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Summary. Let H be a separable complex Hilbert space, A a von Neumann algebra in
L(H), φ a faithful, normal state on A, and B a commutative von Neumann subalgebra
of A. Given a sequence (Xn : n ≥ 1) of operators in B, we examine the relations between
bundle convergence in B and bundle convergence in A.

1. Introduction. Bundle convergence in von Neumann algebras was
introduced in 1996 by Hensz, Jajte and Paszkiewicz in their fundamental
paper [2]. We refer to [2] for the definitions and basic properties of bundle
convergence.

Let H be a separable complex Hilbert space, L(H) the algebra of all
bounded linear operators acting on H, A a von Neumann algebra in L(H),
φ a faithful, normal state on A, and B a von Neumann subalgebra of A.
Clearly, the restriction of φ to B defines a faithful, normal state on B. Thus,
the following question seems to be quite natural.

Question. Let (Xn : n ≥ 1) be a sequence of operators in B which is
bundle convergent to O in B, where O is the zero operator acting on H. Is
then (Xn) bundle convergent in A?
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We shall see in Section 2 that the answer to this question is negative in
general. However, the answer is yes in the following two particular cases:

(i) If A := L∞(Ω,F , µ), where (Ω,F , µ) is a classical probability space,
and φ is defined by

φ(A) :=
�

Ω

A(ω) dµ(ω), A ∈ A,

then the notion of bundle convergence in A coincides with that of almost
sure convergence with respect to the probability measure µ. The positive
answer to the above question follows from the well known fact that in this
case, any von Neumann subalgebra is of the form L∞(Ω,G, µ), where G is a
σ-subalgebra of F .

(ii) If the sequence (Xn : n ≥ 1) is bounded in operator norm; this
follows from the fact that bundle convergence in A (respectively, in B) is
equivalent to almost uniform convergence in A (respectively, in B), by [2,
Properties 3.7 and Theorem 4.1].

In this paper, we deal only with a commutative von Neumann subalgebra
B of A. In Section 2, we study a particular case of A which will be useful to
construct counterexamples. In Section 3, we state some relations concerning
bundle convergence of subsequences, and we consider the converse problem.
Namely, assuming that a sequence (Xn) of operators in B is bundle conver-
gent in A, is it also bundle convergent in B? It turns out that the answer
depends on whether there exists a conditional expectation with respect to
φ from A to B. On closing, we raise two problems.

2. A particular case. Let H be a separable complex Hilbert space and
fix an orthonormal basis (ej : j ≥ 1) in H. We define a faithful, normal state
φ on A := L(H) in the following way:

(2.1) φ(A) :=
∞∑

j=1

2−j(Aej | ej), A ∈ A,

where (·|·) is the inner product in H. In fact, φ is clearly a positive, linear
functional on L(H), for the identity operator I we have φ(I) = 1, and φ
is faithful (since 2−j > 0 for all j). The normality of φ is a consequence of
[3, Theorem, p. 121]. Let D be the von Neumann subalgebra of L(H) con-
sisting of the operators in L(H) whose matrices are diagonal with respect
to the orthonormal basis (ej : j ≥ 1). Thus, every X ∈ D is of the form

X =
∞∑

j=1

ajPej , where (aj) ∈ `∞

and Pej is the (orthogonal) projection on the line Cej .
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Now, for every α := (α1, α2, . . .) ∈ `2, α 6= (0, 0, . . .), let us define a
vector u depending on α as follows:

(2.2) u := K

∞∑

j=1

αj2−j/2ej ,

where the constant K > 0 is chosen so that ‖u‖ = 1. Denote by Pu the
projection on the line Cu.

Theorem 1. The projection Pu belongs to each bundle in L(H).

Proof. Let P be a bundle in L(H). By definition, P is determined by
some sequence (Dn : n ≥ 1) of positive operators in L(H) such that

(2.3)
∞∑

n=1

φ(Dn) <∞.

We associate with each operator Dn its infinite matrix (dn,j,k) in the or-
thonormal basis (ej), where

(2.4) dn,j,k := (Dnek | ej), n, j, k = 1, 2, . . . .

Taking into account that by the positivity of Dn,

Dn = C∗nCn for some Cn ∈ L(H),

where C∗n is the adjoint operator to Cn, and making use of the Cauchy–
Schwarz inequality, we conclude that

(2.5) |dn,j,k|2 ≤ dn,j,jdn,k,k, n, j, k = 1, 2, . . . .

By (2.1) and (2.4), we may write

(2.6) φ(Dn) =
∞∑

j=1

2−jdn,j,j, n = 1, 2, . . . .

Let x be an arbitrary vector in H. Then

x =
∞∑

j=1

xjej for some (xj) ⊂ `2.

Since ‖u‖ = 1, we have Pux = (x |u)u and thus

DnPux = (x |u)Dnu = K(x |u)
∞∑

j=1

αj2−j/2Dnej(2.7)

= K(x |u)
∞∑

j=1

αj2−j/2
∞∑

k=1

(Dnej | ek)ek

= K(x |u)
∞∑

k=1

( ∞∑

j=1

αj2−j/2dn,k,j
)
ek.
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Accordingly, we define

(2.8) yn :=
∞∑

k=1

yn,kek, yn,k :=
∞∑

j=1

αj2−j/2dn,k,j , n, k = 1, 2, . . . .

Thus, we can rewrite (2.7) in the form

DnPux = K(x |u)yn,

whence
PuDnPux = K(x |u)Puyn = K(x |u)(yn |u)u;

in particular,

(2.9) ‖PuDnPux‖ = K|(x |u)| · |(yn |u)|, n = 1, 2, . . . .

Now, we estimate |(yn |u)|. By (2.2) and (2.8), we have

(yn |u) =
∞∑

k=1

yn,k(ek |u) = K

∞∑

k=1

yn,kαk2−k/2

= K

∞∑

k=1

( ∞∑

j=1

αj2−j/2dn,k,j
)
αk2−k/2.

By (2.5), we find that

|(yn |u)| ≤ K
∞∑

k=1

( ∞∑

j=1

|αj |2−j/2|dn,k,j |
)
|αk|2−k/2(2.10)

≤ K
∞∑

k=1

( ∞∑

j=1

|αj |2−j/2
√
dn,j,j

)
|αk|2−k/2

√
dn,k,k

= K
( ∞∑

k=1

|αk|2−k/2
√
dn,k,k

)2
.

Applying the Cauchy inequality, by (2.6) and (2.10), we conclude that

(2.11) |(yn |u)| ≤ K‖α‖22φ(Dn), n = 1, 2, . . . ,

where ‖α‖2 is the `2-norm of α = (α1, α2, . . .). Combining (2.9) and (2.11)
gives

‖PuDnPux‖ ≤ K2‖α‖22‖x‖φ(Dn).

Since x ∈ H is arbitrary, we have

‖PuDnPu‖∞ ≤ K2‖α‖22φ(Dn), n = 1, 2, . . . .

By (2.3), it follows that ‖PuDnPu‖∞ → 0 as n→∞.An analogous argument
shows that

sup
n≥1

n∑

k=1

‖PuDkPu‖∞ <∞.
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Consequently, the projection Pu belongs to the bundle determined by (Dn),
as claimed.

Now, let (Xn : n ≥ 1) be a sequence of operators in D. We shall examine
the relations between bundle convergence in D and in A = L(H). First, we
need the following

Lemma. Let (Xn) be a sequence in D. Then

Xn
b,D−→ O as n→∞

if and only if

(Xnej | ej)→ 0 as n→∞ for each j = 1, 2, . . . .

Proof. We may identify D with the L∞-space of the probability space
(N,F , µ), where N is the set of natural numbers, F is the family of all subsets
of N, and µ is given by

µ({j}) = 2−j , j = 1, 2, . . . .

Thus, bundle convergence in D coincides with almost sure convergence with
respect to µ (see, for example, [2, p. 29]).

Corollary 1. Let (Xn) be a sequence in D. Then

Xn
b,A−→ O implies Xn

b,D−→ O as n→∞.
Proof. Fix j = j0 ≥ 1. In (2.2), we choose (α1, α2, . . .) as follows:

αj0 = 2j0/2, αj = 0 if j 6= j0.

Thus u = ej0 . We deduce that

XnPuu = Xnej0 = (Xnej0 | ej0)ej0 .

Hence we get

|(Xnej0 | ej0)| ≤ ‖XnPej0‖∞ → 0 as n→∞,

by Theorem 1. Then Xn
b,D−→ 0, as a consequence of the lemma.

Corollary 2. There exists a sequence (Xn) in D which is bundle con-
vergent to O in D, but fails to be bundle convergent in L(H).

Proof. Let
Xn := n2n/2Pen , n = 1, 2, . . . .

Then Xn ∈ D and Xn
b,D−→ O as n → ∞, since for every j = 1, 2, . . . , we

have (Xnej | ej) = 0 as soon as n > j. Now, in (2.2) choose

(2.12) u := K

∞∑

j=1

j−12−j/2ej;
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it follows that

(2.13) XnPuu = Xnu = Ken, n = 1, 2, . . . .

By using (2.13) and the orthonomality of the system (ej), we get

‖(Xn+1 −Xn)Pu‖∞ ≥ ‖(Xn+1 −Xn)Puu‖(2.14)

= K‖en+1 − en‖ = K
√

2, n = 1, 2, . . . .

Consequently, if (Xn) were bundle convergent in L(H) to some operator X,
then (Xn+1 −Xn : n ≥ 1) would be bundle convergent to O in L(H), due
to the additivity of bundle convergence; in particular, we would have

‖(Xn+1 −Xn)Pu‖∞ → 0 as n→∞,
since Pu belongs to every bundle in L(H). But this contradicts (2.14), and
the contradiction yields the conclusion of Corollary 2.

Remark 1. The sequence

(2.15) Xn := n2n/2Pen , n = 1, 2, . . . ,

converges almost uniformly to O in D; consequently, it converges almost
uniformly to O in L(H), as well. In this way, we have obtained a simple
example which illustrates the following known statement.

Corollary 3. There exists a sequence (Xn : n ≥ 1) of operators in
L(H) such that (Xn) converges almost uniformly, but fails to be bundle
convergent in L(H).

A more theoretic proof of Corollary 3 can be derived from [6, Proposi-
tion 4.6], where it is proved that almost uniform convergence (unlike bundle
convergence) does not have the additivity property.

Corollary 4. There exists a sequence (Yn : n ≥ 1) of operators in
L(H) such that (Yn) is bundle convergent to O, but (Y 2

n ) fails to be bundle
convergent in L(H).

Proof. Let (Xn) be given by (2.15) and

Yn := X1/2
n = n1/22n/4Pen , n = 1, 2, . . . .

By (2.1), we have

φ(Y 2
n ) = φ(Xn) = n2n/2φ(Pen) = n2−n/2.

Since ∞∑

n=1

φ(Y 2
n ) =

∞∑

n=1

n2−n/2 <∞,

by [2, Proposition 3.1] we conclude that (Yn) is bundle convergent to O as
n → ∞. But we have seen in the proof of Corollary 2 that the sequence
(Y 2
n = Xn : n ≥ 1) fails to be bundle convergent in L(H).
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3. Bundle convergence of subsequences. The sequence (Xn : n ≥ 1)
we used in the proof of Corollary 2 does not admit a subsequence (Xnk :
k ≥ 1) bundle convergent in L(H), since, with u given by (2.12),

‖(Xnk+1 −Xnk)Pu‖∞ ≥ K‖enk+1 − enk‖ = K
√

2, k = 1, 2, . . . .

So the following result is of some interest.

Theorem 2. Let H be a separable complex Hilbert space, A a von Neu-
mann algebra in L(H), φ a faithful, normal state on A, and B a commutative
von Neumann subalgebra of A. Let (Xn : n ≥ 1) be a sequence in B such
that

(3.1) sup
n≥1

φ(|Xn|α) <∞ for some α > 2,

(3.2) Xn
b,B−→ O as n→∞.

Then there exists a subsequence (Xnk : k ≥ 1) of (Xn) such that

(3.3) Xnk
b,A−→ O as k →∞.

Proof. There exists a probability space (Ω,F , µ) and an isomorphism
X 7→ TX of B onto L∞(Ω,F , µ) such that

φ(X) =
�

Ω

TX(ω) dµ(ω)

for every X in B. Let fn := TXn . If A is a measurable set in Ω, then by
using Hölder’s inequality with 1/p+ 1/q = 1, p := α/2, we find

φ(|Xn|2) =
�

Ω

|fn|2 dµ =
�

A

|fn|2 dµ+
�

Ac

|fn|2 dµ(3.4)

≤ sup
ω∈A
|fn(ω)|2 +

( �

Ω

|fn|αdµ
)2/α

· µ(Ac)(α−2)/α.

Now, since bundle convergence in L∞(Ω,F , µ) is in fact almost sure con-
vergence with respect to µ, by using Egorov’s theorem we may construct a
measurable set A in Ω such that µ(Ac) is arbitrarily small and fn → 0 as
n→∞ uniformly on A. Then, by using (3.1) and (3.4), we derive that

φ(|Xn|2)→ 0 as n→∞.
By a classical argument, there exists a subsequence (Xnk : k ≥ 1) of (Xn)
for which

∞∑

k=1

φ(|Xnk |2) <∞.

Then, by [2, Property 3.1, p. 30], we get

Xnk
b,A−→ O as k →∞.
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Remark 2. For each α, 1≤α<2, we can exhibit a sequence (Xn : n≥1)
in the von Neumann subalgebra D defined in Section 2 such that

sup
n≥1

φ(|Xn|α) <∞, Xn
b,D−→ O as n→∞,

but (Xn) does not admit a subsequence satisfying (3.3). To this end, let

Xn := 2n/αPen , n = 1, 2, . . . .

Then
φ(|Xn|α) = 2nφ(Pen) = 1 and Xn

b,D−→ O as n→∞
by the same argument as in the proof of Corollary 2. On the other hand,

XnPuu = 2n/αn−12−n/2en,

where u is given by (2.12). Hence

‖XnPu‖∞ ≥
1
n

2n(1/α−1/2) →∞ as n→∞.
Remark 3. The case α = 2 is open.

Theorem 3. Let H be a separable complex Hilbert space, A a von Neu-
mann algebra in L(H), φ a faithful, normal state on A, and B a commutative
von Neumann subalgebra of A. Let (Xn : n ≥ 1) be a sequence in B such
that

sup
n≥1

φ(|Xn|) <∞,(3.5)

Xn
b,A−→ O as n→∞.(3.6)

Then there exists a subsequence (Xnk) of (Xn) such that

(3.7) Xnk
b,B−→ O as k →∞.

Proof. By (3.6), there exists a bundle P in A such that, for each P ∈ P,

‖XnP‖∞ → 0 as n→∞.
Let

An := |Xn|1/2, n = 1, 2, . . . .

We get for each P ∈ P,

‖AnP‖2∞ = ‖PA∗nAnP‖∞ = ‖P |Xn|P‖∞ ≤ ‖P‖∞‖XnP‖∞
≤ ‖XnP‖∞ → 0 as n→∞.

Thus,

(3.8) An
b,A−→ O as n→∞.

By (3.5), we also have

(3.9) sup
n≥1

φ(A2
n) <∞.
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Now, by using [5, Proposition, p. 451], we derive that

φ(An)→ 0 as n→∞.
Let Bn := A

1/2
n = |Xn|1/4; since φ(B2

n) → 0 as n → ∞, there exists a
subsequence (Bnk : k ≥ 1) of (Bn) such that

∞∑

k=1

φ(B2
nk

) <∞.

It follows that
Bnk = |Xnk |1/4

b,B−→ O as k →∞.

Since B is commutative, we may derive that Xnk
b,B−→ O as k →∞. Here we

took into account that B is isomorphic to some L∞(Ω,F , µ).

Now, the following question arises naturally: In the conclusion (3.7) of
Theorem 3, is it possible to replace the subsequence (Xnk) by the whole
sequence (Xn)? We shall see in Theorem 4 below that the answer is positive
if there exists a conditional expectation E with respect to φ from A to B.

Before stating Theorem 4, we note the interesting fact that it may happen
that (Xn : n ≥ 1) is a sequence in A which is bundle convergent to O in A,
but (E(Xn) : n ≥ 1) fails to be bundle convergent to O in both B and A. To
see this, let A := L∞([0, 1],F , λ), where F is the Borel field on [0, 1], λ the
Lebesgue measure, B = CI[0,1], and

φ(X) :=
1�

0

X(t) dt, X ∈ A.

Now, the conditional expectation from A onto B is given by

E(X) = φ(X)I[0,1], X ∈ A.
Since bundle convergence in A is in fact a.e. convergence with respect to
Lebesgue measure, it is easy to exhibit a sequence (Xn : n ≥ 1) such that
Xn → O a.e. as n→∞, but � 1

0Xn(t) dt fails to converge in C. (Compare [4,
Problem 3, p. 101].)

Theorem 4. Let H be a separable complex Hilbert space, A a von Neu-
mann algebra in L(H), φ a faithful and normal state on A, and B a com-
mutative von Neumann subalgebra of A such that there exists a conditional
expectation E with respect to φ from A onto B. Then for every sequence
(Xn : n ≥ 1) of operators in B,

(3.10) Xn
b,A−→ O implies Xn

b,B−→ O as n→∞.
Proof. In fact, instead of bundle convergence, it is sufficient to assume

only that the sequence (Xn) is almost uniformly convergent to O in A. Then
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for every natural number k, there exists a projection Pk in A such that

φ(Pk) > (k − 1)/k and ‖XnPk‖∞ → 0 as n→∞.
By using the properties of the conditional expectation E (see [7, p. 211]),
we have

(3.11) ‖XnE(Pk)‖∞ = ‖E(XnPk)‖∞ ≤ ‖XnPk‖∞,
(3.12) E(Pk) is positive, φ(E(Pk)) = φ(Pk),

(3.13) ‖E(Pk)‖∞ ≤ ‖Pk‖∞ = 1.

We recall (cf. [1, Théorème 1, p. 118] and the proof of our Theorem 2
above) that there exist a probability space (Ω,F , µ) and an isomorphism
X 7→ TX of B onto L∞(Ω,F , µ) such that

φ(X) =
�

Ω

TX(ω) dµ(ω), X ∈ B.

Then
%k := TE(Pk), k = 1, 2, . . . ,

is a nonnegative function on L∞(Ω,F , µ), and it follows from (3.12) and
(3.13) that

(3.14)
�

Ω

%k(ω) dµ(ω) > (k − 1)/k, ‖%k‖∞ ≤ 1.

Now, let
Ωk := {ω ∈ Ω : %k(ω) = 0}, k = 1, 2, . . . .

By (3.14), we have µ(Ωk) ≤ 1/k. It follows from (3.11) that

‖TXn%k‖∞ → 0 as n→∞, k = 1, 2, . . . .

This means that

TXn → O as n→∞ a.e. on Ωc
k, k = 1, 2, . . . .

Consequently, we have

TXn → O a.e. on
∞⋃

k=1

Ωc
k,

whose complement is a set of µ-measure zero. This completes the proof of
(3.10).

Remark 4. Corollary 1 in Section 2 is a particular case of Theorem 4.
In fact, the mapping from A := L(H) to D which assigns to each operator
in A, represented by an infinite matrix with respect to a fixed orthonormal
basis (ej : j ≥ 1) in H, the “diagonal part” of its representation, is actually
a conditional expectation from A to D.
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Remark 5. It may happen that there exists no conditional expectation
of a von Neumann algebra A onto its commutative von Neumann subal-
gebra B. For example, if A is the von Neumann algebra of all bounded
linear operators on H := L2(−∞,∞) and B := L∞(−∞,∞) acting on
L2(−∞,∞) by pointwise multiplication, then there exists no conditional
expectation from A to B with respect to any faithful, normal state φ. This
fact was kindly communicated to us by Professor M. Takesaki in a private
letter.

The following theorem is a complement to Theorem 4.

Theorem 5. Let H := L2(0, 1) equipped with the Borel sets and Lebesgue
measure, A := L(H), B := L∞(0, 1), and (ek : k ≥ 1) the complex trigono-
metric system (rearranged into an ordinary sequence). If φ is defined on A
by (2.1), then there exists a sequence (Xn) in B, bounded in L∞-norm and
such that

Xn
b,A−→ O as n→∞,

but (Xn) fails to be bundle convergent to O in B.

For example, we may use the trigonometric system {t 7→ e2πint : n ∈ Z}
as a fixed orthonormal basis in the following rearrangement:

e1(t) := 1, e2(t) := e2πit, e3(t) := e−2πit,

e4(t) := e2πi2t, e5(t) := e−2πi2t, . . . .

Proof. Since B acts on H by pointwise multiplication, we have

(XnAf)(t) = Xn(t)(Af)(t) a.e., n ≥ 1, Xn ∈ A, f ∈ H.
It follows that

(3.15) ‖XnAf‖22 =
1�

0

|Xn(t)|2|(Af)(t)|2 dt.

By the reasoning following (2.1), for every ε > 0 there exists a natural
number n0 = n0(ε) such that

φ(Pε) > 1− ε, where Pε :=
n0∑

j=1

Pej .

Since

Pεf =
n0∑

j=1

(f | ej)ej , f ∈ H,

we have

(3.16) (Pεf)(t) =
n0∑

j=1

(f | ej)ej(t) a.e.
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Combining (3.15) (with Pε in place of A) and (3.16) yields

‖XnPεf‖22 =
1�

0

|Xn(t)|2
∣∣∣
n0∑

j=1

(f | ej)ej(t)
∣∣∣
2
dt.

By the Cauchy and then the Bessel inequalities, we find that

‖XnPεf‖22 ≤
1�

0

|Xn(t)|2
n0∑

j=1

|(f | ej)|2
n0∑

j=1

|ej(t)|2 dt

≤ n0‖f‖22
1�

0

|Xn(t)|2 dt,

that is,

(3.17) ‖XnPε‖∞ ≤
√
n0 ‖Xn‖2.

We recall (cf. (2.1)) that

φ(X) :=
∞∑

j=1

2−j(Xej | ej) =
∞∑

j=1

2−j
1�

0

X(t)ej(t)ej(t) dt(3.18)

=
∞∑

j=1

2−j
1�

0

X(t) dt =
1�

0

X(t) dt

and that bundle convergence in B coincides with a.e. convergence on the
interval (0, 1).

Now, it is a routine matter to find a sequence (Xn) of indicators on (0, 1)
such that

‖Xn‖2 = ‖Xn‖1 → 0 as n→∞
and (Xn) is not convergent to 0 a.e. on (0,1). On the other hand, by (3.17)
we have ‖XnPε‖∞ → 0 as n→∞, that is,

Xn → O almost uniformly as n→∞.
Since (Xn) is bounded, it follows that (Xn) is bundle convergent to O in A.

Remark 6. By comparing Theorems 4 and 5, we see that there cannot
exist any conditional expectation with respect to φ from A to B, where φ,
A, and B are as in Theorem 5.

On closing, we raise two problems.

Problem 1. In the conclusion of Theorem 2, is it possible to replace
the subsequence (Xnk) by the whole sequence (Xn)?

Problem 2. In Theorem 4, is it possible to get rid of the condition that
the subalgebra B is commutative and still have conclusion (3.10)?
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Added in proof. The answer to the problem raised in Remark 3 in connection with
Theorem 2 is in the negative. In fact, let H, A and B be as in Theorem 5. This time we
define Xn(t) to be the indicator of the interval (0, 1/n) multiplied by

√
n, n = 1, 2, . . . .

Analogously to (3.18) in the proof of Theorem 5, we have

φ(|Xn|2) =
1�

0

|Xn(t)|2 dt = 1, n = 1, 2, . . . .

So, condition (3.1) is satisfied. Since Xn(t)→ 0 a.e. as n→∞, (Xn) is bundle convergent
to O in B. On the other hand, no subsequence (Xnk) of (Xn) can be bundle convergent
to O in A.
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