)z − az2)
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and hence

Ha,λ(z)− c(z, λ) = Ha,λ(z)− A(z, λ) + |z|2|τ(z, λ)|2B(z, λ)
1− |z|2|τ(z, λ)|2

=
1

1− |z|2|τ(z, λ)|2

{
Ha,λ(z)−A(z, λ)

− |z|2|τ(z, λ)|2(Ha,λ(z) +B(z, λ))
}

=
2(1− β)(1− |λ|2)(cos γ)e−iγaz2[1 + (λa− λ)z − az2]
(1− |z|2)(1 + |z|2 − 2 Re(λz))(1 + (λa− λ)z − az2)

= r(z, λ)
e−iγaz2

|z|2
|1 + (λa− λ)z − az2|2

(1 + (λa− λ)z − az2)2
.

Now by substituting a = eiθ we easily see that

Heiθ,λ(z)− c(z, λ) = r(z, λ)
e−iγeiθz2

|z|2
|1 + (λeiθ − λ)z − eiθz2|2

(1 + (λeiθ − λ)z − eiθz2)2
.

For G(z) as in Lemma 4.4, we get

(4.7) Heiθ,λ(z)− c(z, λ) = r(z, λ)e−iγ
G′(z)
|G′(z)|

and there exists a starlike univalent function G0 in D such that G =
1
3e
iθG3

0 and G0(0) = G′0(0) − 1 = 0. As G0 is starlike, for any z0 ∈ D \ {0}
the linear segment joining 0 and G0(z0) entirely lies in G0(D).

Now, we define γ0 by

(4.8) γ0 : z(t) = G−1
0 (tG0(z0)), 0 ≤ t ≤ 1.

Since G(z(t)) = 1
3e
iθ(G0(z(t)))3 = 1

3e
iθ(tG0(z0))3 = t3G(z0), we have

(4.9) G′(z(t))z′(t) = 3t2G(z0), t ∈ [0, 1].

Using (4.9) and (4.7) we have

(4.10)
z0�

0

Heiθ,λ(ζ) dζ − C(λ, γ0) =
1�

0

{Heiθ,λ(z(t))− c(z(t), λ)}z′(t) dt

= e−iγ
1�

0

r(z(t), λ)
G′(z(t))z′(t)
|G′(z(t))z′(t)|

|z′(t)| dt

= e−iγ
G(z0)
|G(z0)|

1�

0

r(z(t), λ)|z′(t)| dt

= e−iγ
G(z0)
|G(z0)|

R(λ, γ0),
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where C(λ, γ0) and R(λ, γ0) are defined as in Corollary 4.3. Thus
z0�

0

Heiθ,λ(ζ) dζ ∈ ∂D(C(λ, γ0), R(λ, γ0)).

Also, from Corollary 4.3, we have
z0�

0

Heiθ,λ(ζ) dζ ∈ VP(z0, λ) ⊂ D(C(λ, γ0), R(λ, γ0)).

Hence, we conclude that
	z0
0 Heiθ,λ(ζ) dζ ∈ ∂VP(z0, λ).

Finally, we prove the uniqueness of the curve. Suppose that
z0�

0

P (ζ) dζ =
z0�

0

Heiθ,λ(ζ) dζ

for some P ∈ P(λ) and θ ∈ (−π, π]. We introduce

h(t) = eiγ
G(z0)
|G(z0)|

{P (z(t))− c(z(t), λ)}z′(t),

where γ0 : z(t), 0 ≤ t ≤ 1, is given by (4.8). Then h(t) is a continuous
function in [0, 1] and satisfies

|h(t)| ≤ r(z(t), λ)|z′(t)|.

Furthermore, from (4.10) we have
1�

0

Reh(t) dt =
1�

0

Re
{
eiγ

G(z0)
|G(z0)|

{P (z(t))− c(z(t), λ)}z′(t)
}
dt

= Re
{
eiγ

G(z0)
|G(z0)|

{ z0�

0

Heiθ,λ(ζ) dζ − C(λ, γ0)
}}

=
1�

0

r(z(t), λ)|z′(t)| dt.

Thus
h(t) = r(z(t), λ)|z′(t)| for all t ∈ [0, 1].

From (4.7) and (4.9), it follows that
z0�

0

P (ζ) dζ =
z0�

0

Heiθ,λ(ζ) dζ on γ0.

In view of the identity theorem for analytic functions, we see that it holds
for all z0 ∈ D, and hence, by the normalization, P = Heiθ,λ in D.
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5. Main theorem

Theorem 5.1. For λ ∈ D and z0 ∈ D \ {0}, the boundary ∂VP(z0, λ) is
the Jordan curve given by

(−π, π] 3 θ 7→
z0�

0

Heiθ,λ(ζ) dζ

=
z0�

0

1 + [2(1− β)(cos γ)e−iγ − 1]δ(eiθζ, λ)ζ
1− δ(eiθζ, λ)ζ

dζ.

If
	z0
0 P (ζ) dζ =

	z0
0 Heiθ,λ(ζ) dζ for some P ∈ P(λ) and θ ∈ (−π, π], then

P (z) = Heiθ,λ(z), where δ(z, λ) is defined by (3.3).

Proof. We need to prove that the closed curve

(5.1) (−π, π] 3 θ 7→
z0�

0

Heiθ,λ(ζ) dζ

is simple. Suppose that
z0�

0

Heiθ1 ,λ(ζ) dζ =
z0�

0

Heiθ2 ,λ(ζ) dζ

for some θ1, θ2 ∈ (−π, π] with θ1 6= θ2. Then, from Proposition 4.5, we have

(5.2) Heiθ1 ,λ = Heiθ2 ,λ.

From (3.5) and (4.4) we obtain the identity

(5.3) τ

(ωH
eiθ,λ

z
, λ

)
=
eiθz(1− λ2) + λ− λ
eiθz(λ− λ) + 1− λ2

.

From (5.2) and (5.3) we have

(5.4)
eiθ1z(1− λ2) + λ− λ
eiθ1z(λ− λ) + 1− λ2

=
eiθ2z(1− λ2) + λ− λ
eiθ2z(λ− λ) + 1− λ2

.

A simplification of (5.4) gives

eiθ1z = eiθ2z,

which is a contradiction to the choice of θ1 and θ2. Thus, the curve must be
simple.

Since VP(z0, λ) is a compact convex subset of C and has non-empty inte-
rior, the boundary ∂VP(z0, λ) is a simple closed curve. From Proposition 4.1,
the curve ∂VP(z0, λ) contains the curve (5.1). Recall the fact that a simple
closed curve cannot contain any simple closed curve other than itself. Thus,
∂VP(z0, λ) is given by (5.1).
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Remark 5.2. The integral in (5.1) can be simplified as follows: Set b =
Im(λeiθ/2) ∈ R. Then a computation shows that

1 + (λeiθ − λ)z − eiθz2 = (1− z/z1)(1− z/z2),

where

z1 = e−iθ/2(ib+
√

1− b2) and z2 = e−iθ/2(ib−
√

1− b2).

From (3.4) and (3.3) we have

(5.5) Heiθ,λ(z) = 1 + 2(1− β)e−iγ(cos γ)
(eiθz + λ)z

1 + (λeiθ − λ)z − eiθz2
.

Since

(eiθz + λ)z
1 + (λeiθ − λ)z − eiθz2

= −1− e−iθ

z1 − z2

(
1 + λeiθz1
z − z1

− 1 + λeiθz2
z − z2

)
,

the equation (5.5) becomes

Heiθ,λ(z) = 1− 2(1− β)e−iγ cos γ

− 2e−iγ(1− β)e−iθ cos γ
z1 − z2

(
1 + λeiθz1
z − z1

− 1 + λeiθz2
z − z2

)
.

By integrating on both sides from 0 to z0, we can easily obtain the following
representation:

z0�

0

Heiθ,λ(ζ) dζ = (1− 2(1− β)e−iγ cos γ)z0

+K(γ, β, θ, b)
[
(1+λeiθ/2(−

√
1− b2 + ib)) log

(
1+

eiθ/2z0√
1− b2− ib

)
− (1 + λeiθ/2(

√
1− b2 + ib)) log

(
1− eiθ/2z0√

1− b2 + ib

)]
,

where

K(γ, β, θ, b) =
e−iγ(1− β)e−iθ/2 cos γ√

1− b2
.

For λ = 0, Theorem 5.1 takes the following simple form.

Corollary 5.3. For z0 ∈ D \ {0} and λ = 0 the boundary ∂VP(z0, 0) is
the Jordan curve given by

(−π, π] 3 θ 7→
z0�

0

Heiθ,0(ζ) dζ

= (1− 2(1− β)e−iγ cos γ)z0 + e−iγ(1− β)e−iθ/2 cos γ log
1 + eiθ/2z0

1− eiθ/2z0
.
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If
	z0
0 P (ζ) dζ =

	z0
0 Heiθ,0(ζ) dζ for some P ∈ P(0) and θ ∈ (−π, π], then

P (z) = Heiθ,0(z).

6. Some special cases

6.1. The class Rβ. In order to discuss a special situation, we consider
P = f ′ and γ = 0 in the class Pγ,β. Thus, Pγ,β reduces to Rβ, where

Rβ = {f ∈ A : Re f ′(z) > β in D}.
Then Rβ ⊂ S for 0 ≤ β < 1. As with P(λ), for λ ∈ D and z0 ∈ D being
fixed, we define

R(λ) = {f ∈ Rβ : f ′′(0) = 2(1−β)λ}, VR(z0, λ) = {f(z0) : f ∈ R(λ)}.
We remark that if f ∈ R(λ), then necessarily

f ′′′(0) = 4(1− β)[(1− |λ|2)a+ λ2]

for some a ∈ D.
For P = f ′, a computation shows that the extremal function Heiθ,λ(z)

for the class R(λ) takes the form

Heiθ,λ(z) = z0 + 2(1− β)
z0�

0

(eiθζ + λ)ζ
1 + λeiθζ − (eiθζ + λ)ζ

dζ.

It is not difficult to obtain the following result, which is the analog of
Theorem 5.1 for the class R(λ).

Corollary 6.1. For λ ∈ D and z0 ∈ D \ {0}, the boundary ∂VR(z0, λ)
is the Jordan curve given by

(−π, π] 3 θ 7→ Heiθ,λ(z0) = z0 + 2(1− β)
z0�

0

(eiθζ + λ)ζ
1 + λeiθζ − (eiθζ + λ)ζ

dζ.

If f(z0) = Heiθ,λ(z0) for some f ∈ R(λ) and θ ∈ (−π, π], then f(z) =
Heiθ,λ(z).

For 0 ≤ β < 1 and λ = 0, set

R(0) = {f ∈ A : f ′′(0) = 0 and Re f ′(z) > β in D} ⊂ Rβ.
In particular, the choices γ = 0 and P (z) = f ′(z) in Corollary 4.2 give the
following: if f ∈ R(0) ⊂ Rβ for some 0 ≤ β < 1/2, then by (4.6), one has

|f ′(z)| ≤ 1 + (1− 2β)|z|4 + 2(1− β)|z|2

1− |z|4
=

1 + (1− 2β)|z|2

1− |z|2
, z ∈ D,

so that
sup
z∈D

(1− |z|2)|f ′(z)| ≤ 2(1− β).
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Equality holds for

f(z) = βz +
1− β

2
log

1 + z

1− z
, z ∈ D.

6.2. The class F(α, β). For α ∈ C satisfying Reα > 0 and β ∈ R with
β < 1, let F(α, β) denote the class of functions f ∈ A satisfying

(6.1) f ′(z) + αzf ′′(z) ≺ 1 + (1− 2β)z
1− z

, z ∈ D,

where ≺ denotes the usual subordination [MM]. In [Po1] conditions on α
and β for which

F(α, β) ⊂ S∗

have been established (also for certain complex values of α), and in [FR] it
has been shown that F(α, β) ⊂ S∗ if α ≥ 1/3 and β ≥ β0(α), where

β0(α) =
− 1
α

	1
0 t

1/α−1 1+t
1−t dt

1− 1
α

	1
0 t

1/α−1 1+t
1−t dt

.

This is indeed a reformulated version of a theorem from [FR] and the inclu-
sion is sharp in the following sense: for β < β0(α) the functions in F(α, β)
are not even univalent in D. For an extension of this inclusion result, we
refer to [PR1, PR2].

Now, we present an alternative representation for functions in F(α, β).
If f ∈ F(α, β), then (6.1) is equivalent to

f(z)
z
∗
(

1 +
∞∑
n=2

n(1 + (n− 1)α)zn−1
)
≺ 1 + 2(1− β)

z

1− z
,

where ∗ denotes the Hadamard product (or convolution) of two analytic
functions in D represented by power series about the origin. By a well-known
convolution theorem (cf. [RS]) this gives

f(z)
z
≺ β + (1− β)

[
1 +

2
α

∞∑
n=1

zn

(n+ 1)(n+ 1/α)

]
and a computation shows that

f(z)
z
≺


β + (1− β)

[
1− 2

1− α

(
log(1− z)

z
+ 1 +

1�

0

t1/α
z

1− tz
dt

)]
if α 6= 1,

β + (1− β)
[
1 + 2z

1�

0

t log(1/t)
1− tz

dt

]
if α = 1.
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The definition of subordination gives the following representation of func-
tions in F(α, β):

f(z) =


z − 2(1− β)z

1− α

{
1 +

1
ω(z)

log(1− ω(z)) + ω(z)
1�

0

t1/α

1− tω(z)
dt

}
if α 6= 1,

z + 2(1− β)zω(z)
1�

0

t log(1/t)
1− tω(z)

dt if α = 1,

for z ∈ D, and for some ω ∈ B0.
If f ∈ F(α, β), then according to the Herglotz representation there exists

a unique positive unit measure µ on (−π, π] such that

f ′(z) + αzf ′′(z) =
π�

−π

1 + (1− 2β)ze−it

1− ze−it
dµ(t),

or equivalently

f(z)
z

=
[
1 +

1
α

∞∑
n=1

zn

(n+ 1)(n+ 1/α)

]
∗

π�

−π

1 + (1− 2β)ze−it

1− ze−it
dµ(t).

A simplification of the last equality gives the following representation of
functions in the class F(α, β):

f(z) =



z

1− α

1�

0

π�

−π
(1− s1/α−1)

(
1 + (1− 2β)sze−it

1− sze−it

)
dµ(t) ds

if α 6= 1,

z + 2(1− β)z
1�

0

π�

−π

(
log

1
s

)(
sze−it

1− sze−it

)
dµ(t) ds

if α = 1.

To state our special case in precise form, for convenience we let γ = 0,
and define

P (z) = f ′(z) + αzf ′′(z), f ∈ F(α, β),

so that

P ′(0) = (1 + α)f ′′(0) and P ′′(0) = (1 + 2α)f ′′(0).

In view of these observations, the analogs of the sets P(λ) and VP(z0, λ) will
be

G(λ) =
{
f ∈ F(α, β) : f ′′(0) = 2

1− β
1 + α

λ

}
,

VG(z0, λ) = {(1− α)f(z0) + αz0f
′(z0) : f ∈ G(λ)},
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where 0 ≤ β < 1. We observe that for functions f in G(λ),

f ′′′(0) = 4((1− |λ|2)a+ λ2)
1− β
1 + 2α

for some a ∈ D.
With P (z) = f ′(z) + αzf ′′(z), the corresponding extremal function

Feiθ,λ(z) for G(λ) can be computed to be

(1− α)Feiθ,λ(z) + αzF ′eiθ,λ(z) =
z�

0

1 + (1− 2β)δ(aζ, λ)ζ
1− δ(aζ, λ)ζ

dζ,

where δ(z, λ) is defined by (3.3). In this setting, Proposition 4.1 (for γ = 0)
takes the following form:

Proposition 6.2. For f ∈ G(λ) and λ ∈ D, we have

|f ′(z) + αzf ′′(z)− c(z, λ)| ≤ r(z, λ), z ∈ D,
where

c(z, λ) =
(1 + (1− 2β)λz)(1− λz) + |z|2(z − λ)(λ+ (1− 2β)z)

(1− |z|2)(1 + |z|2 − 2 Re(λz))
,

r(z, λ) =
2(1− β)(1− |λ|2)|z|2

(1− |z|2)(1 + |z|2 − 2 Re(λz))
.

For each z ∈ D\{0}, equality holds if and only if f = Feiθ,λ for some θ ∈ R.

Using Theorem 5.1, we get the following result.

Corollary 6.3. For λ ∈ D, z0 ∈ D \ {0} and α ∈ C with Reα > 0, the
boundary ∂VG(z0, λ) is the Jordan curve given by

(−π, π] 3 θ 7→ (1− α)Feiθ,λ(z0) + αz0F
′
eiθ,λ(z0) = (2β − 1)z0

+
(1− β)e−iθ/2√

1− b2

[
(1 + λeiθ/2(−

√
1− b2 + ib)) log

(
1 +

eiθ/2z0√
1− b2 − ib

)
− (1 + λeiθ/2(

√
1− b2 + ib)) log

(
1− eiθ/2z0√

1− b2 + ib

)]
,

where b = Im(λeiθ/2). If (1 − α)f(z0) + αz0f
′(z0) = (1 − α)Fa,λ(z0) +

αz0F
′
a,λ(z0) for some f ∈ G(λ) and θ ∈ (−π, π], then f(z) = Feiθ,λ(z).

The proof of this corollary follows by taking γ = 0 in Remark 5.2 and so
we omit the details.

In the case of λ = 0 in Corollary 6.3, the corresponding extremal function
Fa,0(z) can be obtained easily by solving

F ′a,0(z) + αzF ′′a,0(z) =
1 + (1− 2β)δ(az, 0)z

1− δ(az, 0)z
.
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This may be rewritten as

Fa,0(z)
z

∗
[
1 +

∞∑
n=0

(n+ 1)(1 + nα)zn
]

= 2β − 1 + 2(1− β)
1

1− az2

or equivalently as

Fa,0(z)
z

=
[
1 +

∞∑
n=1

2(1− β)anz2n
]
∗
[
1 +

∞∑
n=0

zn

(n+ 1)(1 + nα)

]
.

A simple calculation gives

Fa,0(z) =


z +

(1− β)az3

1− α

1�

0

t1/2 − t1/2α

1− taz2
dt if α 6= 1,

z +
(1− β)az3

2

1�

0

t1/2 log(1/t)
1− taz2

dt if α = 1.

7. Geometric view of Theorem 5.1. Using Mathematica (see [R]),
we describe the boundary of the sets VP(z0, λ) and VG(z0, λ). In the program
below, “z0” stands for z0, “lam” for λ, “g” for γ and “b” for β.

(* Geometric view of the main Theorem 5.1 and Corollary 6.3 *)

Remove["Global‘*"];

z0 = Random[]Exp[I*Random[Real, {-Pi, Pi}]]

lam = Random[]Exp[I*Random[Real, {-Pi, Pi}]]

g = Random[Real, {-Pi/2, Pi/2}]

b = Random[Real, {0, 1}]

Print["z0=", z0]

Print["lam=", lam]

Print["g=", g]

Print["b=", b]

Q1[b_, g_, lam_,the_] := ((1 +Conjugate[lam]Exp[I*the]*z) +

(lam*z +Exp[I*the]*z^2)(Exp[-I*g] - 2b*Cos[g])Exp[-I*g])/

((1 + ( Conjugate[lam]*Exp[I*the] - lam)*z )-Exp[I*the]*z*z);

Q2[b_, lam_,the_] := ((1 +Conjugate[lam]Exp[I*the]*z) +

(1 - 2b)(lam*z +Exp[I*the]*z^2))/

((1 + ( Conjugate[lam]*Exp[I*the] - lam)*z )-Exp[I*the]*z*z);

myf1[b_, g_, lam_, the_, z0_] :=

NIntegrate[Q1[b, g, lam, the], {z, 0, z0}];

myf2[b_, lam_, the_, z0_] := NIntegrate[Q2[b, lam, the],

{z, 0, z0}];
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image1 = ParametricPlot[{Re[myf1[b, g, lam, the, z0]],

Im[myf1[b, g, lam, the, z0]]}, {the, -Pi, Pi},AspectRatio ->

Automatic,TextStyle -> {FontFamily -> "Times",FontSize ->14},

AxesStyle -> {Thickness[0.0035]} ];

image2 = ParametricPlot[{Re[myf2[b, lam, the, z0]],

Im[myf2[b, lam, the, z0]]},{the, -Pi, Pi}, AspectRatio ->

Automatic,TextStyle -> {FontFamily -> "Times",FontSize ->14},

AxesStyle -> {Thickness[0.0035]} ];

Clear[b, g, lam, z0, myf1, myf2];

The following figures show the boundary of VP(z0, λ) and VG(z0, λ) for
certain values of z0 ∈ D\{0}, λ ∈ D, 0 ≤ β < 1 and |γ| < π/2. Table 1 gives
the list of these parameter values corresponding to Figs. 1–5. We recall that
according to Proposition 3.1 the region bounded by the curve ∂VP(z0, λ) is
compact and convex.

Table 1

Fig. z0 λ β γ

1 0.335192− 0.787333i 0.0737292 + 0.466706i 0.591244 0.383292

2 −0.261209 + 0.926935i −0.28588 + 0.307498i 0.700318 −0.87825

3 −0.41227− 0.521734i −0.0875648 + 0.0714166i 0.602203 0.910581

4 0.771264 + 0.151204i −0.391149− 0.294747i 0.928608 1.55854

5 0.335626 + 0.929093i 0.00010443 + 0.0255256i 0.76622 1.5449

0.2 0.3 0.4 0.5 0.6

-1.3

-1.2

-1.1

-0.9

-0.8

0.3 0.4 0.5 0.6 0.7

-1.3

-1.2

-1.1

-0.9

-0.8

-0.7

∂VP(z0, λ) ∂VG(z0, λ)

Fig. 1. z0 = 0.335192− 0.787333i and β = 0.591244
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-0.45 -0.35 -0.3 -0.25 -0.2

0.9

0.95

1.05

1.1

-0.4 -0.3 -0.2 -0.1

0.8

0.9

1.1

1.2

1.3

∂VP(z0, λ) ∂VG(z0, λ)

Fig. 2. z0 = −0.261209 + 0.926935i and β = 0.700

-0.48 -0.46 -0.44 -0.42 -0.38

-0.58

-0.56

-0.54

-0.52

-0.48

-0.525 -0.475 -0.45 -0.425 -0.4 -0.375 -0.35

-0.65

-0.625

-0.575

-0.55

-0.525

-0.5

-0.475

∂VP(z0, λ) ∂VG(z0, λ)

Fig. 3. z0 = −0.41227− 0.521734i and β = 0.602203

0.7711 0.7712 0.7713

0.1512

0.1513

0.1514

0.755 0.76 0.765 0.77 0.775 0.78

0.125

0.135

0.14

0.145

0.15

0.155

∂VP(z0, λ) ∂VG(z0, λ)

Fig. 4. z0 = 0.771264 + 0.151204i and β = 0.928608
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0.335 0.345 0.35

0.922

0.924

0.926

0.928

0.93

0.932

0.934

0.3 0.4 0.5 0.6 0.7

1.2

1.4

1.6

∂VP(z0, λ) ∂VG(z0, λ)

Fig. 5. z0 = 0.335626 + 0.929093i and β = 0.76622

Acknowledgments. This research was supported by National Board
for Higher Mathematics (DAE, India; grant no. 48/2/2006/R&D-II).

References

[Di] S. Dineen, The Schwarz Lemma, Oxford Math. Monogr., Clarendon Press, Ox-
ford, 1989.

[Du] P. L. Duren, Univalent Functions, Grundlehren Math. Wiss. 259, Springer, New
York, 1983.

[FR] R. Fournier and S. Ruscheweyh, On two extremal problems related to univalent
functions, Rocky Mountain J. Math. 24 (1994), 529–538.

[MM] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Appli-
cations, Dekker, New York, 2000.
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