On Equations $y^{2}=x^{n}+k$ in a Finite Field

by

A. SCHINZEL and M. SKAEBA

Presented by Andrzej SCHINZEL

Summary. Solutions of the equations $y^{2}=x^{n}+k(n=3,4)$ in a finite field are given almost explicitly in terms of k.

Let F be a finite field. It follows easily from Hasse's theorem on the number of points on an elliptic curve over F that each of the curves

$$
\begin{equation*}
y^{2}=x^{n}+k \quad(n=3,4 ; k \in F) \tag{1}
\end{equation*}
$$

has a point (x, y) in F^{2}, except for $n=4, F=\mathbb{F}_{5}, k=2$. The aim of the present paper is to indicate such a point almost explicitly in terms of k. Note that if char $K=2$, then (1) is satisfied by $y=\left(x^{n}+k\right)^{\operatorname{card} F / 2}$, and if char $K=3, n=3$ then (1) is satisfied by $x=\left(y^{2}-k\right)^{\operatorname{card} F / 3}$. We shall prove

Theorem 1. Let char $F>3$ and $k \in F$. Set

$$
y_{1}= \begin{cases}12 & \text { if } k+72=0 \\ \frac{k}{12}+3 & \text { if } k^{2}-72 k+72^{2}=0\end{cases}
$$

and if $k^{3}+72^{3} \neq 0$, set

$$
\begin{aligned}
y_{1}= & -2^{-9} 3^{-5} k^{3}+2^{-6} 3^{-3} k^{2}-2^{-3} k-3 \\
y_{2}= & 2^{-8} 3^{-6} k^{3}-2^{-5} 3^{-3} k^{2}+2^{-2} 3^{-1} k+2 \\
y_{3}= & \frac{k^{6}-288 k^{5}+46656 k^{4}-3732480 k^{3}}{2^{8} 3^{5}(k+72)^{3}} \\
& +\frac{134369280 k^{2}-11609505792 k+139314069504}{2^{8} 3^{5}(k+72)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
y_{4}= & \frac{k^{9}-504 k^{8}+124416 k^{7}-17915904 k^{6}+1558683648 k^{5}}{2^{10} 3^{5}\left(k^{2}-72 k+72^{2}\right)^{3}} \\
& +\frac{-69657034752 k^{4}+5851190919168 k^{3}}{2^{10} 3^{5}\left(k^{2}-72 k+72^{2}\right)^{3}} \\
& +\frac{20061226008576 k^{2}+2166612408926208 k+51998697814228992}{2^{10} 3^{5}\left(k^{2}-72 k+72^{2}\right)^{3}} .
\end{aligned}
$$

Then for at least one $j \leq 4$ the equation $y_{j}^{2}=x^{3}+k$ is solvable in $x \in F$.
Theorem 2. Let char $F \neq 2$ and $k \in F^{*}$. If $k-2=0$ and char $F \neq 5$, set

$$
u_{1}=\frac{-5}{8}, \quad u_{2}=2, \quad u_{3}=5
$$

if char $F=5$ and $\alpha \in F \backslash \mathbb{F}_{5}$, set

$$
u_{1}=\frac{4 \alpha}{1+\alpha^{2}}, \quad u_{2}=\frac{2-2 \alpha^{2}}{1+\alpha^{2}}, \quad u_{3}=\frac{4 \alpha\left(2-2 \alpha^{2}\right)}{\left(1+\alpha^{2}\right)^{2}}
$$

if $k^{2}-4 k-4=0$ and $k^{3}-8 \neq 0$, set

$$
u_{1}=\frac{-k^{6}-16 k^{3}+64}{16 k^{4}}, \quad u_{2}=\frac{1}{k}, \quad u_{3}=\frac{-k^{6}-16 k^{3}+64}{k\left(k^{3}-8\right)^{2}}
$$

if $k^{2}-4 k-4=k^{3}-8=0$, set

$$
u_{1}=u_{2}=u_{3}=-1
$$

and if $(k-2)\left(k^{2}-4 k-4\right) \neq 0$, set

$$
u_{1}=\frac{k^{2}-4 k-4}{16}, \quad u_{2}=\frac{k}{4}, \quad u_{3}=\frac{k\left(k^{2}-4 k-4\right)}{4(k-2)^{2}} .
$$

Then $u_{j} \in F^{*}(1 \leq j \leq 3)$ and for at least one $j \leq 3$ the equation

$$
\left(\frac{4 u_{j}^{2}+k}{4 u_{j}}\right)^{2}=x^{4}+k
$$

is solvable in $x \in F$.
The proof of Theorem 1 is based on the following
Lemma 1. Let A, B, C, D be in F and

$$
z_{1}=A, \quad z_{2}=B, \quad z_{3}=A B C^{3}, \quad z_{4}=A B^{2} D^{3}
$$

Then for at least one $j \leq 4$ the equation $x^{3}=z_{j}$ is solvable in $x \in F$.
Proof. If $A B C D=0$ the assertion is clear and if $A B C D \neq 0$ it follows from the fact that the multiplicative group of F is cyclic and for all a, b in \mathbb{Z} at least one of the numbers $a, b, a+b, a+2 b$ is divisible by 3 .

Proof of Theorem 1. If $k+72=0$ or $k^{2}-72 k+72^{2}=0$ we have $y_{1}^{2}-k=6^{3}$ or $(-3)^{3}$, respectively. If $k^{3}+72^{3} \neq 0$ we put in Lemma 1
$A=y_{1}^{2}-k, \quad B=y_{2}^{2}-k, \quad C=2^{6} 3^{4}(k+72)^{-2}, \quad D=2^{10} 3^{8}\left(k^{2}-72 k+72^{2}\right)$ and verify that

$$
\begin{array}{ll}
y_{3}=\frac{y_{1} y_{2}+k}{y_{1}+y_{2}}, & y_{3}^{2}-k=A B C^{3} \\
y_{4}=\frac{y_{1} y_{2}^{2}+k y_{1}+2 k y_{2}}{y_{2}^{2}+2 y_{1} y_{2}+k}, & y_{4}^{2}-k=A B^{2} D^{3}
\end{array}
$$

The proof of Theorem 2 is based on the following
Lemma 2. Let u_{j} be as in Theorem 2. Then $u_{j} \in F^{*}$ and

$$
\begin{equation*}
\sqrt{4 u_{j}^{3}-k u_{j}} \in F \quad \text { for at least one } j \leq 3 \tag{2}
\end{equation*}
$$

Proof. If $k-2=0$ and char $K \neq 5$, then $u_{1} u_{2} u_{3} \neq 0$ and (2) holds because

$$
\left(4 u_{1}^{3}-k u_{1}\right)\left(4 u_{2}^{3}-k u_{2}\right)=\left(4 u_{3}^{3}-k u_{3}\right)(1 / 8)^{2}
$$

If $k-2=0$ and char $K=5, \alpha \in F \backslash \mathbb{F}_{5}$, then clearly $u_{1} u_{2} u_{3} \neq 0$ and (2) holds as

$$
\left(4 u_{1}^{3}-k u_{1}\right)\left(4 u_{2}^{3}-k u_{2}\right)=\left(4 u_{3}^{3}-k u_{3}\right) 2^{2}
$$

If $k^{2}-4 k-4=0$ and $k^{3}-8 \neq 0$, then $u_{1} u_{2} u_{3} \neq 0$, since otherwise $k^{6}+16 k^{3}-64=0$, while char $F \neq 2$ implies

$$
\left(k^{2}-4 k-4, k^{6}+16 k^{3}-64\right)=1
$$

Also (2) holds in view of the identity

$$
\left(4 u_{1}^{3}-k u_{1}\right)\left(4 u_{2}^{3}-k u_{2}\right)=\left(4 u_{3}^{3}-k u_{3}\right)\left(\frac{k^{3}-8}{2 k^{2}}\right)^{6}(1 / 4)^{2}
$$

If $k^{2}-4 k-4=k^{3}-8=0$, then char $F=7, k=1, u_{1} u_{2} u_{3} \neq 0$ and

$$
4 u_{1}^{3}-k u_{1}=2^{2}
$$

If $(k-2)\left(k^{2}-4 k-4\right) \neq 0$, then clearly $u_{1} u_{2} u_{3} \neq 0$ and (2) holds since

$$
\left(4 u_{1}^{3}-k u_{1}\right)\left(4 u_{2}^{3}-k u_{2}\right)=\left(4 u_{3}^{3}-k u_{3}\right)\left(\frac{k-2}{4}\right)^{6} 2^{2}
$$

Proof of Theorem 2. We have the identity

$$
\left(\frac{4 u_{j}^{2}+k}{4 u_{j}}\right)^{2}-k=\left(\frac{4 u_{j}^{2}-k}{4 u_{j}}\right)^{2}
$$

and by Lemma 2 for at least one $j \leq 3$ we have $\sqrt{\left(4 u_{j}^{2}-k\right) / 4 u_{j}} \in F$.

The following problem related to the proof of Lemma 2 remains open.
Problem. Let $f \in \mathbb{Z}[x]$ have the leading coefficient positive and assume that the congruence $f(x) \equiv y^{2}(\bmod m)$ is solvable for every natural number m. Does there exist an odd integer $k>0$ and integers x_{1}, \ldots, x_{k} such that $\prod_{i=1}^{k} f\left(x_{i}\right)$ is a square?

A. Schinzel and M. Skałba Institute of Mathematics Polish Academy of Sciences 00-956 Warszawa, Poland
E-mail: schinzel@impan.gov.pl skalba@impan.gov.pl

Received July 16, 2004; received in final form July 28, 2004

