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Summary. We prove an abstract version of the Kuratowski extension theorem for Borel
measurable maps of a given class. It enables us to deduce and improve its nonseparable
version due to Hansell. We also study the ranges of not necessarily injective Borel bimea-
surable maps f and show that some control on the relative classes of preimages and images
of Borel sets under f enables one to get a bound on the absolute class of the range of f .
This seems to be of some interest even within separable spaces.

1. Introduction. The main aim of this note is to give new results on the
absolute Borel classes of the ranges of Borel bimeasurable (not necessarily
injective) maps between metric spaces. The main tool is the characterization
of spaces of absolute Borel class by means of complete sequences of covers,
which was given in [10, Theorem 2.2] and also in [8, Theorems 2.5 and 3.8]
for a more general setting.

An abstract version of the Kuratowski extension theorem is proved that
can be applied to classes of Borel sets. We improve the results obtained by
Hansell for maps between nonseparable metric spaces. Hansell generalized
classical theorems of Kuratowski on extension of Borel measurable maps [2,
Theorem 9], on extension of Borel isomorphisms [2, Theorem 10], and on
absolute Borel classes of images of Borel isomorphisms [2, Theorem 11]. He
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left open the cases of limit Borel classes. Our method of proof includes the
limit cases as well.

We give the corresponding results also for scattered-Borel sets, a family
of sets which coincides with the family of extended Borel, or equivalently
bi-Suslin, sets in complete metric spaces and which was introduced and
studied by Hansell.

We deal with one possible hierarchy of multiplicative and additive classes
Ms

α and Asα of scattered-Borel sets. Let us point out that in the mostly stud-
ied cases of Borel classes with α < ω1 in metric spaces, the corresponding
classes of Borel and scattered-Borel sets coincide. Moreover, the extended
hierarchy, which can be arbitrarily long, exhausts all extended Borel sets of
Hansell in metric spaces and all scattered-Borel sets in topological spaces.
The choice of the hierarchy for α ≥ ω1, or of the entire hierarchy in topo-
logical spaces, is not the only natural one. However, one may notice that
our results give some information also for other natural hierarchies (cf., e.g.,
Remark 3.4 below).

2. Notation and some basic facts. The families of open, or closed,
sets of a topological space X are denoted by G = G(X), or F = F(X),
respectively.

Let S and T be families of subsets of X. We use S ∧ T to denote the
family {S ∩ T : S ∈ S, T ∈ T }.

A pairwise disjoint family S of subsets of X is scattered if each nonempty
subfamily T ⊂ S contains a T ∈ T which is relatively open in

⋃ T . We
use later without further reference the easy fact (see, e.g., [5]) that S is
scattered if and only if there is a well-ordering of elements of S such that
S = {Sα : α < κ} and there are open sets Gα, α < κ, such that the indexed
family {Gα : α < κ} is increasing and Sα ⊂ Gα \

⋃
β<αGβ for α < κ. It

follows immediately (see [5, Lemma 2.3]) that if S is a scattered family,
then there is an Ŝ ∈ F ∧ G for every S ∈ S such that S ⊂ Ŝ and the family
{Ŝ : S ∈ S} is scattered.

It is not difficult to check that the family S ∧ T is scattered if both S
and T are scattered families of subsets of a topological space.

The sets which can be described as unions of scattered subfamilies of
F(X) ∧ G(X) (we also write (F ∧ G)(X)) are called H-sets and the family
of all H-sets in X is denoted by H = H(X). It is well known that H(X) is
an algebra (see, e.g., [9, Theorem 1, §12, VI]).

The family of all results of the Suslin operation applied to elements of a
family T of subsets of a given set is denoted by S(T ).

The elements of S(F(X)) are called Suslin and a metric space is absolute
Suslin (with respect to metric spaces) if it is Suslin in its completion.
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A Tikhonov space is called absolute S(H) if it is S(H) in some com-
pactification, or equivalently, in every Tikhonov space in which it is embed-
ded (see, e.g., [4, 6.14]). It was shown in [6, Theorem 3(b)] that absolute
S(H) spaces coincide with the scattered-K-analytic spaces, called originally
almost-K-descriptive by Hansell who introduced them. Let us recall that
metrizable scattered-K-analytic spaces are absolute Suslin as every H-set is
a Suslin set in any metrizable space.

We refer further to the following results on additive families. A family S
is called L-additive if

⋃ T ∈ L for every nonempty T ⊂ S.
The family S is a refinement of T if

⋃S =
⋃ T and if, for every S ∈ S,

there is a T ∈ T such that S ⊂ T .
The family S is a network of T if every T ∈ T is the union of the family

{S ∈ S : S ⊂ T}.
It was shown in [1, Theorem 2] (taking into account [6, Theorem 3(b)])

that any pairwise disjoint S(F)-additive family in a complete metric space
has a σ-discrete, and thus also a σ-scattered, network.

It was shown in [7, Theorem 2(a)] that any pairwise disjoint S(H)-
additive family in a compact space has a σ-scattered network if the cardi-
nality of the family is nonmeasurable (i.e., there is no nontrivial two-valued
probability measure on the corresponding cardinal).

We use B = B(X) to denote the family of Borel subsets of X. The
smallest σ-field containing B(X) and closed under taking unions of scat-
tered subfamilies is denoted by Bs = Bs(X) here and its elements are called
scattered-Borel sets. In a metric space, scattered-Borel sets are just the “ex-
tended Borel sets” of [3]. Indeed, the family of extended Borel sets (the
smallest σ-algebra closed under discrete unions) is a subfamily of Bs. If S
is a scattered family of extended-Borel sets, then there is a well-ordering
of elements of S such that S = {Bα : α < κ} and there are open sets
Gα, α < κ, such that the indexed family {Gα : α < κ} is increasing
and Bα ⊂ Gα \

⋃
β<αGβ for α < κ. Let V =

⋃
n∈N Vn be a base for the

topology of the metric space such that each Vn is discrete. Then the family
{V ∩Bα : α < κ, n ∈ N, V ∈ Vn, V ⊂ Gα} forms a σ-discrete refinement of
S by extended Borel sets. Hence the family of extended Borel sets is closed
under scattered unions and coincides with the family of scattered-Borel sets.

Given a family L of subsets of X, the symbols Ls, Lσ, Lδ, and Lc stand
for the families of all scattered unions, countable unions, countable intersec-
tions, and complements of elements of L, respectively. Note that, e.g., Lsσ
consists of the unions of all σ-scattered subfamilies of L.

Let Aα and Mα, 0 ≤ α < ω1, stand for the additive and multiplicative
classes of Borel sets, respectively. We introduce a hierarchy of scattered-
Borel sets. Let As1 = Hσ and Ms

1 = Hδ. Then we introduce the additive,
and multiplicative, classes for α > 1 by Asα = (

⋃
β<αMs

β)sσ and Ms
α =
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(
⋃
β<αAsβ)δ, respectively. We use here the notation As0 = A0 = G and

Ms
0 = M0 = F . In metric spaces, for 1 ≤ α < ω1, the above additive

and multiplicative classes coincide with the standard Borel classes. On the
other hand, for α ≥ ω1, the classesMs

α and Asα may not be complementary,
which causes some troubles. The reason for this choice of the hierarchy is
the possibility to describe the absolute multiplicative classes by complete
sequences of covers. For more information see [8].

Let us say that a map f of a topological space X to a topological space
Y is (scattered -) Borel measurable of class α if the preimages of sets of
additive, or multiplicative, class γ are of additive, or multiplicative, class
α + γ, respectively. In metrizable spaces for α < ω1 it is equivalent to say
that the preimages of open sets are (scattered-) Borel sets of additive class α.
If f is a map of X to a topological space Y and L is a family of subsets of X,
we say that f is L-measurable if f−1(G(Y ))(= {f−1(G) : G ∈ G(Y )}) ⊂ L.
We explain in Lemma 2.3 the relation of this and the previously defined
measurability of maps even for higher classes of scattered-Borel sets.

A bijective map f between topological spaces X and Y is called a (scat-
tered -) Borel isomorphism of class (α, β) if f is (scattered-) Borel measurable
of class α and f−1 is (scattered-) Borel measurable of class β.

Let us sum up a few properties of the introduced hierarchies of scattered-
Borel sets that we need in what follows. They are quite straightforward and
most of them can be found, e.g., in [8, Lemma 1.5].

Lemma 2.1. (a) The family of all scattered-Borel sets in a space can be
described by the additive and multiplicative classes as follows:

Bs =
⋃

α<κ

Asα =
⋃

α<κ

Ms
α

for sufficiently large ordinals κ.
(b) The classes Asα and Ms

α are closed under finite unions and finite
intersections.

(c) The following relations hold :

Ms
α ∪ Asα ⊂Ms

α+1 ∩ Asα+1, Asαc ⊂Ms
α+1 for α ≥ 0,

Ms
αc ⊂Ms

ασ ⊂ Asα+1 for α > 0.

(d) The classes Asα are closed under scattered unions for α > 0.
(e) The classes Ms

α are closed under scattered unions if α > 0 is non-
limit or if α ∈ (0, ω1).

(f) If α < ω1, then Asαc =Ms
α.

Proof. The inclusionMs
αc ⊂Ms

ασ in (c) was not stated in [8] explicitly.
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Notice however that

Ms
αc =

( ⋃

β<α

Asβ
)
δc

=
( ⋃

β<α

Asβc
)
σ
⊂Ms

ασ

since Asβc ⊂Ms
β+1 ⊂Ms

α for β < α.
To verify (e), let Ma =

⋂
n∈NA

a
n, a ∈ I, for some Aan ∈ Asβn , 1 ≤ βn <

α < ω1, or Aan ∈ H, and let the family {Ma : a ∈ I} be scattered. Then
⋃

a∈I
Ma =

⋂

n∈N

⋃

β<α

⋃
{Aan ∩ M̂a : Aan ∈ Asβ}.

Here {M̂a : a ∈ I} is a scattered family of elements of F ∧G with Ma ⊂ M̂a

for a ∈ I. Using the fact that the additive classes are closed under both
scattered and countable unions, we deduce that

⋃
a∈IMa ∈Ms

α.
If α is nonlimit, the argument is still simpler as we may use a single

β < α in the description, namely the one with β + 1 = α.
It remains to prove (f). The equalities As0c =Ms

0 and As1c =Ms
1 follow

easily from the definitions and the fact that H is an algebra. If α ∈ (1, ω1),
then

Ms
α =

( ⋃

β<α

Asβ
)
δ

=
( ⋃

β<α

Ms
βc

)
δ

=
( ⋃

β<α

Ms
β

)
σc

= Asαc,

where we used the induction hypothesis and the just proved fact that Ms
β

is closed under scattered unions for β < ω1.

We need a lemma on measurability of σ-scattered refinements:

Lemma 2.2. Let L be a family of subsets of a topological space X which
is closed under finite intersections and contains (F∧G)(X). Let S ⊂ L have
a σ-scattered refinement. Then there is a σ-scattered refinement T of S with
T ⊂ L.

Proof. Let R =
⋃
n∈NRn be a refinement of S with each Rn scattered.

We find for each n ∈ N and R ∈ Rn a set R̂ ∈ (F ∧ G)(X) such that
the family {R̂ : R ∈ Rn} is still scattered and R ⊂ R̂ for R ∈ Rn. Fix
now for every R ∈ R one choice of an S(R) ∈ S such that R ⊂ S(R)
and put T = {R̂ ∩ S(R) : R ∈ R}. The family T is σ-scattered because⋃
n∈N{R̂ : R ∈ Rn} is σ-scattered. Since

⋃R =
⋃S and

⋃R ⊂ ⋃ T ⊂ ⋃S,
we have

⋃ T =
⋃S, and finally, T is a refinement of S since each T ∈ T is

of the form T = R̂ ∩ S(R) ⊂ S(R) for an S(R) ∈ S.

The classes of scattered-Borel sets are produced, besides the set-theor-
etical operations of countable union and countable intersection, by using the
topological operation of taking unions of scattered families, but f−1(S) need
not be scattered for scattered families S unless some additional assumptions
on f are imposed. However, we get the following statement.
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Lemma 2.3. (a) Let f be an Asα-measurable map of a topological space
X to a metric space M and let the family f−1(G(M)) have a σ-
scattered network. Then f−1(S) has a σ-scattered network for every
scattered family S in M and f is scattered-Borel measurable of class
α+ 1. If α < ω1, then f is of class α.

(b) Let f : X → Y be a map between topological spaces such that f−1(S)
has a σ-scattered network for every scattered family S in Y , and sup-
pose that f is Asα-measurable. Then f is scattered-Borel measurable
of class α+ 3. If moreover α < ω1, then f is of class α.

Proof. (a) Let S be any scattered family in M . Then there is some
well-ordering of elements of S such that S = {Sα : α < κ} and there is an
increasing family of open sets Gα, α < κ, such that Sα ⊂ Gα \

⋃
β<αGβ . Let

V =
⋃
n∈N Vn be a network of f−1(G(M)) such that each Vn is scattered.

It is not difficult to verify that the family {f−1(Sα) ∩ V : α < κ, n ∈ N,
V ∈ Vn, V ⊂ f−1(Gα)} is a σ-scattered network of {f−1(S) : S ∈ S}. Notice
that for each V ∈ V the intersection f−1(Sα) ∩ V is nonempty for at most
one α.

Also f−1(F) ⊂ Asαc ⊂ Ms
α+1, and if α < ω1, then Asαc = Ms

α by
Lemma 2.1(f).

Proceeding now by transfinite induction we prove that preimages of sets
of additive, or multiplicative, class γ are of class α + 1 + γ (and α + γ
if α < ω1). When investigating the unions of preimages of elements of a
scattered family of sets of a given multiplicative class γ, we use the existence
of a σ-scattered network which we may find by the induction hypothesis and
by Lemma 2.2 in the corresponding multiplicative class α+ 1 + γ.

(b) The elements of f−1(As1) belong to (Asα ∧Asαc)sσ ⊂ Asα+2, and those
of f−1(Ms

1) to (Asα+2)c ⊂ Ms
α+3. If α < ω1 then we have (Asα ∩ Asαc)sσ =

(Asα ∩Ms
α)sσ ⊂ Asα+1 and also (Asα+1)c = Ms

α+1 by Lemma 2.1(f) again.
We conclude the proof by induction as in (a).

We now state a lemma on the graph of a measurable map. The main
examples of the families A and A∗ are the additive classes of (scattered-)
Borel sets in X and in X ×M , respectively.

Lemma 2.4. Let A be a family of subsets of a topological space X which
contains (F ∧ G)(X) and which is closed under finite intersections and σ-
scattered unions. Assume that a map f of X to a metric space (M,%) is
A-measurable and that f−1(G(M)) has a σ-scattered network.

(a) Setting g : x 7→ (x, f(x)) we have g−1(G(X × M)) ⊂ A and the
family g−1(S) has a σ-scattered network for every scattered family
S in X ×M .
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(b) The graph of f belongs to A∗c ∩ A∗δ , where A∗ is the smallest fam-
ily containing A × G(M) and (F ∧ G)(X ×M), closed under finite
intersections and σ-scattered unions.

Proof. (a) Let V =
⋃
n∈N Vn be a base of the topology of M such that

each Vn is discrete (and thus pairwise disjoint).
Let Nn be a σ-scattered network of f−1(Vn) consisting of elements of A,

which exists by Lemma 2.2. Now N =
⋃
n∈NNn is a σ-scattered network for

f−1(G(M)) by sets from A.
Every open set G ⊂ X × M equals

⋃
V ∈V(UV × V ), where UV is the

maximal open set such that UV × V ⊂ G. Then

g−1(G) =
⋃

n∈N

⋃

V ∈Vn

⋃

N∈NV
(UV ∩N),

where NV = {N ∈ N : N ⊂ f−1(V )}. Note that the families NV ⊂ N that
correspond to distinct elements V of Vn for a fixed n ∈ N are disjoint. It
follows that g−1(G) ∈ Asσ = A as it is the union of a σ-scattered family of
elements of A.

It remains to investigate g−1(S) for S scattered in X × M . Without
loss of generality we may suppose that S is the family of differences Sα =
Gα \

⋃
β<αGβ, α < κ, for some increasing family of open sets (indexed by

ordinals α < κ). Let Uα
V be the maximal open set such that Uα

V × V ⊂ Gα
for V ∈ V. Then the family of (Uα

V × V ) ∩ Sα with V ∈ V is a refinement
of S. It is now sufficient to prove that for every n ∈ N the family

{g−1((UαV × V ) ∩ Sα) : V ∈ Vn, α < κ}
has a σ-scattered network. We have

g−1((UαV × V ) ∩ Sα) ⊂ f−1(V ) ∩
(
UαV \

⋃

β<α

UβV

)

for each V ∈ Vn and α < κ. Now, if Nn is a σ-scattered network for f−1(Vn)
and N ∈ Nn is nonempty, there is a uniquely determined V (N) ∈ Vn such
thatN ⊂ f−1(V (N)) as Vn is pairwise disjoint. Now the family {N∩(Uα

V (N)\⋃
β<α U

β
V (N)) : α < κ} is a scattered family of subsets of N for every N ∈ Nn

and so the family {N ∩(Uα
V \
⋃
β<α U

β
V ) : α < κ, N ∈ Nn} is also σ-scattered

and it is a network of{
f−1(V ) ∩

(
UαV \

⋃

β<α

UβV

)
: V ∈ Vn, α < κ

}
.

Since the latter family is pairwise disjoint, it is easy to observe that the
family {g−1((UαV × V )∩ Sα) : V ∈ Vn, α < κ} of respective subsets also has
a σ-scattered network.
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(b) The graph of f equals

G = {(x, y) ∈ X ×M : %(f(x), y) = 0}.
The map g∗ taking (x, y) to (x, y, f(x)) is a particular case of the map g
from (a) with X∗ = X×M in place of X, f∗(x, y) = f(x) in place of f , and
A∗ in place of A.

The projection map p : X ×M ×M → M ×M defined by p(x, y, z) =
(y, z) is continuous, as is the metric % : M ×M → R.

So the preimages of the open sets R \ {0} and (−1/k, 1/k), k ∈ N, under
% ◦ p ◦ g∗ are in A∗. As

G = (X ×M) \ (% ◦ p ◦ g∗)−1(R \ {0})
=
⋂

k∈N
(% ◦ p ◦ g∗)−1(−1/k, 1/k),

we conclude that G is both in A∗c and in A∗δ .

3. Extensions of measurable maps and isomorphisms. Let L be
a family of subsets of X which contains the empty set. The family S ⊂ L is
called L-hereditarily additive if

⋃ T ∈ L whenever T = {TS : S ∈ S} with
TS ⊂ S and TS ∈ L for S ∈ S.

Given A ⊂ X, we use L(A) to denote the family {L ∩ A : L ∈ L}. Note
that Lσ(A) = (L(A))σ.

The following proposition can be understood as an abstract form of the
Kuratowski extension theorem on Borel measurable maps. It may be of
some interest to note that if we limit ourselves just to the case of a separable
complete metric space M , our proof gives a proof of the Kuratowski theorem
by a simple reduction of the statements of the proposition to known results
on extensions of continuous maps.

Proposition 3.1. Let X be a nonempty set and L be an algebra of its
subsets. Assume that f : A→M is an Lσ(A)-measurable map of a subset A
of X into a complete metric space M . Suppose there are L-hereditarily addi-
tive and disjoint families Nn, n ∈ N, such that the family N =

⋃
n∈NNn(A)

is a network for f−1(G(M)). Then there is a set A∗ ∈ Lσδ with A ⊂ A∗ and
an Lσ(A∗)-measurable extension f∗ : A∗ →M of f . If the complement of A
belongs to Lσ, then we may require that A∗ = X.

Proof. We define L-hereditarily additive partitions N ∗n = Nn ∪ {X \⋃Nn}. For x ∈ X put q(x) = (Nn ∈ N ∗n : x ∈ Nn) ∈ P =
∏
n∈NN ∗n .

We consider each partition N ∗n endowed with the discrete topology and the
product space P with the corresponding metrizable product topology. So
it may be viewed as a completely metrizable subspace of the Baire space
B(κ) = κN if κ ≥ card(N ∗n) for every n ∈ N.
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For G open in P , we have

G =
⋃

k∈N

⋃

(N0
1 ,...,N

0
k )∈Sk

{(Nn) ∈ P : N1 = N0
1 , . . . , Nk = N0

k},

where the union is taken over a set Sk of k-tuples (N0
1 , . . . , N

0
k ) ∈∏k

i=1N ∗i ,
and so

q−1(G) =
⋃

k∈N

⋃

(N0
1 ,...,N

0
k )∈Sk

N0
1 ∩ · · · ∩N0

k .

By induction we now see that the families

{N0
1 ∩ · · · ∩N0

k : N0
1 ∈ N ∗1 , . . . , N0

k ∈ N ∗k }
are L-hereditarily additive and so L-additive.

Indeed, the familyN ∗1 is L-hereditarily additive by our assumptions. Sup-
pose the claim is true for k ∈ N and consider some sets M(N 0

1 , . . . , N
0
k+1) ⊂

N0
1 ∩ · · · ∩N0

k ∩N0
k+1 from L. Then for fixed (N0

1 , . . . , N
0
k ) ∈∏k

i=1N ∗i each
set

M(N0
1 , . . . , N

0
k ) =

⋃
{M(N0

1 , . . . , N
0
k , N

0
k+1) : N0

k+1 ∈ N ∗k+1}
is a subset of N0

1 ∩ · · · ∩ N0
k . It belongs to L since N ∗k+1 is L-hereditarily

additive. Now we use the induction hypothesis to get

⋃{
M(N0

1 , . . . , N
0
k+1) : (N0

1 , . . . , N
0
k+1) ∈

k+1∏

i=1

N ∗i
}
∈ L.

Thus the claim is proved. In particular, q−1(G) is in Lσ for every open G
and so q is Lσ-measurable.

Suppose that f(x1) 6= f(x2) for some x1, x2 ∈ A. This implies that there
is an open set U ⊂ M such that f(x1) ∈ U and f(x2) 6∈ U . So there are
n ∈ N and N ∈ Nn such that x1 ∈ N ∩ A ⊂ f−1(U) and x2 ∈ A \ (N ∩ A).
Thus x1 ∈ N , x2 6∈ N and so the sequences q(x1) and q(x2) differ in their
nth coordinates.

So we may define ϕ : B = q(A) → M by ϕ(y) = f(x) whenever x ∈
q−1(y) and y ∈ B. Then f = ϕ ◦ q on A.

Let G be any open subset of M . Then

ϕ−1(G) = q(f−1(G)) =
⋃
{q(N ∩A) : N ∈ N , N ∩ A ⊂ f−1(G)}(1)

by the definition of ϕ and since {N∩A : N ∈ N} is a network for f−1(G(M)).
We may now observe that q(N \ A) ∩ q(A \N) ⊂ q(N) ∩ q(X \N) = ∅

and therefore
q(N ∩A) = q(N) ∩ q(A) for N ∈ N .(2)

By (1) and (2), ϕ−1(G) = B ∩ ⋃{q(N) : N ∈ N , N ∩ A ⊂ f−1(G)}.
As q(N) = {(Nn) ∈ q(X) : Nk = N} for N ∈ Nk, the sets q(N) are clopen
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in q(X). This finally implies that ϕ−1(G) is an open set in B and thus the
map ϕ : B →M is continuous.

By [9, §35, I, Theorem 1], we may extend ϕ : B → M to a continuous
map ϕ∗ : B∗ →M defined on a Gδ set B∗ ⊂ P , B∗ ⊃ B.

As q is Lσ-measurable, f∗ = ϕ∗ ◦ q is an Lσ(A∗)-measurable extension
of f defined on the set A∗ = q−1(B∗) which belongs to Lσδ.

If moreover X \ A =
⋃
m∈N Lm with Lm ∈ L, then we form a sequence

Pk, k ∈ N, of L-hereditarily additive partitions of X consisting of all N ∗n ’s
and of all {Lm,X \ Lm}, m,n ∈ N. Defining q using the sequence (Pk)
instead of (N ∗n), we arrive at the same situation as above, and moreover
q(X) \ q(A) is open in q(X). So q(A) is closed in the space q(X) which has
covering dimension 0 and the map ϕ : B = q(A) → M may be extended
to a continuous map ϕ∗ : q(X) → M (see, e.g., [11]). Hence f ∗ = ϕ∗ ◦ q is
defined on X, and the last statement of the proposition is proved.

To derive extension theorems for measurable maps of (scattered-) Borel
classes, we formulate a topological version of the preceding result.

Proposition 3.2. Let X be a topological space and M be a completely
metrizable space. Suppose that M is a family of subsets of X such that

• F ∪ G ⊂M,
• M is closed under finite intersections,
• Mc ⊂Mσ.

Let A ⊂ X and f : A → M be an Mσ(A)-measurable map. If M is non-
separable, assume further that Ms =M and f−1(G(M)) has a σ-scattered
network. Then there is an A∗ ⊃ A inMσδ and an Mσ(A∗)-measurable map
f∗ : A∗ → M such that f∗�A = f . Moreover , if X \ A ∈ Mσ, then we may
require A∗ = X.

Proof. We verify the assumptions of Proposition 3.1 with a suitable al-
gebra L.

Let B =
⋃
k∈N Bk be an open base of the topology of M such that each

Bk is discrete (or contains at most one element if M is separable).
By our assumptions f−1(Bk) has a network Nk =

⋃
m∈NNk,m, where the

Nk,m are scattered if M is nonseparable (they can be chosen to be singletons
if M is separable).

For each N ∈ Nk,m there is a single B(N)∈Bk such that N⊂f−1(B(N)).
Since f−1(B(N)) ∈ Mσ(A), there are Mn(N) ∈ M such that f−1(B(N)) =⋃
n∈NMn(N) ∩A.

There are sets N̂ ∈ F∧G such that N ⊂ N̂ for N ∈ Nk,m and the families
{N̂ : N ∈ Nk,m} are scattered. Put N ∗k,m,n = {N̂ ∩Mn(N) : N ∈ Nk,m}.
Each N ∗k,m,n is scattered since {N̂ : N ∈ Nk,m} is scattered. As each element
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of N ∗k,m,n belongs toM, andM is closed under unions of scattered families
(or N ∗k,m,n is a singleton if M is separable), each N ∗k,m,n is M-hereditarily
additive. Since Mc ⊂ Mσ, each family N ∗k,m,n is L-hereditarily additive,
where L = Mσ ∩ Mσc. As {∅,X} ⊂ F ∧ G ⊂ M, L contains the empty
set. The family L is closed under complements by definition. Also, L is
closed under finite intersections (and unions) sinceM is closed under finite
intersections. So L is an algebra.

Finally, we have the inclusions

N̂ ∩Mn(N) ∩ A ⊂Mn(N) ∩A ⊂ f−1(B(N)),
⋃

n∈N
Mn(N) ⊃ N

which ensure that
⋃
k,m,n∈NN ∗k,m,n(A) is a σ-scattered network for f−1(B)

and thus also for f−1(G(M)), and all the assumptions of Proposition 3.1 are
verified.

As a corollary of the previous abstract results we get a theorem on the
hierarchies of scattered-Borel sets:

Theorem 3.3. Let A be a subset of a topological space X, M be a com-
plete metric space, and f : A → M be Asα(A)-measurable for an ordinal
α ≥ 1. Assume further that

(i) M is separable, or
(ii) A is a Suslin subset of a complete metric space, or

(iii) M has nonmeasurable weight and A is an absolute Suslin (H) space.

Then there is an extension f∗ : A∗ → M of f to A∗ ∈ Ms
α+1(X) such that

(f∗)−1(G(M)) ⊂ Asα(A∗). Moreover , if X \ A ∈ Asα, then we may require
A∗ = X.

Proof. Put M = (
⋃
β<αMs

β)s for α > 1 and M = H for α = 1.
Let us verify that M fulfils the assumption of Proposition 3.2. Clearly,

M contains F ∪G. It is closed under finite intersections, because the family
{A∩B : A ∈ A, B ∈ B} is scattered if both A and B are, and all the classes
considered are closed under finite intersections by Lemma 2.1.

Finally, note that Mσ = Aα by the definition, and Mc ⊂ Mσ by
Lemma 2.1.

If M is separable, Proposition 3.2 applies directly. So we may and will
investigate the other cases only.

Let B =
⋃
k∈N Bk be an open base for the topology of M with Bk discrete.

Suppose that A is Suslin in its metric completion. Then each f−1(Bk)
is disjoint and scattered-Borel-additive. As each scattered-Borel set in A is
Suslin in A, the family f−1(Bk) is Suslin-additive, and using [1, Theorem 2]
we find that it has a σ-discrete network Nk. Hence N =

⋃
k∈NNk is a

σ-discrete (and thus also σ-scattered) network of f−1(G(M)).
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If A is an absolute S(H)-space and the density of M is nonmeasurable,
then the cardinality of each Bk is nonmeasurable, and so is the cardinality
of each f−1(Bk). Being scattered-Borel-additive, the families f−1(Bk) are
Suslin(H)-additive and disjoint, and thus by [7] they have a σ-scattered
network.

Hence also in the other two cases Proposition 3.2 applies.

Remark 3.4. The same holds if we replaceAsα andMs
α+1 in the theorem

by (F ∧G)α and (F ∧G)α+1 for α odd and by (F ∨G)α and (F ∨G)α+1 for
α even, where the classes (F ∧ G)α and (F ∨ G)α are those defined in [8].
Proposition 3.2 can then be applied to the familyM = (

⋃
β<α(F ∨G)β)s for

α odd, and M = (
⋃
β<α(F ∧ G)β)s for α ≥ 2 even. Here F ∨ G = {F ∪G :

F ∈ F , G ∈ G}.
In the particular case of metrizable spaces, we get generalizations of the

Kuratowski and Hansell results. The next theorems extend the results of
Hansell [2, Theorems 9–11] as they include the case of limit classes. To get
the following theorem from Theorem 3.3, we only use the fact that Aα = Asα
and Mα =Ms

α for α < ω1 in metric spaces.

Theorem 3.5. Let f : A → M be a Borel measurable map of class
α < ω1 of the Suslin subset A of a complete metric space X to the complete
metric space M . Then there is an extension f∗ : A∗ → M that is Borel
measurable of class α such that A∗ is of multiplicative class α + 1 in X. If
M is Polish, then A can be an arbitrary subset of a topological space X.

Like in [9, §35, VII], as an immediate corollary we get a result on exten-
sion of isomorphisms:

Theorem 3.6. Let f : A → B be a Borel isomorphism of class (α, β),
α, β < ω1, of a Suslin subset of some complete metric space X onto a Suslin
subset of some complete metric space Y . Then there is a Borel isomorphism
f∗ : A∗ → B∗ of class (α, β) that extends f such that A∗ is Borel of multi-
plicative class α+β+1 in X, and B∗ is Borel of multiplicative class β+α+1
in Y .

Proof. Using Theorem 3.5, we get extensions f ′ : A′ → Y , with A′ of
multiplicative class α + 1, and (f−1)′ : B′ → X, with B′ of multiplicative
class β+1, of f and f−1, respectively. Consider the intersection of the graphs
of f ′ and (f−1)′. By Lemma 2.4(b), it is of multiplicative class β + 1 in the
graph of f ′, and by Lemma 2.4(a), its projection A∗ to X is of multiplicative
class α + β + 1 in A′. Hence A∗ is of multiplicative class α + β + 1 in X.
Similarly, B∗ is of multiplicative class β + α+ 1 in Y .

As another corollary of Theorem 3.5 we get an estimate on the class of
the range of a Borel isomorphism of a given class. Let us remark that in the
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next section on Borel bimeasurable maps we get another proof of the special
case of Borel isomorphisms of class (0, α) while we get a weaker result for
Borel isomorphisms of the other classes.

Theorem 3.7. Let f : X → Y be a Borel isomorphism of class (α, β),
α, β < ω1, of the absolute Mξ, ξ ≥ 1, metrizable space X onto the Suslin
subset Y of a complete metric space. Then Y is an absolute Mβ+max(ξ,α)
space.

Proof. Let X̂ be a metric completion of X and g be the Borel measurable
extension of class β of f−1 to an absolute Mβ+1 space Ŷ , which exists by
Theorem 3.5.

The graph of f is of multiplicative class α in X × Ŷ by Lemma 2.4(b),
and so of multiplicative class max(α, ξ) in X̂×Ŷ . The map ĝ : X → graph(g)
defined by ĝ(x) = (x, g(x)) is Borel measurable of class β by Lemma 2.4(a),
and so Y = ĝ−1(graph(f)) is of multiplicative class β+ max(α, ξ) in Ŷ and,
as ξ ≥ 1, also in a compactification of Ŷ . Using, e.g., [8, Theorems 2.5 and
3.8] this proves that Y is of absolute class Mβ+max(ξ,α).

Remark 3.8. Applying Theorem 3.3 to extensions of scattered-Borel
measurable isomorphisms of metric spaces as above, we obtainA∗ of class α+
1+β+1 and B∗ of class β+1+α+1 in general. Applying Theorem 3.3 to the
estimate of the absolute class of the range of a scattered-Borel measurable
map between metric spaces as above, we deduce that the range is of class
β + 1 + max(ξ, α+ 1) in general. Here we use part (a) of Lemma 2.3.

4. Ranges of bimeasurable maps. Let us say that a map f : X → Y
is (scattered -) Borel bimeasurable of class (α, β) if f is (scattered-) Borel
measurable of class α and takes sets of additive, or multiplicative, class γ to
sets of the corresponding, additive or multiplicative, class β + γ. In fact, in
some of the following statements, the assumption that f is (scattered-) Borel
measurable of class α is replaced by the, in general weaker, assumption that
f is Asα-measurable.

A Tikhonov topological space X is absolute Ms
α if it is inMs

α(Y ) when-
ever it is embedded in another Tikhonov space Y . Notice that for metric
spaces, belonging to an absolute class usually means to belong to the corre-
sponding class in the metric completion which is an absoluteM1 Tikhonov
space. The key fact used in the proof of the following proposition is a char-
acterization of absoluteMs

α spaces in terms of complete sequences of covers.
Let us therefore recall that a sequence of covers Cn, n ∈ N, of a topological
space X is complete if every filter U which intersects Cn for every n ∈ N
has an accumulation point, i.e.,

⋂{U : U ∈ U} 6= ∅. As in [8] we use the
fact that, in a regular Hausdorff space X, the sequence of covers Cn, n ∈ N,
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is complete if and only if given a (centered) sequence Cn ∈ Cn there is a
(nonempty) compact set K ⊂ X such that for every open U ⊃ K we have
C1 ∩ · · · ∩ Cn ⊂ U for n sufficiently large. The last property is abbreviated
by saying that the sequence C1 ∩ · · · ∩ Cn decreases to K.

Proposition 4.1. Let X be an absolute Ms
ξ Tikhonov space with ξ ≥ 2

or a completely metrizable space, and Y be Suslin in a complete metric space
(M,%). Let f : X → Y be a (scattered-) Borel bimeasurable surjection which
is Asα-measurable and takes sets of additive, or multiplicative, class γ to
sets of the corresponding , additive or multiplicative, class β + γ. Suppose
the family f−1(G(Y )) has a σ-scattered network. Then Y is an absolute Ms

η

space, where

(a) η = β + α+ max(ξ, α) if α < ω1,
(b) η = β + α+ 1 + max(ξ, α+ 1) if X is metrizable,
(c) η = β + α+ 3 + max(ξ, α+ 1) in general.

Proof. If X is an absolute Ms
1 space and f is a continuous open map,

then Y is absolute Ms
1 by [8, Proposition 4.5]. For metric spaces absolute

Ms
1 coincides with complete metrizability and the particular case is a result

of Hausdorff. So we may suppose further on that β + α+ ξ ≥ 2.
We are going to reduce the study to the case of α = 0, i.e., to continuous

bimeasurable maps only. So suppose first that α ≥ 1. The graph of f is

X∗ = {(x, y) ∈ X × Y : %(f(x), y) = 0} ∈ Asαc ∩Ms
α+1

in X×M by Lemma 2.4(b) with A = Asα. The family A∗ is then a subfamily
of Asα(X ×M). Thus X∗ is of class Ms

α(X ×M) in case (a), and it is of
class Ms

α+1(X ×M) in the other cases by Lemma 2.1.
Let f∗ denote the projection map of X × Y onto Y restricted to X∗.

We are going to show that it is a scattered-Borel bimeasurable map of X∗

onto Y of a specified class. To do this we begin with some preliminary
considerations.

Let B =
⋃
n∈N Bn be a base of the topology of Y such that Bn is discrete

for n ∈ N. Let Nn be a σ-scattered network of f−1(Bn), which exists by our
assumptions. By Lemma 2.2 we may find a σ-scattered refinement N ∗n of
f−1(Bn) consisting of elements of Asα(X). As f−1(Bn) is disjoint, N ∗n is a
network of f−1(Bn) and N ∗ =

⋃
n∈NN ∗n ⊂ Asα is a σ-scattered network of

f−1(G(Y )).
Define now a map h by h(x) = (x, f(x)). By Lemmas 2.4(a) and 2.3,

h is a scattered-Borel measurable map of class α in case (a), of class α + 1
in case (b), and of class α+ 3 in case (c).

Thus f∗ = f ◦h−1 maps sets of additive or multiplicative class γ to sets of
the corresponding, additive or multiplicative, class β∗+γ, where β∗ = β+α
in case (a), β∗ = β + α+ 1 in case (b), and β∗ = β + α+ 3 in case (c).
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So f∗ is a (0, β∗)-bimeasurable map of an absolute Ms
ξ∗ space X∗ onto

a Suslin subset Y of the complete metric space M , where ξ∗ = max(ξ, α) in
case (a) and ξ∗ = max(ξ, α+ 1) in the other two cases. Hence it is sufficient
to prove the statement of the theorem for α = 0 and β + ξ ≥ 2.

By [8, Theorem 3.8] or, e.g., by [10, Theorem 2.0] for the complete metric
case, there is a complete sequence (Cn : n ∈ N) of σ-scattered covers of X
and a nondecreasing sequence of ordinals ξn < ξ such that Cn ⊂ Asξn(X)
and β + ξn ≥ 1.

We are going to find σ-scattered partitionsRn of Y and maps Cn : Rn →
Cn such that Rn ⊂ Asβ+ξn in Y , Rn+1 refines Rn and for Rn ∈ Rn, and the
unique sequence of Ri ∈ Ri, i = 1, . . . , n− 1, with R1 ⊃ · · · ⊃ Rn, we have
Rn ⊂ f((C1(R1) ∩ · · · ∩ Cn(Rn)).

We put C0 = {X}, R0 = {Y }, C0(Y ) = X and proceed by induction
over n = 0, 1, . . . . Suppose Ri, Ci are already found for i = 0, . . . , n. Fix
an Rn ∈ Rn (and thus also Ri ∈ Ri, i ≤ n, such that R1 ⊃ · · · ⊃ Rn) and
consider the σ-scattered family

Cn+1(Rn) = {C0(R0) ∩ · · · ∩ Cn(Rn) ∩ C : C ∈ Cn+1}.
Let < be a well-ordering of Cn+1(Rn).

Define

Dn+1(C) = f(C) \
⋃
{f(C ′) : C ′ < C, C ′ ∈ Cn+1(Rn)}

for C ∈ Cn+1(Rn) and note that Dn+1(C) = f(C<), where

C< = C \ f−1
(
f
(⋃
{C ′ : C ′ < C}

))
.

Recall that f is (0, β)-bimeasurable and Cn+1(Rn) is Asξn+1
-additive in X.

Thus f−1(f(
⋃{C ′ : C ′ < C})) ∈ Asβ+ξn+1

. As C ∈ Asξn+1
and Asξn+1

∪
(Asβ+ξn+1

)c ⊂ Ms
β+ξn+1+1 ⊂ Asβ+ξn+1+2 by Lemma 2.1, we have C< ∈

Asβ+ξn+1+2. The family C<(Rn) = {C< : C ∈ Cn+1(Rn)} is σ-scattered
and so Asβ+ξn+1+2-additive. By our assumptions

Dn+1(Rn) = {Dn+1(C) : C ∈ Cn+1(Rn)}=f(C<n+1(Rn)) ⊂ Asβ+β+ξn+1+2(Y )

and so it is a disjoint Suslin-additive family in M . By [1, Theorem 2] there
is a σ-discrete refinement En+1(Rn) of Dn+1(Rn). Consequently, En+1(Rn)
is a σ-discrete refinement of f(Cn+1(Rn)).

For every E ∈ En+1(Rn) choose a C(E) ∈ Cn+1(Rn) such that E ⊂
f(C(E)). As f(C(E)) ∈ Asβ+ξn+1

(Y ), there is a σ-scattered family {Ea : a ∈
A(E)} ⊂ H ∪⋃γ<β+ξn+1

Ms
γ in Y (as β + ξn+1 ≥ 1) such that f(C(E)) =⋃{Ea : a ∈ A(E)}. Thus

Tn+1(Rn) = {Ea ∩ E : E ∈ En+1(Rn), a ∈ A(E)}
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is a σ-scattered refinement of the family f(Cn+1(Rn)) with elements in H∪⋃
γ<β+ξn+1

Ms
γ . Using now, e.g., [8, Lemma 3.2(b)], we infer that there is a

pairwise disjoint σ-scattered family Rn+1(Rn) which refines Tn+1(Rn) and
consists of elements of H ∪ ⋃γ<β+ξn+1

Ms
γ (note that Ms

0 = H in [8]).
Lemma 2.1 now ensures that Rn+1(Rn) ⊂ Asβ+ξn+1

(Y ).

Put Rn+1 =
⋃{Rn+1 ∩ Rn : Rn+1 ∈ Rn+1(Rn), Rn ∈ Rn}. Obviously,

Rn+1 ⊂ Asβ+ξn+1
(Y ) since Rn ∈ Asβ+ξn(Y ) and ξn ≤ ξn+1. As each {Rn ∩

Rn+1 : Rn+1 ∈ Rn+1(Rn)} is a σ-scattered partition of Rn, Rn+1 is a σ-
scattered partition of Y . For every Rn+1 ∈ Rn+1 we choose a Cn+1 ∈ Cn+1
such that Rn+1 ⊂ f(C1(R1) ∩ · · · ∩ Cn+1(Rn+1)), where Ri ∈ Ri for i =
1, . . . , n and R1 ⊃ · · · ⊃ Rn+1.

Finally, we show that the sequence (Rn : n ∈ N) is complete. Let Rn ∈
Rn be a centered sequence. Let Cn = Cn(Rn). By the properties of the
maps Cn, the sequence of sets Cn is centered. By the completeness of (Cn :
n ∈ N), the sequence of sets C1 ∩ · · · ∩ Cn, n ∈ N, decreases to a (nonempty)
compact set K. As f is continuous, the sequence f(C1 ∩ · · · ∩ Cn), n ∈ N,
decreases to the (nonempty) compact set f(K). Using the regularity of Y , we
see that also (f(C1 ∩ · · · ∩ Cn) : n ∈ N) decreases to f(K) and the sequence
of covers Rn is complete.

Remark 4.2. If X is metrizable, ξ = 2 and f is bimeasurable of class
(1, 0), then we find that f(X) is absoluteMs

3. The Kuratowski and Hansell
theorems give lower classes of the range if f is a Borel isomorphism in this
and other cases with α > 0.

Remark 4.3. We did not use the existence of the σ-scattered network
of f−1(G(Y )) in the case α = 0, but our assumption did not weaken the the-
orem because the disjoint families f−1(Bn) are open and thus also scattered
in this case. (The notation Bn was introduced in the above proof.)

Finally, we formulate the corollaries concerning images of a metric space
X and of a topological space X of given absolute multiplicative classes.

Theorem 4.4. Let f : X → Y be a scattered-Borel bimeasurable surjec-
tion of class (α, β) for some α, β ≥ 0 and let Y be an absolute Suslin metric
space. If X is an absoluteMs

ξ metric space for some ξ ≥ 1, then Y is absolute
Ms

η, where η = β+α+max(ξ, α) if α < ω1 and η = β+α+1+max(ξ, α+1)
if α ≥ ω1.

Proof. Since X is an absoluteMs
ξ metric space, it is absolute Suslin. The

family f−1(G(Y )) has a σ-discrete network by the existence of a σ-discrete
base in Y and the Hansell theorem [1, Theorem 2] for preimages of its
elements. Now we may apply Proposition 4.1.
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Let us remark that if X is separable, then Y is analytic and so absolute
Suslin automatically in the situation of the previous theorem.

Theorem 4.5. Let f : X → Y be a scattered-Borel bimeasurable surjec-
tion of class (α, β) for some α, β ≥ 0 and suppose Y is an absolute Suslin
metric space with nonmeasurable density. If X is an absolute Ms

ξ space,
ξ ≥ 2, then Y is an absolute Ms

η metric space, where η = β+α+ max(ξ, α)
if α < ω1, and η = β + α+ 3 + max(ξ, α+ 1) in general.

Proof. We proceed as in the previous proof. We only use the fact that
scattered-Borel sets are in S(H) and the theorem of [7, Theorem 2(a)] on
S(H)-additive families instead of [1, Theorem 2].

The author would like to express his gratitude to his colleagues Jǐŕı
Spurný and Miroslav Zelený for many useful comments.
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