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Summary. We prove that every locally nilpotent monomial k-derivation of k[X1, . . . ,Xn]
is triangular, whenever k is a ring of characteristic zero. A method of testing monomial
k-derivations for local nilpotency is also presented.

1. Introduction. Let A be a ring. A derivation on A is an additive
map D : A → A satisfying the Leibniz rule: D(ab) = aD(b) + bD(a) for all
a, b ∈ A. A derivation D on a ring A is called locally nilpotent if for every
a ∈ A there is an n ∈ N such that Dn(a) = 0. If A = k[X1, . . . ,Xn], where k
is a ring, then a derivation D is called a k-derivation if D is a k-linear map
(in other words D(c) = 0 for all c ∈ k). A k-derivation D on k[X1, . . . ,Xn] is
called triangular (resp. monomial) if D(Xi) ∈ k[X1, . . . ,Xi−1] (resp. D(Xi)
is a monomial).

Locally nilpotent k-derivations on the ring k[X1, . . . ,Xn] play an impor-
tant role in the study of several famous problems. The Cancellation Problem,
Hilbert’s 14th Problem, the Linearization Problems, the Abyankar–Sathaye
Conjecture and the Jacobian Conjecture are a few examples. For more com-
ments and references see e.g. [4].

In this note we prove the following:

Theorem 1. Let k be an integral ring of characteristic zero. Then ev-
ery locally nilpotent monomial k-derivation on k[X1, . . . ,Xn] is triangular
(possibly after a permutation of variables).

As an application, we can rephrase the following theorem of Maubach,
in which k is assumed to be a field of characteristic zero.
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Theorem 2 ([2, Corollary 3.4]). Triangular monomial derivations on
A = k[X1,X2,X3,X4] have kernel generated by at most four elements.

Theorem 2 can be written in the following form:

Theorem 3. Locally nilpotent monomial derivations on A = k[X1,X2,
X3,X4] have kernel generated by at most four elements.

By Theorem 1 we also have the following:

Corollary 4. Let D be a monomial k-derivation on k[X1, . . . ,Xn],
where k is an integral ring of characteristic zero. Then D is locally nilpotent
if and only if D is triangular (possibly after a permutation of variables).

This gives a very easy way to check if a given monomial k-derivation on
k[X1, . . . ,Xn] is locally nilpotent. This also provides an answer to a question
of Arno van den Essen (so-called Nilpotency Problem).

2. Degree function associated with a locally nilpotent deriva-
tion. Let D be a fixed locally nilpotent derivation on an integral ring A of
characteristic zero (not necessarily equal to k[X1, . . . ,Xn]). Put

Ad = { a ∈ A | D(a) ∈ Ad−1 }, d ≥ 1,

A0 = { a ∈ A | D(a) = 0 },
A−∞ = {0}.

Notice that, for d ∈ N, f ∈ Ad if and only if Dd+1(f) = 0. Thus Ad ⊂ Ad+1
for all d, and ⋃

d∈N
Ad = A,

since D is locally nilpotent. Thus we can define the following function:

degD : A 3 f 7→ min{d ∈ N ∪ {−∞} | f ∈ Ad} ∈ N ∪ {−∞}.
This function has the following usual properties of degree functions (cf. [1]
or [3, Proposition 6.1.1]):

degD(f · g) = degD f + degD g,(1)

degD(f + g) ≤ max{degD f,degD g},(2)

if degD f 6= degD g, then degD(f + g) = max{degD f,degD g}.(3)

Besides these usual properties the definition of degD yields

degD(D(f)) = degD f − 1(4)

for all f ∈ A \ A0.



Locally Nilpotent Monomial Derivations 121

3. Proof of Theorem. Let D be any locally nilpotent monomial
k-derivation on k[X1, . . . ,Xn], say

D = c1X
α1

∂

∂X1
+ · · ·+ cnX

αn ∂

∂Xn
,(5)

where c1, . . . , cn ∈ k, αi = (αi,1, . . . , αi,n) and Xαi = X
αi,1
1 · · ·Xαi,n

n . Let
degD be the associated degree function. Rearranging variables if necessary,
we can assume that

degDX1 ≤ · · · ≤ degDXn.(6)

Let i ∈ {1, . . . , n}. We can assume that Xi 6∈ A0 (otherwise D(Xi) ∈
k[X1, . . . ,Xi−1]). By (5) and (1) we have

degD(D(Xi)) = αi,1 · degDX1 + · · ·+ αi,n · degDXn.(7)

But, by (4), we also have

degD(D(Xi)) = degDXi − 1.(8)

From (7) and (8) we obtain

αi,1 · degDX1 + · · ·+ αi,n · degDXn = degDXi − 1.

Thus αi,j = 0 for i and j such that degDXi ≤ degDXj . In particular, by (6),
αi,j = 0 for j ≥ i. This means, by (5), that D(Xi) ∈ k[X1, . . . ,Xi−1].
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