Locally Nilpotent Monomial Derivations

by

Marek KARAŚ

Presented by Andrzej SCHINZEL

Summary. We prove that every locally nilpotent monomial k-derivation of $k[X_1, \ldots, X_n]$ is triangular, whenever k is a ring of characteristic zero. A method of testing monomial k-derivations for local nilpotency is also presented.

1. Introduction. Let A be a ring. A *derivation* on A is an additive map $D: A \to A$ satisfying the Leibniz rule: D(ab) = aD(b) + bD(a) for all $a, b \in A$. A derivation D on a ring A is called *locally nilpotent* if for every $a \in A$ there is an $n \in \mathbb{N}$ such that $D^n(a) = 0$. If $A = k[X_1, \ldots, X_n]$, where k is a ring, then a derivation D is called a k-*derivation* if D is a k-linear map (in other words D(c) = 0 for all $c \in k$). A k-derivation D on $k[X_1, \ldots, X_n]$ is called *triangular* (resp. *monomial*) if $D(X_i) \in k[X_1, \ldots, X_{i-1}]$ (resp. $D(X_i)$ is a monomial).

Locally nilpotent k-derivations on the ring $k[X_1, \ldots, X_n]$ play an important role in the study of several famous problems. The Cancellation Problem, Hilbert's 14th Problem, the Linearization Problems, the Abyankar–Sathaye Conjecture and the Jacobian Conjecture are a few examples. For more comments and references see e.g. [4].

In this note we prove the following:

THEOREM 1. Let k be an integral ring of characteristic zero. Then every locally nilpotent monomial k-derivation on $k[X_1, \ldots, X_n]$ is triangular (possibly after a permutation of variables).

As an application, we can rephrase the following theorem of Maubach, in which k is assumed to be a field of characteristic zero.

²⁰⁰⁰ Mathematics Subject Classification: 13N15, 13M10.

Key words and phrases: locally nilpotent derivation, monomial derivation.

The author is pleased to thank the Vrije Universiteit for its hospitality. He also acknowledges the support of European Network RAAG, Contract HPRN-CT-2001-00271.

THEOREM 2 ([2, Corollary 3.4]). Triangular monomial derivations on $A = k[X_1, X_2, X_3, X_4]$ have kernel generated by at most four elements.

Theorem 2 can be written in the following form:

THEOREM 3. Locally nilpotent monomial derivations on $A = k[X_1, X_2, X_3, X_4]$ have kernel generated by at most four elements.

By Theorem 1 we also have the following:

COROLLARY 4. Let D be a monomial k-derivation on $k[X_1, \ldots, X_n]$, where k is an integral ring of characteristic zero. Then D is locally nilpotent if and only if D is triangular (possibly after a permutation of variables).

This gives a very easy way to check if a given monomial k-derivation on $k[X_1, \ldots, X_n]$ is locally nilpotent. This also provides an answer to a question of Arno van den Essen (so-called Nilpotency Problem).

2. Degree function associated with a locally nilpotent derivation. Let D be a fixed locally nilpotent derivation on an integral ring A of characteristic zero (not necessarily equal to $k[X_1, \ldots, X_n]$). Put

$$A_{d} = \{ a \in A \mid D(a) \in A_{d-1} \}, \quad d \ge 1,$$

$$A_{0} = \{ a \in A \mid D(a) = 0 \},$$

$$A_{-\infty} = \{ 0 \}.$$

Notice that, for $d \in \mathbb{N}$, $f \in A_d$ if and only if $D^{d+1}(f) = 0$. Thus $A_d \subset A_{d+1}$ for all d, and

$$\bigcup_{d\in\mathbb{N}}A_d=A$$

since D is locally nilpotent. Thus we can define the following function:

 $\deg_D : A \ni f \mapsto \min\{d \in \mathbb{N} \cup \{-\infty\} \mid f \in A_d\} \in \mathbb{N} \cup \{-\infty\}.$

This function has the following usual properties of degree functions (cf. [1] or [3, Proposition 6.1.1]):

(1) $\deg_D(f \cdot g) = \deg_D f + \deg_D g,$

(2)
$$\deg_D(f+g) \le \max\{\deg_D f, \deg_D g\},\$$

(3) if
$$\deg_D f \neq \deg_D g$$
, then $\deg D(f+g) = \max\{\deg_D f, \deg_D g\}.$

Besides these usual properties the definition of \deg_D yields

(4)
$$\deg_D(D(f)) = \deg_D f - 1$$

for all $f \in A \setminus A_0$.

3. Proof of Theorem. Let D be any locally nilpotent monomial k-derivation on $k[X_1, \ldots, X_n]$, say

(5)
$$D = c_1 X^{\alpha_1} \frac{\partial}{\partial X_1} + \dots + c_n X^{\alpha_n} \frac{\partial}{\partial X_n},$$

where $c_1, \ldots, c_n \in k$, $\alpha_i = (\alpha_{i,1}, \ldots, \alpha_{i,n})$ and $X^{\alpha_i} = X_1^{\alpha_{i,1}} \cdots X_n^{\alpha_{i,n}}$. Let \deg_D be the associated degree function. Rearranging variables if necessary, we can assume that

(6)
$$\deg_D X_1 \le \dots \le \deg_D X_n$$

Let $i \in \{1, \ldots, n\}$. We can assume that $X_i \notin A_0$ (otherwise $D(X_i) \in k[X_1, \ldots, X_{i-1}]$). By (5) and (1) we have

(7)
$$\deg_D(D(X_i)) = \alpha_{i,1} \cdot \deg_D X_1 + \dots + \alpha_{i,n} \cdot \deg_D X_n.$$

But, by (4), we also have

(8)
$$\deg_D(D(X_i)) = \deg_D X_i - 1.$$

From (7) and (8) we obtain

$$\alpha_{i,1} \cdot \deg_D X_1 + \dots + \alpha_{i,n} \cdot \deg_D X_n = \deg_D X_i - 1.$$

Thus $\alpha_{i,j} = 0$ for i and j such that $\deg_D X_i \leq \deg_D X_j$. In particular, by (6), $\alpha_{i,j} = 0$ for $j \geq i$. This means, by (5), that $D(X_i) \in k[X_1, \ldots, X_{i-1}]$.

References

- M. Ferrero, Y. Lequain and A. Nowicki, A note on locally nilpotent derivations, J. Pure Appl. Algebra 79 (1992), 45–50.
- [2] S. Maubach, Triangular monomial derivation on $k[X_1, X_2, X_3, X_4]$ has kernel generated by at most four elements, ibid. 153 (2000), 165–170.
- [3] A. Nowicki, Polynomial Derivations and their Rings of Constants, Univ. of Toruń, 1994.
- [4] P. van Rossum, Tackling Problems on Affine Space with Locally Nilpotent Derivation on Polynomial Rings, PhD thesis, Nijmegen Univ., 2001.

Marek Karaś	Current address:
Institute of Mathematics	Division of Mathematics and Computer Sciences
Jagiellonian University	Faculty of Sciences
Reymonta 4	Vrije Universiteit
30-059 Kraków, Poland	De Boelelaan 1081 A
E-mail: karas@im.uj.edu.pl	1081 HV Amsterdam, The Netherlands