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Summary. This is a study of the monotone (in parameter) behavior of the ratios of
the consecutive intervals in the nested family of intervals delimited by the itinerary of
a critical point. We consider a one-parameter power-law family of mappings of the form
fa = −|x|α+a. Here we treat the dynamically simplest situation, before the critical point
itself becomes strongly attracting; this corresponds to the kneading sequence RRR . . . ,
or—in the quadratic family—to the parameters c ∈ [−1, 0] in the Mandelbrot set. We
allow the exponent α to be an arbitrary real number greater than 1.

1. Introduction. The question of monotonicity of the dynamics in a
one-parameter family of maps of an interval has long been one of the cru-
cial problems in the field. A remarkable progress in this research has been
achieved in recent years (see the reference list). However, usually the quasi-
conformal technics are involved in those proofs, requiring the maps in ques-
tion to admit complex analytic extensions. On the other hand, numerical
evidence does not suggest any dramatic breakdown if we consider a nonin-
teger exponent, say 1,99, instead. In this work we present an argument that
solves the simplest monotonicity problem for an arbitrary real power-law
family.

Consider a one-parameter family of mappings of the form fa = −|x|α+a,
with α > 1 and a real positive parameter a. Let xa be the positive fixed point
of fa. It is clear that when we increase the parameter a the absolute value
of the eigenvalue at the fixed point xa grows, because |x|α is a convex map.
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In this note our approach is to look at the behavior of the whole post-
critical orbit rather than at the eigenvalue directly.

Suppose we are given a map fa with kneading sequence RRR . . . , so
that the orbit of the critical point tends to a fixed point or to a period 2
attractor. For the quadratic family this means the Mandelbrot set address
c is in the interval [−1, 0]. This post-critical orbit delimits a sequence of
nested intervals where any two consecutive intervals share one endpoint.

Our objective is to establish that for any two such successive intervals,
the proportion of their lengths is an increasing function of the parameter a.

Notice that unlike the eigenvalue statement, this is not a consequence of
mere convexity, not even in the simplest case of an attracting fixed point.
Actually, the growth of the absolute value of the multiplier corresponds to
the increase of the ratio of very short intervals around the fixed point, where
the map acts almost linearly. What we claim here is that not only does the
“ultimate” ratio grow but also all the length ratios along the itinerary of
the critical point do so simultaneously.

To prove our claim we shall begin with an overview of some properties
of the mapping |x|α viewed in the Poincaré metric. In the proofs below we
essentially use the fact that the maps we deal with are not just negative
Schwarzian maps, but specific homogeneous maps. This will provide more
subtle tools than the distortion estimates alone.

Acknowledgements. The author would like to thank the referee for his
thorough and detailed report that led to the improvement of the exposition.

2. The Poincaré geometry of an interval. We begin with some
notation. The Poincaré coordinate of a point x on the positive half-axis
(0,∞) is defined by

p(x) = lnx

The Poincaré coordinate of a point x in an open, oriented interval (a, b) is
defined by

p(x) = ln
x− a
b− x .

The Poincaré length of an interval (x, y) contained in (a, b) is by definition
|p(x)− p(y)|.

We shall write pab(x) instead of p(x) whenever any confusion as to the
domain interval concerned might arise.

From now on we fix a real number α > 1 and the symbol h will stand
for the power-law mapping of the positive half-axis R+ onto itself,

h(x) = xα with x ∈ (0,∞), α ∈ (1,∞).

For a given map h: R+ → R+, or its restriction to an interval (a, b) ⊂
(0,∞), i.e. h|(a,b): (a, b) 7→ (aα, bα), we shall be considering its Poincaré
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counterpart h: R→ R, i.e. the mapping defined by the formula

hab(t) = ph(a)h(b)(h(p−1
ab (t)).(2.1)

This “bar” notation for the Poincaré counterpart of a homeomorphism of
an interval will also be kept for maps other than a restriction of h.

We start with the following immediate observation.

Proposition 2.1. The mapping h0∞ is a linear map satisfying

h(t) = αt.

Proof. By the very definition of h and of the Poincaré coordinate on the
half-axis we have h0∞(t) = p0∞(h(p−1

0∞(t))) = ln (et)α = αt.

In other words:

For any a, b, c ∈ R+ the quantity (ln c − ln b)/(ln b − ln a) is preserved
under the mapping x 7→ xα.

Now we consider an orientation preserving diffeomorphism ϕ: (a, b) →
(c, d), and assume that there exist finite or infinite limits ϕ′(a)=limx→a ϕ′(x)
as well as ϕ′(b) = limx→b ϕ′(x). We define

ϕ+ = ln
d− c

(b− a)ϕ′(b)
= lim

t→+∞
(ϕ(t)− t),(2.2)

ϕ− = ln
ϕ′(a)(b− a)

d− c = lim
t→−∞

(ϕ(t)− t).(2.3)

As usual, ϕ stands here for the Poincaré counterpart of ϕ. The numbers
ϕ+, ϕ− can be thought of as the limit values of the “push” (in the Poincaré
coordinates, of course) towards the endpoints, generated by ϕ.

In what follows, by the Poincaré push of a diffeomorphism ϕ: (a, b) →
(c, d) at a point x ∈ (a, b) we shall mean the quantity

pcd(ϕ(x))− pab(x).

Its absolute value will be referred to as the strength of the Poincaré push.
The limit values at the endpoints, whenever they exist, are also called the
Poincaré push at x = a or x = b.

In case of the power-law map, due to its homogeneity, we have the fol-
lowing immediate remark.

Remark 2.1. For a restriction of the power-law map ϕ = h|(a,b), the
quantities ϕ+, ϕ− depend solely on the Poincaré length of the interval (a, b)
on the positive half-axis, i.e. they are determined by the number p0∞(b) −
p0∞(a).

Thus we shall often fix the right endpoints b = d = 1 and choose the left
endpoint a of the domain interval within (0, 1).
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In the following, the Poincaré length of an interval (a, b) of the positive
half-axis will be referred to as its nonlinearity. This name is justified by the
fact that the nonlinearity of the mapping h is the derivative of lnh′, so this
Poincaré length actually is, up to the multiplicative constant α, the integral
of the nonlinearity of h over (a, b).

Now we are in a position to state our main lemma.

Lemma 2.1. For any x, y ∈ (0, 1) the following equality holds:

h
−
x1 − h

−
y1 = (p01(h(x))− p01(h(y)))− (p01(x)− p01(y)).(2.4)

Proof. This can be viewed as a consequence of the linearity of h0∞ (cf.
Proposition 2.1), and can be derived from the examination of the change of
the infinitesimal element of the Poincaré metric. However, a straightforward
calculation yields a much shorter proof:

h
−
x1 − h

−
y1 = ln

αxα−1(1− x)(1− yα)
(1− xα)αyα−1(1− y)

= ln
xα(1− yα)y(1− x)
yα(1− xα)x(1− y)

= (p01(h(x))− p01(h(y)))− (p01(x)− p01(y)).

Roughly speaking, the lemma tells us that while we move from x to y
within the interval (0, 1), the increase of the strength of the limit Poincaré
“push” equals the surplus in the Poincaré coordinate change. Let us remark
here that it is vital for Lemma 2.1 to hold that it is the critical point of h
(i.e. the point 0) which is chosen as one of the endpoints. When this is not
the case we need the following generalization:

Proposition 2.2. For any diffeomorphism ϕ: (a, b) → (c, d) and any
x ∈ (a, b) we have

pcd(ϕ(x))− pab(x) = ϕ−xb + ϕ+
ax.

Proof. Again, this is an immediate calculation:

pcd(ϕ(x))− pab(x) = ln
(
ϕ(x)− c
d− ϕ(x)

· b− x
x− a

)

= ln
(
ϕ′(x) · b− x

d− ϕ(x)

)
+ ln

ϕ(x)− c
(x− a)ϕ′(x)

= lim
t→−∞

(ϕxb(t)− t) + lim
t→+∞

(ϕax(t)− t).

Notice that for ϕ = h|(0,1), because of the homogeneity of h, the quantity
ϕ+

0x does not depend on x and is equal to− lnα, so we can also derive Lemma
2.1 as a special case of Proposition 2.2.

Returning to homogeneous maps let us record three more properties.

Proposition 2.3. For any triple of points 0 < a < b < c we have

|h−ac − h
−
bc| > |h

−
ab|, |h+

ac − h
+
ab| < |h

+
bc|.
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Proof. Set a = bθ, where 0 < θ < 1. By homogeneity we may set c = 1.
Then

h
−
ac − h

−
bc = ln

(
1− a
1− aα · h

′(a)
)
− ln

(
1− b
1− bα · h

′(b)
)

= ln
(
h′(a)
h′(b)

· 1− θb
1− b ·

1− bα
1− (θb)α

)
.

For the intervals (a, c) and (b, c) endowed with positive orientation, the
quantities h

−
ac and h

−
bc are both negative, by (2.3). Having set c = 1, we

return to the right hand side of the formula (2.4) of Lemma 2.1 to see that
for a = x, b = y we subtract there the Poincaré length of (h(a), h(b)) from
that of (a, b) (both measured within (0, 1)), so this difference is negative,
because for α > 1 the mapping h expands the Poincaré metric on (0, 1).
Thus h

−
ac−h

−
bc is negative, which can also be verified by a direct calculation.

Therefore to prove that this quantity is smaller than

h
−
ab = ln

(
h′(a)

b− a
bα − aα

)
= ln

(
h′(a)
bα−1 ·

1− θ
1− θα

)

we only need to check that, given b, θ ∈ (0, 1) and α > 1, the inequality

1
α

(
1− θb
1− b

)
·
(

1− bα
1− (θb)α

)
<

1− θ
1− θα

holds true. This follows from the homogeneity of x 7→ |x|α. See Lemma 2.2
below.

The other inequality follows in a similar way.

Lemma 2.2. Suppose x, y ∈ (0, 1) and α > 1. Then

1
α
· (1− xα)(1− yα)

1− (xy)α
<

(1− x)(1− y)
1− xy .(2.5)

Proof. Given x, y ∈ (0, 1), the inequality (2.5) is clearly satisfied when
α is large enough, and turns into an equality when α → 1. Thus it will be
enough to show that the left hand side of (2.5) is decreasing in α. Indeed,
the denominator of its α-derivative is always positive, while the numerator
is equal to

−(1− v)2u lnu− (1− u)2v ln v − (1− u)(1− v)(1− uv),

where we have set u = xα ∈ (0, 1), v = yα ∈ (0, 1), and so we will be done
once we show

− (1− v)2u lnu− (1− u)2v ln v < (1− u)(1− v)(1− uv).(2.6)

Expanding − lnu and − ln v into power series, and cancelling out the term
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(1− u)(1− v), we see that (2.6) turns into

u(1− v) +
1
2
u(1− u)(1− v) +

1
3
u(1− u)2(1− v) + . . .

+ v(1− u) +
1
2
v(1− v)(1− u) +

1
3
v(1− v)2(1− u) + . . . < 1− uv,

which further amounts to
1
2
u(1− u)(1− v) +

1
3
u(1− u)2(1− v) + . . .

+
1
2
v(1− v)(1− u) +

1
3
v(1− v)2(1− u) + . . . < (1− u)(1− v).

This can again be divided out by the ubiquitous term (1 − u)(1 − v), and
returning to the closed form for the logarithmic functions on the left hand
side we get yet another equivalent form of (2.6):

u

(1− u)2 (− lnu− (1− u)) +
v

(1− v)2 (− ln v − (1− v)) < 1.

Finally, we arrive at an inequality in one variable only:
u

(1− u)2 (− lnu− (1− u)) <
1
2
,

or

−u lnu <
1
2

(1− u2),

which is elementarily true for u ∈ (0, 1).

Another observation about hab is that the strength of the Poincaré push
is a monotone function and so it is largest at the left endpoint (i.e. the
one closer to the critical point). Similarly to the proof of Proposition 2.3
we can establish that the quantities compared in Proposition 2.4 below are
all negative. Thus for their absolute values (which we have in mind when
talking about the “strength of the push”) the opposite inequalities hold.
Here is a precise statement.

Proposition 2.4. For any 0 < a < x2 < x1 < b we have

h
+
ab > pab(h(x1))− pab(x1) > pab(h(x2))− pab(x2) > h

−
ab.

Proof. Recall that by Proposition 2.2 the Poincaré push equals

hab(pab(x))− pab(x) = h
−
xb + h

+
ax.

When we move the point x towards the endpoint a we add to the nonlinearity
of one interval (i.e. the right hand one) and subtract the same amount from
the nonlinearity of the other. By Remark 2.1 and a direct computation we
see that for any interval (r, s) of nonzero nonlinearity we have

|h−rs| > |h
+
rs|,
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because, again, fixing u ∈ (0, 1) and differentiating in α we can verify that
for all u ∈ (0, 1) the following inequality holds:

h′(1)
(1−h(u)

1−u
) <

(1−h(u)
1−u

)

h′(u)
.

Moving x from the position x1 to x2 we juxtapose the intervals (x2, x1)
and (x1, b). By Proposition 2.3 above we see that the change of the value
of h

−
xb, i.e. the quantity |h−x2b − h

−
x1b|, is greater than the number |h−x1x2

|
corresponding to the amount of nonlinearity added by moving x toward the
critical point. Simultaneously h

+
ax changes by at most the quantity |h+

x1x2
|

corresponding to this same nonlinearity (recall that by Remark 2.1, h
+

and
h
−

above are well defined). This shows that the Poincaré push is monotone
in p(x). The inequalities with the limit values come from letting x tend to
either endpoint.

When we increase the nonlinearity of an interval and keep the Poincaré
coordinate of a point fixed, we have a similar property:

Proposition 2.5. Suppose that the intervals (a, b), (c, d) ⊂ R+ are so
that

p0∞(b)− p0∞(a) < p0∞(d)− p0∞(c).

Then the function f : R→ R given by the formula

f(t) = (h
−
φd + h

+
cφ)− (h

−
ψb + h

+
aψ),

where φ = φ(t) = p−1
cd (t) and ψ = ψ(t) = p−1

ab (t), is increasing.

Proof. We shall proceed much as in the proofs of Proposition 2.3 and
Lemma 2.2 above. Firstly, we examine the following simpler situation. We
fix an interval of a given nonlinearity and, by homogeneity, we normalize it
to be the interval (β, 1). Then we juxtapose (β, 1) and an interval (1, t) and
let the endpoint t vary. When t increases, then the strength of the Poincaré
push measured at β, i.e. the quantity |h−βt|, increases. So does the strength

of the Poincaré push at 1, i.e. |h+
β1 + h

−
1t|. The essential point is that the

latter increase is smaller than the former. This is again a consequence of
the homogeneity of h : x 7→ |x|α and is shown separately in Lemma 2.3
below. Similarly, when we keep t > 1 fixed and let the other endpoint vary,
an analogous but opposite inequality between the rates of increase of the
strength of Poincaré pushes holds for |h+

β1 + h
−
1t| and |h+

βt|; this is the other
part of the statement of Lemma 2.3.

The statement of Proposition 2.5 easily follows from the observations
above. Let us pick t1 < t2. There exists a unique point t3 in (t1, t2) such
that the nonlinearity of the interval (p−1

cd (t1), p−1
cd (t3)), i.e. the number
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p0∞(p−1
cd (t3))−p0∞(p−1

cd (t1)), is equal to the nonlinearity of (p−1
ab (t1), p−1

ab (t2)).
The intervals (c, p−1

cd (t1)) and (p−1
cd (t3), d) have larger nonlinearities than

(a, p−1
ab (t1)) and (p−1

ab (t2), b) respectively. This is so because (c, p−1
cd (t1)) con-

stitutes the same fraction of (c, d) as does (a, p−1
ab (t1)) within (a, b), and the

nonlinearity of (c, d) is larger than that of (a, b); also the fraction consti-
tuted by (p−1

cd (t3), d) within (c, d) is even larger than that of (p−1
ab (t2), b)

within (a, b), because t3 < t2. It is evident that the same (or even larger)
fraction of an interval with greater nonlinearity has itself greater nonlinearity
compared to the respective fraction of an interval with smaller nonlinearity.

Applying the first observation derived previously from Lemma 2.3 to
the interval (p−1

ab (t1), p−1
ab (t2)) juxtaposed with (p−1

ab (t2), b) and the interval
(p−1
cd (t1), p−1

cd (t3)) juxtaposed with (p−1
cd (t3), d) we see that

|h−p−1
cd (t1)d − h

−
p−1
ab (t1)b| > |h

−
p−1
cd (t3)d − h

−
p−1
ab (t2)b|.

By the other observation coming from the second part of Lemma 2.3 we also
get

|h+
cp−1
cd (t1) − h

+
ap−1
ab (t1)| > |h

+
cp−1
cd (t3) − h

+
ap−1
ab (t2)|.

By Proposition 2.4 the strength of the Poincaré push at p−1
cd (t2) measured

within the interval (c, d), i.e. the quantity

|h+
cp−1
cd (t2) + h

−
p−1
cd (t2)d|,

is yet smaller than the strength of the Poincaré push at p−1
cd (t3). This com-

pletes the proof.

Lemma 2.3. Suppose 0 < β < 1 < t and α > 1. Then

d

dt

(
ln
(
tα − 1
t− 1

· 1
h′(1)

))
<

d

dt

(
ln
(
tα − βα
t− β · 1

h′(β)

))
(2.7)

and also
d

dβ

(
ln
(

1− βα
1− β ·

1
h′(1)

))
>

d

dβ

(
ln
(
tα − βα
t− β · 1

h′(t)

))
.(2.8)

Proof. The factors 1/h′(1) and 1/h′(β) in (2.7), as well as 1/h′(1) and
1/h′(t) in (2.8), are put only to conform with the notation of (2.2) and (2.3)
and of course can be omitted in computations.

We start with an explicit calculation of the derivatives in (2.7), which
leads to

α

(
tα

tα − 1
− tα

tα − βα
)
<

t

t− 1
− t

t− β .

For α = 1, both sides of this inequality coincide, so it will suffice to show that
the left hand side is decreasing in α. After substitution x = 1/t, y = β/t,
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the function to be examined is

F (α) = α

(
1

1− xα −
1

1− yα
)
,

where 0 < y < x < 1. Differentiating F in α and again substituting u = xα,
v = yα, we are led to an equivalent inequality

1
1− u +

u lnu
(1− u)2 <

1
1− v +

v ln v
(1− v)2 , 0 < v < u < 1.

So we only need to check that the function 1
1−u + u lnu

(1−u)2 is decreasing for
u ∈ (0, 1), which is elementary.

The proof of (2.8) is similar.

We conclude this section with a lemma, related to Lemma 2.1 and Propo-
sition 2.2, explaining what happens when we change the position of a point
within an interval (a, b) of finite nonlinearity, i.e. not bounded by the critical
point of h. In that case, unlike in the statement of Lemma 2.1, we do not get
precise information about the gain in the Poincaré coordinate of the image.
Instead, we have a simple inequality.

Lemma 2.4. For any 0 < a < x2 < x1 < b,

|hab(pab(x2))− hab(pab(x1))| > |h−x2b − h
−
x1b|.

Proof. First, by homogeneity we set b = h(b) = 1. By (2.1) we have

|hab(pab(x2))− hab(pab(x1))| = |ph(a)h(b)(h(x2))− ph(a)h(b)(h(x1))|.
Because the critical point of h is farther away from h(b) than the endpoint
h(a), the Poincaré length of (h(x2), h(x1)) measured within (h(a), h(b)) is
larger than that measured within (0, h(b)). By Lemma 2.1, the latter is
strictly larger that |h−x2b − h

−
x1b|, and so we are done.

3. The dynamics. In this section, we make use of the observations
from the previous section in a dynamical setting.

For a = 1, the point 0 is the critical point of period 2 of the map
fa = −|x|α + a.

We now restrict our attention to positive parameters smaller than 1. We
shall denote by 0a, 1a, 2a, . . . the successive points of the orbit of the critical
point of the mapping fa. We have the following main

Theorem 3.1. For every positive integer n the ratio function

rn(a) :=
|(n+ 2)a − (n+ 1)a|
|(n+ 1)a − na|

=
|f (n+2)
a (0)− f (n+1)

a (0)|
|f (n+1)
a (0)− fna (0)|

,

where fa(x) = −h(|x|) + a, is a strictly increasing function of a ∈ (0, 1).



390 W. Pałuba

Proof. First notice that by homogeneity we may set 0a = 0, 1a = 1
(i.e. na 7→ na/1a), and the dependence on the parameter a translates into
the dependence on the value of 2a ∈ (0, 1).

Now if 0 < u < v < 1, then 2u > 2v, so

|2u − 1u|
|1u − 0u|

<
|2v − 1v|
|1v − 0v|

.

Because the interval (2v, 1) has larger nonlinearity than (2u, 1), the strength
of the Poincaré push of 2v towards zero under the action of h is larger than
that of 2u. So we obviously have

|3v − 2v|
|2v − 1| >

|3u − 2u|
|2u − 1| .(3.1)

To make the next step we recall Lemma 2.1. We consider a triple of points
(2v, 3v, 1) and the Poincaré push under h2v1. The absolute value of this push
is by Proposition 2.4 smaller than |h−2v1| (for the map h and the positive

orientation of the interval, the value of the limit quantity h
−

is negative!).
But for our argument this does not suffice. We need to compare the growth
of the strength of this push against the increase of the Poincaré coordinate
of 3v within (2v, 1) to the same quantity for 3u in (2u, 1). That is, we want
to see that

h2v1(p2v1(3v))− h2u1(p2u1(3u)) > 0.(3.2)

By Lemma 2.1,

p2v1(3v) = p2u1(3u) + |p01(2v)− p01(2u)|+ |h−2v1 − h
−
2u1|,

so by Proposition 2.2,

h2v1(p2v1(3v)) = p2u1(3u) + |p01(2v)− p01(2u)|+ |h−2v1− h
−
2u1|+ h

−
3v1 + h

+
2v3v

whereas
h2u1(p2u1(3u)) = p2u1(3u) + h

−
3u1 + h

+
2u3u

and we get

h2v1(p2v1(3v))− h2u1(p2u1(3u))

= |p01(2v)− p01(2u)|+ |h−3v1 + h
+
2v3v − h

−
2v1| − |h

−
3u1 + h

+
2u3u − h

−
2u1|.

By Proposition 2.4,

|h−3v1 + h
+
2v3v − h

−
2v1| > |h

−
p−1

2v1(p2u1(3u))1 + h
+
2vp−1

2v1(p2u1(3u)) − h
−
2v1|

and by Proposition 2.5 the latter quantity is greater than |h−3u1+h
+
2u3u−h

−
2u1|,

so (3.2) is proven. The conclusion of the above argument is

p3v2v(4v)− p3u2u(4u) > |p01(2v)− p01(2u)| > 0,(3.3)
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which in particular yields

|4v − 3v|
|3v − 2v|

>
|4u − 3u|
|3u − 2u|

.

Now Lemma 2.4 will enable us to proceed recursively.
Let n be a positive even integer and suppose we already know that

the nonlinearity of the interval ((n − 2)v, (n − 1)v) is larger than that of
((n − 2)u, (n − 1)u), and also that p(n−1)v(n−2)v(nv) > p(n−1)u(n−2)u(nu).
Then by Propositions 2.4 and 2.5 it is clear that, similarly to the argument
for (3.1), the inequality

|jv − (j − 1)v|
|(j − 1)v − (j − 2)v|

>
|ju − (j − 1)u|

|(j − 1)u − (j − 2)u|
is satisfied not only for j = n, but also for the odd number j = n + 1.
Thus the interval (nv, (n+ 1)v) has larger nonlinearity than (nu, (n+ 1)u).
To complete the inductive step from n to n+ 2 we only need to check that
p(n+1)vnv((n+2)v) > p(n+1)unu((n+2)u). Proceeding as in the proof of (3.2)
(but this time without Lemma 2.1 in place) we get

pnv(n−1)v((n+ 1)v)

= pnu(n−1)u((n+ 1)u) + (p(n−1)v(n−2)v(nv)− p(n−1)u(n−2)u(nu))

+ [(h(n−1)v(n−2)v(p(n−1)v(n−2)v(nv))− p(n−1)v(n−2)v(nv))

− (h(n−1)u(n−2)u(p(n−1)u(n−2)u(nu))− p(n−1)u(n−2)u(nu))].

Thus, by Proposition 2.2,

hnv(n−1)v(pnv(n−1)v((n+ 1)v))

= pnu(n−1)u((n+ 1)u) + (p(n−1)v(n−2)v(nv)− p(n−1)u(n−2)u(nu))

+ [(h(n−1)v(n−2)v(p(n−1)v(n−2)v(nv))− p(n−1)v(n−2)v(nv))

− (h(n−1)u(n−2)u(p(n−1)u(n−2)u(nu))− p(n−1)u(n−2)u(nu))

+ h
−
(n+1)v(n−1)v + h

+
nv(n+1)v

and finally

(3.4) hnv(n−1)v(pnv(n−1)v((n+ 1)v))− hnu(n−1)u(pnu(n−1)u((n+ 1)u))

= [(p(n−1)v(n−2)v(nv)− p(n−1)u(n−2)u(nu))

+ (h(n−1)v(n−2)v(p(n−1)v(n−2)v(nv))− p(n−1)v(n−2)v(nv))

− (h(n−1)u(n−2)u(p(n−1)u(n−2)u(nu))− p(n−1)u(n−2)u(nu))]

+ [h
−
(n+1)v(n−1)v + h

+
nv(n+1)v − h

−
(n+1)u(n−1)u − h

+
nu(n+1)u ].
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By Proposition 2.4 the second summand in brackets is larger than

h
−
p−1
nv(n−1)v

(pnu(n−1)u ((n+1)u))(n−1)v + h
+
nvp
−1
nv(n−1)v

(pnu(n−1)u ((n+1)u))

− h−(n+1)u(n−1)u − h
+
nu(n+1)u ,

and this, by Proposition 2.5, is in turn larger than h
−
nv(n−1)v − h

−
nu(n−1)u , a

negative quantity. However, by Lemma 2.4 the absolute value of this quantity
is smaller than the absolute value of the first summand in brackets in (3.4).
This is so because

[(p(n−1)v(n−2)v(nv)− p(n−1)u(n−2)u(nu))

+ (h(n−1)v(n−2)v(p(n−1)v(n−2)v(nv))− p(n−1)v(n−2)v(nv))

− (h(n−1)u(n−2)u(p(n−1)u(n−2)u(nu))− p(n−1)u(n−2)u(nu))]

= (p(n−1)v(n−2)v(nv)− p(n−1)u(n−2)u(nu))

+ (h(n−1)v(n−2)v(p(n−1)u(n−1)u(nu))

− h(n−1)u(n−2)u(p(n−1)u(n−2)u(nu)))

+ [(h(n−1)v(n−2)v(p(n−1)v(n−2)v(nv))− p(n−1)v(n−2)v(nv))

− (h(n−1)v(n−2)v(p(n−1)u(n−2)u(nu))− p(n−1)u(n−2)u(nu))]

and by Lemma 2.4,

(p(n−1)v(n−2)v(nv)− p(n−1)u(n−2)u(nu))

+ [(h(n−1)v(n−2)v(p(n−1)v(n−2)v(nv))− p(n−1)v(n−2)v(nv))

− (h(n−1)v(n−2)v(p(n−1)u(n−2)u(nu))− p(n−1)u(n−2)u(nu))]

> |h−nv(n−1)v − h
−
p−1

(n−1)v(n−2)v
(p(n−1)u(n−2)u (nu))(n−1)v |

whereas

h(n−1)v(n−2)v(p(n−1)u(n−2)u(nu))− h(n−1)u(n−2)u(p(n−1)u(n−2)u(nu))

= (h
−
p−1

(n−1)v(n−2)v
(p(n−1)u(n−2)u (nu))(n−1)v − h

−
nu(n−1)u)

+ (h
+
(n−2)vp−1

(n−1)v(n−2)v
(p(n−1)u(n−2)u (nu)) − h

+
(n−2)unu)

> h
−
p−1

(n−1)v(n−2)v
(p(n−1)u(n−2)u (nu))(n−1)v − h

−
nu(n−1)u.

This completes the inductive step.
So we have proved that when we increase the parameter the outcome of

any two consecutive steps constitutes a larger fraction of a “more nonlinear”
interval. Thus, this newly obtained domain itself has larger nonlinearity and
the above procedure can be applied repeatedly, taking consecutive intervals
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delimited by the post-critical orbit as new domains of h each time. The proof
of Theorem 3.1 is now complete.
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