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On moduli spaces of semistable sheaves
on Enriques surfaces

by Marcin Hauzer (Warszawa)

Abstract. We describe some one-dimensional moduli spaces of rank 2 Gieseker semi-
stable sheaves on an Enriques surface improving earlier results of H. Kim. In the case
of a nodal Enriques surface the moduli spaces obtained are reducible for general po-
larizations. For unnodal Enriques surfaces we show how to reduce the study of moduli
spaces of high even rank Gieseker semistable sheaves to low ranks. To prove this we use
the method of K. Yoshioka who showed that in the odd rank case, one can reduce to
rank 1.

Introduction. An Enriques surface is a smooth projective surface X
satisfying the following conditions: the irregularity q(X) = h1(OX) is equal
to 0 and the canonical line bundle ωX is non-trivial but ω⊗2

X ' OX . For
simplicity we assume that our surfaces are defined over an algebraically
closed field k of characteristic zero (otherwise we would have to change even
the definition of an Enriques surface).

One of the aims of this note is to study geometry of one-dimensional
moduli spaces of Gieseker semistable sheaves on Enriques surfaces. We are
particularly interested in the case of rank 2 torsion free sheaves with the
first Chern class equal to a half-pencil of an Enriques surface and with the
(degree of) second Chern class equal to 1.

Before formulating our theorem let us recall that every Enriques sur-
face is an elliptic fibration over P1 with two multiple fibres 2FA and 2FB.
FA and FB are reduced curves and they are called half-pencils.

Theorem 0.1. There exists an explicit class of polarizations H such
that the moduli space MX(2, FA, 1) of rank 2 Gieseker H-semistable sheaves
with first Chern class FA and second Chern class 1 is isomorphic to FB.
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This result corrects and strengthens the results of Chapter 5 of Kim’s
thesis (see [Kim1, Theorem 5.1]).

Let us recall that an Enriques surface is called unnodal if it does not
contain any (−2)-curves. Kim considered only locally free sheaves on unn-
odal Enriques surfaces and claimed that the corresponding moduli space
is non-reduced (which is false). Some parts of his arguments are also in-
valid without further assumptions on the polarization (e.g., in the proof of
[Kim1, Theorem 5.1] he changes the polarization and claims that the bundle
remains stable).

It should be noted that in his later papers H. Kim claimed somewhat dif-
ferent results. In [Kim2, Example 1] he claimed a similar theorem for locally
free sheaves and an arbitrary polarization (this statement is false). In his
most recent paper [Kim3, II, Example] he claimed the result closest to Theo-
rem 0.1: the birationality of the moduli space MX(2, FA, 1) (for an arbitrary
polarization) with half-pencil FB. In both cases no proof was provided.

The method of proof od Theorem 0.1 is quite similar to the one used by
Okonek and Van de Ven [OV] in their computation of Donaldson invariants
for Dolgachev surfaces (this result implied the existence of infinitely many
homeomorphic surfaces which are not diffeomorphic). The main new ingre-
dients are a good choice of polarizations and the method of description of
singularities of moduli spaces (see Subsections 1.1 and 1.3).

One of the interests of this theorem stems from the interesting theorem
proven by K. Yoshioka in [Yo, Theorem 4.6]. Namely, Yoshioka proved that
for a general polarization the moduli space of semistable sheaves of odd
rank and with a primitive Mukai vector on an unnodal Enriques surface is
irreducible. On nodal Enriques surfaces Theorem 0.1 provides, for a general
polarization, an example of a reducible moduli space of semistable sheaves
of even rank and with a primitive Mukai vector.

In even rank for unnodal Enriques surfaces we have the following theo-
rem:

Theorem 0.2. Let X be an unnodal Enriques surface and let r be a pos-
itive even integer. Then for a general polarization the number of irreducible
components of the moduli space of rank r Gieseker semistable sheaves with
fixed primitive Mukai vector and with fixed determinant is the same as the
number of irreducible components of a similar moduli space for rank 2 or 4.

This theorem together with Yoshioka’s results and Kim’s conjecture in
the rank 2 case suggests that on unnodal Enriques surfaces the moduli space
of Gieseker semistable sheaves with fixed primitive Mukai vector and deter-
minant should always be irreducible for a general polarization.

In fact we prove a much stronger form of Theorem 0.2 allowing one
to compare virtual Hodge polynomials of some moduli spaces (see The-
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orem 2.8). Our proof follows the method of Yoshioka [Yo, Section 4] but
the actual computations become more complicated than for odd rank. This
method of proof also allows us to reprove the main result of [Kim1] (see
Theorem 2.9).

The structure of the paper is as follows. In Section 1 we prove Theo-
rem 0.1. Then in Section 2 we prove a refinement of Theorem 0.2. At the
beginning of each section we describe the main steps in the proofs.

In the paper we use without warning the following facts about Enriques
surfaces. If X is an Enriques surface then χ(OX) = 1 and the Riemann–Roch
theorem for a rank 2 vector bundle E says that χ(E) = 2 + 1

2c
2
1(E)− c2(E).

The canonical divisor of X can be computed as KX = FA − FB = FB − FA
(see [BHPV, VII.17]).

1. One-dimensional moduli spaces of semistable sheaves. In this
section we prove Theorem 0.1. The structure of the proof is as follows. First
we show how to choose polarizations for which Theorem 0.1 holds. Then we
show that every 2 Gieseker H-semistable sheaf with first Chern class FA and
second Chern class 1 can be obtained as a certain extension. This is used
to prove that we have a set-theoretical bijection between the corresponding
moduli scheme and a half-pencil FB. The main difficulty is to prove that
this is an isomorphism of schemes. To do so we study singularities of the
moduli scheme. Then we construct some families of sheaves and use them
to construct morphisms from the moduli scheme to the half-pencil and back
providing the proof of Theorem 0.1 (see Theorem 1.14).

1.1. Choice of a polarization. In order to talk about the stability of
sheaves on a surface X we have to choose a polarization of X. Choosing it
smartly we can exclude the existence of strictly semistable sheaves:

Lemma 1.1. There exists a polarization H of X such that all rank 2
Gieseker H-semistable sheaves E with c1E = FA and c2E = 1 are slope
H-stable and there exists an ample divisor L0 such that H = L0 + nFA for
some integer n > FA.L0.

To prove this lemma we need to recall some results from [HL, Appen-
dix C to Chapter 4].

Let X be a smooth projective surface. Let K+ denote the positive cone
of X, i.e., the set

{x ∈ NumR(X) : x2 > 0 and x.H > 0 for some ample divisior H}.

Let H denote the set of rays in K+. This set can be identified with the
hyperbolic manifold {H ∈ K+ : |H| = 1}, where |H| denotes |H2|1/2. We
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can define a hyperbolic metric on H by setting

β([H], [H ′]) = arccosh
(

H.H ′

|H|.|H ′|

)
for points [H], [H ′] ∈H .

Definition 1.2. Let r ≥ 2 and ∆ > 0 be integers. A class ξ ∈ Num(X)
is of type (r,∆) if −(r2/4)∆ ≤ ξ2 < 0. A wall defined by ξ is the real
1-codimensional submanifold

Wξ = {[H] ∈H : ξ.H = 0} ⊂H .

Lemma 1.3. Let us fix positive integers r ≥ 2 and ∆. Then the set of
walls of type (r,∆) is locally finite in H .

Theorem 1.4. Let H be an ample divisor on X and let E be a slope
H-semistable torsion free sheaf of rank r and discriminant ∆. Let E′ ⊂ E
be a subsheaf of rank r′, 0 < r′ < r, with µH(E′) = µH(E). Then the class
ξ := r.c1(E′)− r′.c1(E) satisfies the following conditions:

ξ.H = 0 and −r
2

4
∆ ≤ ξ2 ≤ 0,

and ξ2 = 0 if and only if ξ = 0. In particular, if c1 ∈ Num(X) is indivisible,
and if H is not on a wall of type (r,∆), then a torsion free sheaf of rank r,
with first Chern class c1 and discriminant ∆, is slope H-semistable if and
only if it is slope H-stable.

Now we can prove Lemma 1.1:

Proof of Lemma 1.1. An Enriques surface X viewed as an elliptic fi-
bration X → P1 always has a 2-section G such that G.F = 2 for general
fibre (see [BHPV, Proposition VIII.17.5]). Therefore G.FA = 1 and c1 = FA
is indivisible in Num(X). To make MX(2, FA, 1) parameterize only stable
sheaves we should choose a polarization which is not on a wall of type
(2,−4). We also need to work with a polarization which is close to the ray
determined by FA in NumR(X) (and which is not ample). More precisely,
the desired polarization should be of the form L0 +nFA, where L0 is an am-
ple divisor and n > FA.L0. If we choose L0 = L1 arbitrarily, it may happen
that L1 + nFA is on a wall of type (2,−4) for every n. In this case we fix
n0 > FA.L1 + 1 and we choose a vector v ∈ NumQ(X) such that

1. L1 + v is an ample divisor,
2. (L1 + v) + n0FA is not on a wall of type (2,−4),
3. v.FA < 1.

Such a vector v exists because the cone of ample divisors is open and there
exists a neighborhood of L1 +nFA which intersects only finitely many walls
of type (2,−4). Take m ∈ N such that L′1 := m(L1 +v) belongs to Num(X).
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Then L′1 is ample and L′1 +mn0FA = m(L1 + v+n0FA) does not lie on any
wall of type (2,−4). Moreover, we have

L′1.FA = m(L1 + v).FA = m(L1.FA + v.FA) < m(n0 − 1 + 1) = mn0.

Therefore L0 = L′1 and n = mn0 give a polarization H = L0 +nFA which is
not on any wall of type (2,−4) and such that n > L0.FA. By Nakai’s criterion
the divisor H is ample because H2 = L2

0+2nL0.FA+F 2
A = L2

0+2nL0.FA > 0
and H.D = L0.D+nFA.D > 0 since FA.D ≥ 0 for every effective divisor D.
This finishes the proof.

1.2. Presentation of a sheaf as an extension. From now on we work
only with polarizations described in Lemma 1.1.

Lemma 1.5. Let E be a rank 2 Gieseker H-semistable sheaf with the
first Chern class FA and the second Chern class 1. Then there exists a point
x ∈ X such that E sits in a non-split exact sequence of the form

0→ OX → E → Ix ⊗ OX(FA)→ 0.

Proof. By Lemma 1.1 we know that E is slope H-stable. Since H is
fixed we will often omit H when referring to stability of sheaves. By the
Riemann–Roch theorem we have

h0(E) + h2(E) ≥ 2 +
1
2
F 2
A − 1 = 1.

By Serre duality we have h2(E) = dim Hom(E,ωX) = h0(ωX ⊗ E∨). More-
over, ωX ⊗ E∨ is slope stable and locally free. However, c1(ωX ⊗ E∨) =
c1(E∨) = −FA and µ(ωX ⊗E∨) < 0 so ωX ⊗E∨ has no global sections and
h2(E) = 0. Therefore h0(E) ≥ 1 and E fits in an exact sequence

(1) 0→ IZ1(D)→ E → IZ2 ⊗ OX(−D + FA)→ 0

for some effective divisor D and zero-dimensional subschemes Z1, Z2 of X
such that a section OX → E factors through IZ1(D) → E. By stability of
E we have

D.H <
1
2
FA.H ⇔ D.(L0 + nFA) <

1
2
FA.(L0 + nFA)

⇔ D.L0 + nFA.D <
1
2
FA.L0.

This implies that

(FA.L0)(FA.D) < nFA.D <
1
2
FA.L0.

Therefore 0 ≤ FA.D < 1/2 and hence FA.D = 0.
Now note that computation of the second Chern class from sequence (1)

gives
D.(FA −D) + degZ1 + degZ2 = 1.
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So D2 = degZ1+degZ2−1 ≥ −1. Since the intersection form on an Enriques
surface is even, this implies that D2 ≥ 0.

By stability of E we also have (FA−2D).H > 0. So FA−2D 6= 0,KX and
since (FA − 2D)2 = 4D2 ≥ 0 by [BHPV, Chapter VIII, Proposition 16.1.ii]
we know that |FA − 2D| 6= ∅. Therefore there exists an effective divisor C
such that FA ∼ 2D+C. But h0(OX(FA)) = 1 (see the proof of Lemma 17.3
in [BHPV, Chapter VIII]) and hence we have equality: FA = 2D + C. The
half-pencil FA has no multiple components, so the only possibility is that
D = 0.

Now existence of the morphism OX → IZ1 shows that Z1 must be empty.
This allows us to compute the length of Z2:

1 = c2(E) = c2(IZ ⊗ OX(−D + FA)) +D.(−D + FA) = l(Z2).

Splitting of sequence (1) would contradict the stability of E, so the sequence
is non-split.

Sheaves appearing as extensions of the form as in the previous lemma
are characterized by the following lemma:

Lemma 1.6. Let E be a sheaf given by a non-trivial extension

0→ OX → E → Ix ⊗ OX(FA)→ 0

for some closed point x ∈ X. Then x ∈ FB, E is locally free and it is
uniquely determined by x.

Proof. Extensions of Ix ⊗ OX(FA) by OX are parameterized by the
group Ext1(Ix ⊗ OX(FA),OX). By Serre duality this group is dual to
Ext1(ωX ,Ix ⊗ OX(FA)) = H1(X,Ix ⊗ OX(FA) ⊗ ωX) = H1(X,
Ix ⊗ OX(FB)) because ωX ' OX(FB − FA). Consider an exact sequence

0→ Ix → OX → Ox → 0

and tensorize it with OX(FB). By proof of Lemma 17.3 in [BHPV, Chap-
ter VIII] we have h0(OX(FB)) = 1 and h1(OX(FB)) = 0. Thus we have the
following long exact sequence:

0→ H0(Ix ⊗ OX(FB))→ H0(OX(FB))

→ H0(Ox(FB))→ H1(Ix ⊗ OX(FB)→ 0.

Since h0(Ox(FB)) = 1, H1(Ix ⊗ OX(FB)) has dimension 0 or 1. But by
assumption E comes from a non-trivial extension, so h1(Ix⊗OX(FB)) = 1.
This implies that h0(Ix ⊗ OX(FB)) = 1 and therefore x lies in the zero
set of a non-trivial section of OX(FB), i.e., x ∈ FB. The local freeness of E
follows from the Cayley–Bacharach property of a single point x ∈ FB with
respect to the linear system |FB| = {FB}.
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Lemma 1.7. Let E be as in the previous lemma. Then E is slope H-
stable.

Proof. To check the stability of E it is sufficient to consider subsheaves
of the form OX(C) ⊂ E. We can also assume that this subsheaf is saturated,
i.e., the quotient E/OX(C) is torsion free. If the linear system |−C| is non-
empty then C.H < 0 ≤ 1

2FA.H. So we can assume that |−C| = ∅. Using the
short exact sequence

0→ OX(−C)→ E(−C)→ Ix(FA − C)→ 0

and the fact that h0(E(−C)) > 0 we get h0(Ix(FA − C)) > 0. Therefore
there exists an effective divisor R ∼ FA − C which passes through x. If
R.FA ≥ 1 then

C.H = (L0 + nFA).(FA −R) = L0.FA − nR.FA −R.L0

≤ L0.FA − n < 0 ≤ 1
2
FA.H.

Therefore we can assume that R.FA = 0, which implies that C.FA = 0.
Now note that by assumption there exists a zero-dimensional subscheme

Z such that E sits in a short exact sequence of the form

0→ OX(C)→ E → IZ ⊗ OX(R)→ 0.

Computing the second Chern class we get CR+degZ = 1. Therefore −R2 =
CR ≤ 1, which implies that R2 ≥ 0 and CR ≤ 0. But this implies that
C2 = −CR ≥ 0, so by [BHPV, Proposition VIII.16.1] the linear system |C|
is non-empty. Therefore FA = C +R, which contradicts the fact that x lies
on R.

Summarizing we have the following corollary:

Corollary 1.8. There exists a bijection between closed points of
MX(2, 1, FA) and FB.

Proof. The only fact that remains to be proved is that for a sheaf E, a
point x ∈ FB such that we have a non-split exact sequence of the form

0→ OX → E → Ix ⊗ OX(FA)→ 0

is uniquely determined. To prove this, note that H0(Ix ⊗ OX(FA)) = 0,
since x does not lie on FA. Therefore H0(E) is one-dimensional and x is the
zero set of the unique (up to a scalar multiple) non-trivial section of E.

1.3. Singularities of MX(2, 1, FA). In order to analyze the smoothness
of MX(2, 1, FA) we have to consider Ext2(E,E) = (Hom(E,E ⊗ ωX))∗.
Since E is slope stable and of the same slope as E(KX) every non-zero
homomorphism s ∈ Hom(E,E ⊗ ωX) gives rise to an isomorphism. Hence
Ext2(E,E) vanishes if and only if E and E(KX) are not isomorphic. Both
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E and E(KX) represent points in MX(2, FA, 1) so we can present them as
extensions:

0→ OX → E → Ix0 ⊗ OX(FA)→ 0,(2)
0→ OX → E(KX)→ Ix1 ⊗ OX(FA)→ 0,(3)

for some uniquely determined x0, x1 ∈ FB. In particular, E and E(KX) are
isomorphic if and only if x0 = x1. Now we need the following lemma:

Lemma 1.9. Let mx,FB
denote the ideal sheaf of a point x in FB. Then

the sheaves mx1,FB
and mx0,FB

⊗OFB
(FB) are isomorphic as OFB

-modules.

Proof. Let us consider the following commutative diagram:

0 0

0 // kerβ // Ix1 ⊗ OX(FA)
β

//

OO

cokerα

OO

0 // ωX //

γ

OO

E(KX) //

OO

Ix0 ⊗ OX(FB) //

OO

0

0 //

OO

OX
= //

OO

OX

α

OO

// 0

0

OO

0

OO

where the middle horizontal sequence is obtained from (2) by multiplying
by ωX and using KX = FB − FA. Note that γ in this diagram must be an
isomorphism and β must be surjective. In particular, we have a short exact
sequence

0→ ωX−→Ix1 ⊗ OX(FA) −→ cokerα→ 0.

By definition we also have an isomorphism cokerα ' mx0,FB
⊗OFB

(FB). On
the other hand the above exact sequence implies that cokerα ' mx1,FB

⊗
OFB

(FA) ' mx1,FB
, which proves the required assertion.

Proposition 1.10. Let E and E(K) be determined by x0, x1 ∈ FB,
respectively.

1. If x0 is a smooth point of FB then x1 is also a smooth point of FB and
it is the zero set of the unique (up to a scalar) section of OFB

(FB+x0).
In particular, x1 6= x0.

2. If x0 is a singular point of FB then x1 = x0.

Proof. Let us first recall that by [CD, Theorem 5.7.5] the half-pencils
FA and FB have only nodal singularities. Let C be a curve with a nodal
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singularity at x. Then mx,C is not a line bundle. Otherwise, the maximal
ideal of the completion ÔC,x ' k[[a, b]]/(ab) of the local ring of C at x would
be generated by one element. But this is not possible.

Let us now assume that x0 is a smooth point of FB. Then mx0,FB
'

OFB
(−x0). Therefore by the above lemma mx1,FB

' OFB
(FB − x0) is a

line bundle, which implies that x1 is a smooth point of FB and OFB
(x1) '

OFB
(FB +x0) (we use the fact that OFB

(2FB) is a trivial line bundle). From
the short exact sequence

0→ OX → OX(FB)→ OFB
(FB)→ 0

we see that h0(OFB
(FB)) = 0 (in particular OFB

(FB) ' OFB
(x1 − x0) is

non-trivial and hence x1 6= x0). So from the short exact sequence

0→ OFB
(FB)→ OFB

(FB + x0)→ Ox0(FB + x0) ' Ox0 → 0

we see that h0(OFB
(FB +x0)) = 1, which proves the first part of the propo-

sition.
To prove the second part let us assume that x0 is a singular point of FB.

Then x1 is also a singular point of FB, since mx1,FB
is not a line bundle.

In particular, if FB is irreducible then x1 = x0. So we can assume that FB
is reducible. In this case all irreducible components of FB are smooth. Let
C be an irreducible component of FB containing x0. Then we claim that
mx0,FB

⊗OC ' OC(−x0)⊕Ox0 . To prove this note that we have a canonical
surjection mx0,FB

→ mx0,C = OC(−x0). Tensoring it by OC we need to prove
that the kernel is isomorphic to the sheaf Ox0 . We can do it locally passing
to local completions at the maximal ideal of OC,x. Then the above map looks
like the map

(a, b)⊗k[[a,b]]/(ab) k[[a, b]]/(a)→ (a, b) · k[[a, b]]/(a) ' bk[[b]]

and the kernel of this map is generated by a⊗ 1, which proves our claim.
The above claim implies that mx1,FB

⊗ OC contains torsion, which is
possible only if x1 lies on C. But this implies that x1 lies on the same
irreducible component of FB as x0 and hence x1 = x0.

The above proposition implies the following corollary:

Corollary 1.11. Let [E] ∈MX(2, FA, 1). Then E ' E(K) if and only
if the point x0 associated to E is a singular point of FB.

1.4. Family of sheaves. In order to obtain a morphism from FB to
MX(2, 1, FA) we have to construct a family of sheaves E on FB × X such
that for every x ∈ FB the sheaf [E|{x}×X ] ∈ MX(2, 1, FA). Obviously, we
will try to do it in such a way that E|{x}×X corresponds to the non-trivial
extension of Ix ⊗ OX(FA) by OX .
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Let Γ denote the graph in the product FB ×X of the inclusion FB ⊂ X
and IΓ be its ideal sheaf. Let πi denote the projection from FB ×X on the
ith factor. Observe that, since Ext1(Ix ⊗ OX(FA),OX) is one-dimensional
for every x ∈ FB, the sheaf

L = Ext1π1
(IΓ ⊗ π∗2(OX(FA)),OFB×X)

is a line bundle on FB. By [BPS, p.137] there is a spectral sequence

Hp(Extqπ1
(IΓ ⊗π∗2OX(FA), π∗1(L ∨)))→ Extp+q(IΓ ⊗π∗2OX(FA), π∗1(L ∨)),

which gives a long exact sequence

0→ H1(Homπ1
(IΓ ⊗ π∗2OX(FA), π∗1(L ∨)))

→ Ext1(IΓ ⊗π∗2OX(FA), π∗1(L ∨))→ H0(Ext1π1
(IΓ ⊗π∗2OX(FA), π∗1(L ∨)))

→ H2(Homπ1
(IΓ ⊗ π∗2OX(FA), π∗1(L ∨))).

For a fixed x ∈ FB we have Hom(Ix ⊗ OX(FA),OX) = 0. Hence
Homπ1

(IΓ ⊗ π∗2OX(FA), π∗1(L ∨)) = 0. The isomorphism

Ext1(IΓ ⊗ π∗2OX(FA), π∗1(L ∨)) ' H0(Ext1π1
(IΓ ⊗ π∗2OX(FA), π∗1(L ∨)))

' H0(L ⊗L ∨) ' H0(OFB
)

shows that with 1 ∈ H0(OFB
) we can naturally associate an extension

0→ OFB×X → E → IΓ ⊗ π∗2OX(FA)⊗ π∗1(L )→ 0

on FB×X, where E is locally free and after restricting to {x}×X gives the
sheaf associated to x. The sheaf E can be regarded as a family of sheaves
parameterized by FB. Therefore we get a morphism FB →MX(2, FA, 1).

Corollary 1.12. The moduli space MX(2, FA, 1) is a connected reduced
curve.

Proof. By Lemma 1.8 the morphism FB → MX(2, FA, 1) constructed
above is bijective on closed points.

If [E] ∈ MX(2, FA, 1) corresponds to a smooth point of FB then by
Corollary 1.11 we have E 6' E(K) and therefore Ext2(E,E) = 0. By [La,
Corollary 5.1.2], [E] is a smooth point and the dimension of MX(2, FA, 1)
at this point is equal to dim Ext1(E,E) = 1 + c2(E ⊗ E∨) − 4χ(OX) = 1.
Therefore MX(2, FA, 1) is connected and reduced at every generic point and
it has a finite number of singular points corresponding to singularities of FB.

Note that the expected dimension of the moduli space MX(2, FA, 1) at
any point [E] is equal to dim Ext1(E,E)−dim Ext2(E,E) = 1. Therefore by
[HL, Theorem 4.5.8] the moduli space MX(2, FA, 1) is a locally complete in-
tersection. Since MX(2, FA, 1) is reduced at every generic point it is reduced
everywhere.
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We can also construct a morphism in the opposite direction.
By [HL, Theorem 4.6.5] the moduli space MX(2, FA, 1) is a fine mod-

uli space. Indeed, the chosen polarization excludes the existence of strictly
semistable sheaves and if [E] ∈MX(2, FA, 1) then χ(E) = 1 (so we can take
B = OX in the above mentioned theorem). Let F be a universal family on
MX(2, FA, 1)×X and let p1, p2 denote the projections on the first and the
second factor, respectively. For every closed point [E] ∈MX(2, FA, 1) there
exists an extension

0→ OX → E → Ix ⊗ OX(FA)→ 0

for some x ∈ FB. Hence the long exact sequence of cohomology gives
H0(OX) ' H0(E). Moreover, we have already proved that h2(E) = 0 so
the equality χ(E) = 1 gives us the vanishing of H1(E). The following theo-
rem shows that p1∗F is an invertible sheaf on MX(2, FA, 1):

Theorem 1.13 ([EGA, Theorem 7.9.9]). Let Y be a locally noetherian
scheme, f : X → Y a proper morphism, F a sheaf of OX-modules flat over
Y . Assume that there exists i0 ∈ Z that hi(f−1(y),F ⊗Ou k(y)) = 0 for
every i 6= i0 and every y ∈ Y . Then Ri0f∗F is locally free at y and its rank
is equal to hi0(f−1(y),F ⊗Ou k(y)).

Moreover, Hom(p1
∗p1∗F ,F ) = Hom(p1∗F , p1∗F ) so we can consider

the map

(4) p1
∗p1∗F → F

associated with idp1∗F . If we look at (4) on fibres of p1, we recognize the
extension from Lemma 1.6. So the cokernel of (4) is isomorphic to IC ⊗
p∗2OX(FA)⊗p∗1L ′ for some invertible sheaf L ′ on MX(2, FA, 1) and a curve
C ⊂ MX(2, FA, 1) × X. Note that by restricting C to [E] × X we get a
point x ∈ X determining E. The sheaf IC gives us a sheaf OC which can be
treated as a family of zero-dimensional subschemes of X parameterized by
MX(2, FA, 1). This gives a morphism MX(2, FA, 1)→ Hilb1(X) ' X which
factors through FB.

Theorem 1.14. Let us fix a polarization H satisfying the conditions
from Lemma 1.1. Then the moduli space MX(2, FA, 1) of rank 2 Gieseker
H-semistable sheaves with first Chern class FA and second Chern class 1 is
isomorphic to FB.

Proof. We have already constructed morphisms MX(2, FA, 1)→ FB and
FB →MX(2, FA, 1) which give identity on closed points when they are com-
posed. Since both schemes are reduced these morphisms are isomorphisms.

2. Moduli spaces of Gieseker semistable sheaves of even rank.
In this section we prove Theorem 0.2. First we prove some simple results
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about lattices. Then we recall some results on the Mukai lattice for an En-
riques surface and we prove some lemmas concerning this lattice. Finally
we use these results and Yoshioka’s method to prove a refinement of Theo-
rem 0.2 (see Theorem 2.8).

2.1. Some simple results on lattices. Let L be a finitely generated
free Z-module. An element x ∈ L is called primitive if the quotient module
L/Zx is torsion free. A lattice is a pair consisting of a finitely generated free
Z-module and an integral bilinear (in our case also symmetric) form 〈·, ·〉.

In the following, −E8 denotes the lattice Z8 with canonical basis
{e1, . . . , e8} whose intersection matrix (〈ei, ej〉) is the negative of the Cartan
matrix of the root system E8.

Lemma 2.1. Let L be a finitely generated free Z-module of rank rkL =
n > 1. Let r be a positive integer and let x be an element of L. Let us set l =
gcd(r, x). Then there exists ξ ∈ L such that (x+ rξ)/l is a primitive element
in L. Moreover, if there exists a bilinear form 〈·, ·〉 such that (L, 〈·, ·〉) is
isometric to −E8 then for an arbitrary number M we can choose ξ such
that 2〈x, ξ〉+ r〈ξ, ξ〉 < M .

Proof. Let {e1, . . . , en} be a basis for L. If x = 0 then as ξ we can
take an arbitrary primitive element in L. If x 6= 0 then we can assume
that x/l =

∑
aiei with a1 6= 0. Let k be the product of all prime numbers

which divide a1 but do not divide a2. We claim that for all b such that
gcd(b, a1) = 1 the element y := (r/l)kbe2 + x/l is primitive. In our chosen
basis, y has coordinates (a1, (r/l)kb + a2, . . . , an). Let p be a prime divisor
of a1. Then either p | am for all m or there exists m such that p - am. In the
first case p - r/l because otherwise gcd(x, r) > l. Then p divides neither k
nor b. Therefore p - gcd(a1, (r/l)kb+ a2) and hence p - y.

Now consider the case when there exists m such that p - am. If m 6= 2
then p - gcd(a1, am). If m = 2 then p | k and p - gcd(a1, (r/l)kb+ a2).

To finish the proof for the lattice −E8 we may assume that 〈ei, ei〉 = −2
and 〈e2, e3〉 = 0. If x = 0 then we take ξ = pe2 + qe3 for prime numbers
p, q � 0. In the other case it is enough to notice that 2〈x, kbe2〉+r〈kbe2, kbe2〉
is a quadratic polynomial in b with negative leading coefficient so for b� 0
it is less than M .

For the convenience of the reader we include the proof of the following
well known lemma.

Lemma 2.2. Let (L, 〈 , 〉) be a unimodular lattice of rank n and y ∈ L
be a primitive element. Then for every m ∈ Z there exists η ∈ L such that
〈η, y〉 = m.

Proof. It is enough to prove the lemma for m = 1. Let M be the
sublattice of L generated by y. Then L/M is a free Z-module with basis
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[α1], . . . , [αn−1]. Then α1, . . . , αn−1, αn = y is a basis for L. The determi-
nant of the matrix (〈αi, αj〉) is equal to ±1 so

gcd(〈α1, αn〉, . . . , 〈αi, αn〉, . . . , 〈αn, αn〉) = 1.

Therefore there exist integers ai such that
∑
ai〈αi, αn〉 = 1 and we can take

η =
∑
aiαi.

2.2. Mukai’s lattice of an Enriques surface. Let X be a complex
Enriques surface and let K(X) be the Grothendieck group of X. Any class
in K(X) has well defined Chern classes. The Mukai vector v(x) of a class
x ∈ K(X) is defined as the following element of H2∗(X,Q):

v(x) := ch(x)
√

tdX = rk(x) + c1(x) +
(

rk(x)
2

%X + ch2(x)
)
∈ H2∗(X,Q),

where ρX is the fundamental class of X (i.e., a class in H4(X,Q) such that	
X ρX = 1). The induced map v : K(X) → H2∗(X,Q) is additive and

it factors through the surjective map K(X) → Z ⊕ NS(X) ⊕ Z given by
x 7→ (rkx, c1(x), χ(x)). This follows from the equality χ(x) =

	
X ch2(x) +

rk(x) obtained from the Riemann–Roch theorem. Therefore v(K(X)) =
Z ⊕ H2(X,Z)f ⊕ 1

2ZρX ⊂ H2∗(X,Q), where H2(X,Z)f is the torsion free
quotient of H2(X,Z).

On H2∗(X,Q) we introduce the Mukai pairing by 〈x, y〉 := −
	
X x
∨ ∧ y.

Then the lattice (v(K(X)), 〈·, ·〉) is isometric to(
1 0
0 −1

)
⊕
(

0 1
1 0

)
⊕−E8.

Note that the Mukai pairing induces on H2(X,Z)f the intersection form
(·, ·).

Definition 2.3. An element of v(K(X)) is called a Mukai vector.
A Mukai vector v is primitive if v is primitive as an element of the lat-
tice v(K(X)).

Remark 2.4. A Mukai vector v = 2+c1+t%X is not primitive if and only
if c1 is divisible by 2 and t is odd. Indeed, v can be divisible only by 2 and if it
is divisible then we have the equality 2+c1+t%X = 2(1+c′1+1

2ρX+1
2(c′1)2−c′2)

for some c′1 and c′2. This is equivalent to c1 = 2c′1 and t = 1 + (c′1)2 − 2c′2.

Let us note that for a divisor D we have v(x⊗ [OX(D)]) = v(x) exp(D),
where exp(D) = 1 + D + 1

2D
2%X . Multiplication by exp(D) is an isometry

of (v(K(X)), 〈 , 〉).
In the case of Enriques surfaces the torsion free part of the Picard group

is isomorphic to H2(X,Z)f . We also know that the lattice (H2(X,Z)f , (·, ·))
is isometric to the orthogonal direct sum H ⊥ −E8, where H is a hyperbolic
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plane. The canonical basis of H is denoted by {σ, f}, so we have σ2 = f2 = 0
and (σ, f) = 1.

We will also use the following lemma which similarly to Remark 2.4
concerns divisors of r, c1 and s in a primitive Mukai vector.

Lemma 2.5. Let v = r+c1− (s/2)ρX be a primitive Mukai vector. Then
gcd(r, c1, s) equals 1 or 2. Moreover:

• if gcd(r, c1, s) = 1 then either r or c1 is not divisible by 2,
• if gcd(r, c1, s) = 2 then c2 must be odd and r + s ≡ 2 mod 4.

Proof. If gcd(r, c1, s) = 1 and 2 | gcd(r, c1) then s = −r−c21 +2c2 is even
as well. If a prime number p > 3 divides gcd(r, c1, s) then p divides r, c1
and c2 = (r + c21 + s)/2. This is also true for p = 2 if we assume that c2 is
even. In both these cases v = pv′ where v′ is a Mukai vector associated to
r′ = r/p, c′1 = c1/p and c′2 = c2/p + (p − 1)c21/(2p

2). This follows from the
equation

p

(
r′

2
+

1
2
c′21 − c′2

)
= p

(
r

2p
+

1
2p2

c21 −
r + c21 + s

2p
+
p− 1
2p2

c21

)
=
r

2
+

1
2p
c21 −

r

2
− 1

2
c21 −

s

2
+
p− 1

2p
c21 = −s

2
.

Therefore only 2 can divide gcd(r, c1, s) but only if c2 is odd. If 2 | gcd(r, c1, s)
then r + s ≡ r + c21 + s ≡ 2c2 ≡ 2 mod 4. It follows that 4 - gcd(r, c1, s).

Corollary 2.6. Let v = r+ (r/2)δ+ ξ− (s/2)ρX be a primitive Mukai
vector, where r is even and δ ∈ H2(X,Z)f is primitive. Then gcd(r, ξ, s)
equals 1 or 2.

Proof. Let p > 2 be a prime number such that p | gcd(r, ξ, s). Then
p | gcd(r, (r/2)δ + ξ, s) which equals 1 or 2. Suppose that 4 | gcd(r, ξ, s).
Then gcd(r, (r/2)δ + ξ, s) = 2 and by the above lemma r + s ≡ 2 mod 4,
which leads to a contradiction.

2.3. Moduli spaces of sheaves of even rank on unnodal Enriques
surfaces. Let H be an ample divisor on X. Let v = r + c1 − (s/2)%X ∈
H∗(X,Q) be a Mukai vector and let L be a line bundle on X such that
c1(L) = c1. Then we denote by MH(v, L) the moduli space of Gieseker
H-semistable sheaves with Mukai vector v and with fixed determinant L.
In the following, for a fixed Mukai vector v, MH(v, L) denotes MH(v, L) for
some fixed line bundle L satisfying c1(L) = c1(v). This will not cause any
problems since there are only two line bundles with the same first Chern
class and they differ by a torsion line bundle so the corresponding moduli
spaces are isomorphic.

For a complex variety Y the cohomology with compact support has a
natural mixed Hodge structure. This allows us to define the virtual Hodge
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number ep,q(Y ) =
∑

k(−1)khp,q(Hk
c (Y,Q)) and the virtual Hodge polynomial

e(Y ) =
∑

p,q e
p,q(Y )xpyq.

The moduli space MH(v, L) is constructed as the quotient of a certain
open subset Q of the Quot-scheme by an action of GL(V ). Then the rational
function

e(MH(v, L)) = e(Q)/e(GL(V ))

is well defined and we call it the virtual Hodge polynomial of MH(v, L). It
is known that for a general polarization H it does not depend on the choice
of H (see [Yo, Proposition 4.1]).

In [Yo] it is shown that for an unnodal Enriques surface if v = r + c1 −
(s/2)%X ∈ H∗(X,Q) is a primitive Mukai vector such that r is odd then the
virtual Hodge polynomials e(MH(v, L)) and e(Hilb(〈v2〉+1)/2

X ) are the same
for general H. We want to obtain a similar result for even rank r.

The main ingredient of the proof of Yoshioka’s theorem is the following
proposition:

Proposition 2.7 (see [Yo, Proposition 4.5]). Let X be an unnodal En-
riques surface. Assume that r, s > 0. If c21 < 0 then for a general polarization
H we have e(MH(r + c1 − (s/2)%X , L)) = e(MH(s− c1 − (r/2)%X , L′)).

Note that for a Mukai vector v = r + c1 − (s/2)%X the condition c21 < 0
is equivalent to 〈v2〉 < rs.

Theorem 2.8. Let X be an unnodal Enriques surface and let v = r+c1−
(s/2)%X ∈ H∗(X,Q) be a primitive Mukai vector such that r is even. Then
for a general polarization H we have the equality e(MH(v, L)) = e(MH(r′+
c′1 − (s′/2)%X , L′)), where r′ is equal to either 2 or 4.

Proof. To simplify notation we consider only the moduli spaces MH(v)
without fixed determinant. This is sufficient since MH(v) consists of two
disjoint isomorphic moduli spaces of type MH(v.L).

We keep the notation from the previous subsection: H2(X,Z)f = H ⊥
−E8 and the canonical basis of H is denoted by {σ, f}.

To prove the theorem first we deal with the following special case: c1 =
(r/2)bf + ξ, where b ∈ {0, 1,−1} and ξ ∈ −E8. Let us set l = gcd(r, ξ).
By Lemma 2.1 we can find ξ1 ∈ −E8 such that (ξ + rξ1)/l is primitive and
s−2(ξ, ξ1)−r(ξ21) > 〈v2〉. Therefore replacing v by v exp(ξ1) we may assume
that ξ/l is primitive and s > 〈v2〉. Since v is primitive, by Corollary 2.6,
gcd(l, s) is equal to either 1 or 2. Since ξ/l is primitive we have gcd(s, ξ) =
gcd(l, s). Now by Proposition 2.7 we get

e(MH(r + c1 − (s/2)%X)) = e(MH(s− c1 − (r/2)%X)).

Note that s is even as s + r = −2 ch2(v). Replacing v = r + c1 − (s/2)%X
by v′ = s − c1 − (r/2)%X , we may therefore assume that r > 〈v2〉. By the
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above we may also assume that l = gcd(r, ξ) is equal to 1 or 2, and ξ/l is
primitive.

Let us set D = σ − (η2/2)f + η, where η is some element of −E8 (note
that η2/2 is an integer as −E8 is an even lattice). Then D2 = 0 and

(c1, D) =
r

2
b+ (ξ, η).

Let us choose η ∈ −E8 which satisfies the following conditions:

• 2(η, ξ) = s− 2− rb if l = 2 and 4 | s− rb− 2 or l = 1,
• 2(η, ξ) = s− 4− rb if l = 2 and 4 | s− rb.

Existence of such η follows from Lemma 2.2 because ξ/l is primitive and
the above equalities are equivalent to (η, ξ/l) = (s− 2− rb)/(2l) or
(s− 4− rb)/(2l), respectively.

Then we have

v exp(D) = r+ (c1 + rD) +
1
2

(rD2 + 2(c1, D)− s)ρX = r+ (c1 + rD)− ε
2
ρX ,

where ε is either 2 or 4. Since r > 〈v2〉 we can use Proposition 2.7 once
again to obtain

e(MH(v)) = e(MH(v exp(D))) = e

(
MH

(
ε− (c1 + rD)− r

2
ρX

))
.

This proves the required assertion in this case.
Analogously exchanging σ with f we can deal with the case c1 =

(r/2)aσ + ξ, where a ∈ {0, 1,−1} and ξ ∈ −E8.
Now we use induction on r to prove the theorem in the general case. This

part is very similar to the second part of proof of [Yo, Theorem 4.6]. Let us
write c1 as d1σ+d2f+ξ for some ξ ∈ −E8. Replacing v by v exp(kσ+ lf) we
can assume that −r/2 < d1 ≤ r/2 and −r/2 < d2 ≤ r/2. If d1 is non-zero
and |d1| < r/2 then following Yoshioka’s proof we can reduce the assertion
to lower rank and use the induction assumption. Similarly, we deal with
the cases when d2 is non-zero and |d2| < r/2. So the only cases that we
are left with are when the pair (d1, d2) is equal to (0, 0), (0, r/2), (r/2, 0) or
(r/2, r/2). But we already proved the theorem in three of these cases and
the only case left is (d1, d2) = (r/2, r/2).

In this case we have c1 = (r/2)σ+ (r/2)f + ξ for some ξ ∈ −E8. To deal
with this case we need to consider another orthogonal decomposition of the
lattice H2(X,Z)f . Namely, if {e1, . . . , e8} denotes the canonical basis of −E8

then we set σ′ = σ, f ′ = σ+f +e1, e′1 = e1 +2f and e′i = ei for i = 2, . . . , 8.
Then H′ = Zσ′ ⊕ Zf ′ is a hyperbolic plane and its orthogonal complement
in H2(X,Z)f is isometric to −E8 with canonical basis {e′1, . . . , e′8}. Let us
write c1 in this new decomposition as aσ′+bf ′+ξ′ for ξ′ ∈ −E8. Comparing
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the coefficients at σ we see that a + b = r/2. This reduces the problem to
the case already considered.

Similar but much simpler considerations lead to another proof of the
following reformulation of Kim’s theorem:

Theorem 2.9 ([Kim1, Theorem]). Let v = 2 + c1 + t%X ∈ H∗(X,Q) be
a rank 2 Mukai vector. Then there exists a divisor D such that for some
c′1 ∈ H2(X,Z)f we have v exp(D) = 2+ c′1 +0%X or v exp(D) = 2+ c′1 +%X .
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