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Thom polynomials and Schur functions:
the singularities III2,3(−)

by Özer Öztürk (Warszawa)

Abstract. We give a closed formula for the Thom polynomials of the singularities
III2,3(−) in terms of Schur functions. Our computations combine the characterization of
the Thom polynomials via the “method of restriction equations” of Rimányi et al. with
the techniques of Schur functions.

1. Introduction. This paper is a part of the project of investigating
the structures of Schur function expansions of Thom polynomials of the sin-
gularities associated with maps (C•, 0)→ (C•+k, 0) with parameter k. The
project was started by Pragacz in [12], where techniques of Schur functions
were combined with the “method of restriction equations” of Rimányi et al.
(cf. [17]).

The first results of the project appeared in [12], [13], [14] and [8] (see
also [4]). These include

• more transparent proofs of formulas of Thom, Porteous and Ronga
(cf. [19], [11], [18]);
• new formulas for the Thom polynomials of the singularities I2,2(−)

and A3(−), for all k ≥ 0 (cf. [13], [8]);
• a structure result: Theorem 11 in [13], asserting that the appearing

partitions contain sufficiently large rectangles (this leads to decompo-
sition of Thom polynomials into “h-parts”);
• structure results bounding the number of rows of appearing partitions

(see [13], [10]);
• formula for the “1-part” of the Thom polynomials for Ai(−) (the

“1-part” of the Thom polynomial of Ai(r) is the sum of all Schur
functions appearing (multiplied with their coefficients) with partitions
containing the row (r) but not (r + 1, r + 1), cf. [14]).
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Then Pragacz and Weber proved that the coefficients of Schur function
expansions of the Thom polynomials of stable singularities are nonnegative
(see [15]), and generalized this result to Thom polynomials of nonstable
singularities and invariant cones in [16].

In this paper we give a closed formula (Theorem 4.1) for the Thom
polynomials of the singularities III2,3(−) associated with maps (C•, 0) →
(C•+k, 0) with parameter k ≥ 1. Our computations combine the character-
ization of Thom polynomials via the “method of restriction equations” of
Rimányi et al. with the techniques of Schur functions. In Lemma 2.1 we
compute the Euler class of the singularity III2,3(−), needed to apply Theo-
rem 2.4 from [17]. The key algebraic calculations are performed in Lemmas
4.2–4.4. The proof of the main result relies heavily on the factorization prop-
erty for Schur functions from [2].

2. Thom polynomials. Our main reference for this section is [17]. Let
k ≥ 0 be a fixed integer and • ∈ N. A singularity η is an equivalence class
of the relation on stable germs (C•, 0) → (C•+k, 0) generated by contact
equivalence and suspension. According to Mather’s classification, singulari-
ties are in one-to-one correspondence with finite-dimensional C-algebras (cf.
Chapter 8 in [3], see also [6]). Our notation for singularities is as follows:

• Ai will stand for the stable germs with local algebra C[[x]]/(xi+1),
i ≥ 0;
• Ia,b (of Thom–Boardman type Σ2,0) for stable germs with local algebra

C[[x, y]]/(xy, xa + yb), b ≥ a ≥ 2;
• IIIa,b (of Thom–Boardman type Σ2,0) for stable germs with local al-

gebra C[[x, y]]/(xy, xa, yb), b ≥ a ≥ 2 (here k ≥ 1).

Let η be a singularity and f : X → Y be a general map between complex
analytic manifolds. Let V η(f) denote the closure of the set of η-points of f .
The Thom polynomial T η of η is a polynomial such that T η(c1, c2, . . .) gives
the Poincaré dual of V η(f), where ci are the Chern classes of the virtual
bundle f∗TY −TX (cf. [1] or [17]). By codim(η), we mean the codimension
of V η(f) in X.

Let κ : (Cn, 0) → (Cn+k, 0) be a prototype of a singularity η. It is
possible to choose a maximal compact subgroup Gη of the right-left sym-
metry group Aut(κ) such that the images of its projections to the factors
Diff(Cn, 0) and Diff(Cn+k, 0) are linear (cf. [17]). That is, projecting on
the source Cn and the target Cn+k we obtain representations λ1(η) and
λ2(η). Let E′η and Eη denote the vector bundles associated with the univer-
sal principal Gη-bundles EGη → BGη that correspond to λ1(η) and λ2(η),
respectively. The total Chern class, c(η) ∈ H•(BGη; Z), and the Euler class,
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e(η) ∈ H2 codim(η)(BGη; Z), of η are defined as

(2.1) c(η) :=
c(Eη)
c(E′η)

and e(η) := e(E′η).

The method of computing these classes is described in [17]. The Chern
classes that we shall use were computed in [17], [12], and [13]. For Ai :
(C•, 0) → (C•+k, 0), a suitable maximal compact subgroup can be chosen
as GAi = U(1)× U(k). Then the Chern class becomes

(2.2) c(Ai) =
1 + (i+ 1)x

1 + x

k∏
j=1

(1 + yj),

where x and y1, . . . , yk are the Chern roots of the universal bundles on BU(1)
and BU(k).

In the case of η = I2,2, we consider the extension of U(1) × U(1) by
Z/2Z. Denoting this group by H, a maximal compact subgroup is Gη =
H×U(k) (for k ≥ 0). But to make computations easier, we use the subgroup
U(1) × U(1) × U(k) as Gη. (In concrete computations it is possible to use
the action of a subgroup of Gη, instead of Gη itself; see [17, p. 502].) We get

(2.3) c(I2,2) =
(1 + 2x1)(1 + 2x2)
(1 + x1)(1 + x2)

k∏
j=1

(1 + yj).

Here x1, x2 and y1, . . . , yk are the Chern roots of the universal bundles on
two copies of BU(1) and on BU(k),

Next we set η = III2,2. This time we use the group Gη = U(2)×U(k−1)
for k ≥ 1. We have

(2.4) c(III2,2) =
(1 + 2x1)(1 + 2x2)(1 + x1 + x2)

(1 + x1)(1 + x2)

k−1∏
j=1

(1 + yj),

where x1, x2 and y1, . . . , yk−1 denote the Chern roots of the universal bundles
on BU(2) and BU(k − 1).

For the singularity III2,3 we can use the action of the subgroup U(1)×
U(1)× U(k − 1) to obtain

(2.5) c(III2,3) =
(1 + 2x1)(1 + 3x2)(1 + x1 + x2)

(1 + x1)(1 + x2)

k−1∏
j=1

(1 + yj).

This time x1, x2 and y1, . . . , yk−1 are the Chern roots of the universal bundles
on two copies of BU(1) and on BU(k − 1),

We shall also need the Euler class e(III2,3) which we now compute. First
assume that k = 1 and consider the germ g(x, y) = (x2, y3, xy). A prototype
of III2,3 can be written as the unfolding g+

∑8
i=1 uihi where the hi form a
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basis of the space
m3
x,y

mx,y ·
{ ∂g
∂x ,

∂g
∂y

}
+ C3 · I(g)

,

and where I(g) is the subspace generated by the component functions of g.
We shall work with the basis consisting of the germs:

h1(x, y) = (x, 0, 0), h5(x, y) = (0, y, 0),

h2(x, y) = (y, 0, 0), h6(x, y) = (0, y2, 0),

h3(x, y) = (y2, 0, 0), h7(x, y) = (0, 0, x),
h4(x, y) = (0, x, 0), h8(x, y) = (0, 0, y).

Let ρhi
denote the representation of the action of the group U(1)×U(1) on

the space generated by hi. Then denoting the 1-dimensional representations
of the first and the second copies of U(1) by λ and µ we have

ρh1 = λ, ρh5 = µ2,

ρh2 = λ2 ⊗ µ−1, ρh6 = µ,

ρh3 = λ2 ⊗ µ−2, ρh7 = µ,

ρh4 = λ3 ⊗ µ−1, ρh8 = λ.

Therefore for k = 1, using the representation
⊕
ρhi

, we can write the Euler
class as

(2.6) e(III2,3) = 4x2
1x

3
2(x1 − x2)(x1 − 3x2)(x2 − 2x1),

where x1 and x2 denote the Chern roots of the universal bundles on the two
copies of BU(1).

For k = 2, in addition to hi above, we need to consider the representa-
tions of the action of the group U(k − 1) = U(1) on the spaces generated
by (x, y) 7→ (0, 0, 0, x), (x, y) 7→ (0, 0, 0, y) and (x, y) 7→ (0, 0, 0, y2). These
can be written as ν ⊗ λ−1, ν ⊗ µ−1, and ν ⊗ µ−2, where ν denotes the
1-dimensional representation of this copy of U(1). Hence, in this case, the
Euler class can be written as

(2.7) e(III2,3)

= 4x2
1x

3
2(x1 − x2)(x1 − 3x2)(x2 − 2x1)(x1 − y1)(x2 − y1)(2x2 − y1),

where xi are as above and y1 denotes the Chern root of the universal bundle
on BU(1).

In the general case (k ≥ 1), we need to consider U(k − 1) instead of
U(1). Let y1, . . . , yk−1 denote the Chern roots of the universal bundle on
BU(k − 1). The argument above proves the following lemma:
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Lemma 2.1. Let k ≥ 1. The Euler class of III2,3 singularity is

e(III2,3) = 4x2
1x

3
2(x1−x2)(x1−3x2)(x2−2x1)

k−1∏
j=1

(x1−yj)(x2−yj)(2x2−yj).

We end this section by recalling a theorem of Rimányi that explains the
name “method of restriction equations”.

Theorem 2.2 ([17, Theorem 2.4]). Suppose, for a singularity η, that
the Euler class of no singularity of codimension at most codim(η) is a zero-
divisor (1). Then we have:

(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;
(ii) T η(c(η)) = e(η).

This system of equations (taken for all such ξ’s) determines the Thom poly-
nomial T η in a unique way.

3. Schur functions. Our main reference for this section is [7] (see also
[9]). By a partition I = (i1, . . . , ih) we mean a weakly increasing sequence
0 ≤ i1 ≤ · · · ≤ ih of natural numbers. To simplify the notation we shall also
write i1 . . . ih. When we refer to an arbitrary partition I, the length of I (the
number of nonzero parts of I) will be denoted by `(I).

For positive integers m and n, we shall say that a partition I is not
contained in the (m,n)-hook if `(I) > m and i`(I)−m > n.

An alphabet A means a finite multi-set of elements from a commutative
ring. The symbol Am denotes the alphabet (a1, . . . , am) with m elements
and we identify it with the sum a1 + · · · + am. Similarly, Bn denotes the
alphabet (b1, . . . , bn) which is identified with b1 + · · ·+ bn, etc.

Definition 3.1. Given a partition I = (i1, . . . , ih), and alphabets A
and B:

(i) The ith complete symmetric function Si(A − B) is defined as the
coefficient of zi in the generating series

(3.1)
∑

Si(A− B)zi =
∏
b∈B(1− bz)∏
a∈A(1− az)

.

(ii) The Schur function SI(A−B) is defined as the following determi-
nant:

(3.2) SI(A− B) := |Siq+q−p(A− B)|1≤p,q≤h.
(iii) The resultant R(A,B) of the alphabets A and B is the product

(3.3) R(A,B) :=
∏

a∈A, b∈B
(a− b).

(1) This condition holds true for the singularities III2,3(−).
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In the rest of this section we recall three properties of Schur functions
that we use frequently:

Let q be a positive integer. Then

(3.4) Sj(−E− Bq) = Sj(−E− Bq−1)− bqSj−1(−E− Bq−1).

If a partition I is not contained in the (m,n)-hook then we have the
following vanishing property:

(3.5) SI(Am − Bn) = 0.

For instance, I = (2, 5, 6, 8) is not contained in the (2, 4)-hook, therefore
S2568(A2 − B4) = 0.

If a partition is contained in the (m,n)-hook and contains the rectangular
partition (nm) then we have the following factorization property (cf. [2]): For
partitions I = (i1, . . . , im) and J = (j1, . . . , jh),

(3.6) S(j1,...,jh,i1+n,...,im+n)(Am − Bn) = SJ(Am)R(Am,Bn)SI(−Bn).

For example,

S1367(A2 − B4) = S23(A2)R(A2,B4)S13(−B4).

Remark 3.2. Expressions appearing inside a box, such as x1 + x2 ,
should be understood as a single variable. For example, S2( x1 + x2 ) =
x2

1 + 2x1x2 + x2
2 where S2(x1 + x2) = x2

1 + x1x2 + x2
2 (cf. Convention 10

in [13]).

4. Thom polynomials for III2,3(−). In this section we shall use Segre
classes Si of the virtual bundle TX∗ − f∗(TY ∗), replacing their equals, the
Chern classes ci(f∗TY − TX). That is, we write complete symmetric func-
tions Si(A−B) for the alphabets of the Chern roots A,B of TX∗ and TY ∗.
Also, instead of k we will use a “shifted” parameter r:

(4.1) r := k + 1.

We shall write η(r) for the singularity η : (C•, 0)→ (C•+r−1, 0), and T III2,3
r

will denote the Thom polynomial for III2,3(r) singularity.

Theorem 4.1. Let r ≥ 2. The Thom polynomial for III2,3(r) singularity
is given by the following formula (2):

T III2,3
r =

r+1∑
i=1

2iSr+1−i,r+1,r+i.

(2) The case r = 2 was computed in the monomial basis by Rimányi in [17].
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To prove the theorem we shall need some preparation. Let

Qr =
r+1∑
i=1

2iSr+1−i,r+1,r+i.

We will show that Qr = T III2,3
r by using Theorem 2.2. Set E = 2x1 + 2x2

and F = 2x1 + 3x2 + x1 + x2 . Let us rewrite the equations coming from
Theorem 2.2 with the notation of Schur functions: The equations imposed
by A0(r), A1(r), A2(r) and A3(r) are

Qr(−Br−1) = Qr(x− Br−1 − 2x ) = Qr(x− Br−1 − 3x )(4.2)

= Qr(x− Br−1 − 4x ) = 0.

The equation

(4.3) Qr(X2 − 2x1 − 2x2 − x1 + x2 − Br−2) = 0

is imposed by III2,2(r). Next, we have the equation imposed by I2,2(r):

(4.4) Qr(X2 − E− Br−1) = 0,

and the normalizing equation

(4.5) Qr(X2 − F− Br−2) = 2x2(x1 − x2)R(X2,F + Br−2)
r−2∏
j=1

(2x2 − bj).

Since the partitions appearing in Qr are not contained in the correspond-
ing hooks we see that equations (4.2) are valid for any r. Also (4.3) can be
obtained from (4.4). Therefore it is enough to show that (4.4) and (4.5) are
satisfied. To do this we will proceed with a number of lemmas.

Lemma 4.2. Let p ≥ 2 be an integer. Then
p∑
i=1

2iSp−i(−E)Si−1(X2) = 0,(i)

p∑
i=1

2iSp−i(−F)Si−1(X2) = 2p−2xp−2
2 (x1 − x2).(ii)

Proof. Observing that Sp−i(−E) vanishes for i < p − 2 and Sp−i(−F)
vanishes for i < p− 3, we get the desired equalities.

Lemma 4.3. For any r ≥ 2 we have
r+1∑
i=1

2iSr+1−i(−E− Br−1)Si−1(X2) = 0.
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Proof. First notice that for p ≥ 3 we have
p∑
i=1

2iSp−i(−E− b1)Si−1(X2) = 0.

Therefore assuming the equality for s < r we get
r+1∑
i=1

2iSr+1−i(−E− Br−1)Si−1(X2)

=
r+1∑
i=1

2iSr+1−i(−E− Br−2)Si−1(X2)− br−1

r+1∑
i=1

2iSr−i(−E− Br−2)Si−1(X2)

=
r+1∑
i=1

2iSr+1−i(−E− Br−2)Si−1(X2).

But after finitely many applications of (3.4), this last expression reduces to
r+1∑
i=1

2iSr+1−i(−E)Si−1(X2).

Then using Lemma 4.2(i) with p = r + 1 we complete the proof.

Lemma 4.4. Let p ≥ 3 and p− 3 ≥ q ≥ 0. Then
p∑
i=1

2iSp−i(−F− Bq)Si−1(X2) = (2x2)p−q−2(x1 − x2)
q∏
j=1

(2x2 − bj).

Proof. If p = 3 then q = 0. Hence Lemma 4.2(ii) forms the base step of
induction where q = 0. Assume that the equality holds true if s < p (and
t ≤ q) or t < q (and s ≤ p). Then
p∑
i=1

2iSp−i(−F− Bq)Si−1(X2)

=
p∑
i=1

2iSp−i(−F− Bq−1)Si−1(X2)− bq
p−1∑
i=1

2iSp−1−i(−F− Bq−1)Si−1(X2)

= (2x2)p−q−1(x1 − x2)
q−1∏
j=1

(2x2 − bj)− bq(2x2)p−q−2(x1 − x2)
q−1∏
j=1

(2x2 − bj)

= (2x2)p−q−2(x1 − x2)
q∏
j=1

(2x2 − bj).

Proof of Theorem 4.1. By the factorization property and Lemma 4.3 we
obtain

Qr(X2 − E− Br−1) = 0.
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This proves (4.4) for any r ≥ 2. Setting p = r + 1 and q = r − 2 in Lemma
4.4 we get

r+1∑
i=1

2iSr+1−i(−F− Br−2)Si−1(X2) = 2x2(x1 − x2)
r−2∏
j=1

(2x2 − bj).

Then using the factorization property once more, we have

Qr(X2 − F− Br−2) = 2x2(x1 − x2)R(X2,F + Br−2)
r−2∏
j=1

(2x2 − bj)

for any r ≥ 2. Therefore (4.5) is satisfied for any r ≥ 2 and the theorem is
proved.

Remark 4.5. Let Φ denote the linear endomorphism on the Z-module
spanned by the Schur functions indexed by partitions of length ≤ 3, that
sends a Schur function Si1,i2,i3 to Si1+1,i2+1,i3+1. Let Tr denote the sum of
those terms in the Schur function expansion of Tr which are indexed by
partitions of length 2. We have

T III2,3
r = 2r+1Sr+1,2r+1 + Φ(T III2,3

r−1 )(4.6)

= T III2,3
r + Φ(T III2,3

r−1 ).(4.7)

Note that a recursion of the same form also appeared in Thom polynomials
for other singularities (cf. [8], [13] and [10]).

Remark 4.6. As the referee points out, Fehér and Rimányi [5] developed
another method for computing Thom polynomials of contact singularities.
In particular, they computed the same Thom polynomials for singularities
III2,3(−) with different techniques.
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