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A Non-standard Version of the Borsuk�Ulam TheorembyCarlos BIASI and Denise de MATTOSPresented by Czesªaw BESSAGA
Summary. E. Pannwitz showed in 1952 that for any n ≥ 2, there exist ontinuous maps
ϕ : Sn → Sn and f : Sn → R2 suh that f(x) 6= f(ϕ(x)) for any x ∈ Sn. We prove that,under ertain onditions, given ontinuous maps ψ, ϕ : X → X and f : X → R2, althoughthe existene of a point x ∈ X suh that f(ψ(x)) = f(ϕ(x)) annot always be assured,it is possible to establish an interesting relation between the points f(ϕψ(x)), f(ϕ2(x))and f(ψ2(x)) when f(ϕ(x)) 6= f(ψ(x)) for any x ∈ X, and a non-standard version of theBorsuk�Ulam theorem is obtained.1. Introdution. Let X be a topologial spae. An involution on X isa ontinuous map ϕ : X → X whih is its own inverse. A lassial exampleis the antipodal map A : Sn → Sn, A(x) = −x, where Sn denotes the
n-dimensional sphere; the points x and A(x) are said to be antipodal points.The lassial Borsuk�Ulam theorem [1℄ states that every ontinuous map ffrom Sn into Rn ollapses at least a pair of antipodal points, that is, thereexists a point x ∈ Sn suh that f(x) = f(A(x)).Several generalizations of this theorem, in various diretions, are wellknown. In some of these generalizations the sphere is replaed by a more gen-eral spae X and the antipodal map is replaed by an involution T : X → Xwhih is free, that is, T (x) 6= x for any x ∈ X. In this diretion see, forexample, the referenes [2, 8, 9℄.Let us now replae the domain Sn by a topologial spae X and theidentity and the antipodal map on Sn by a pair of any ontinuous maps ψ,ϕon X. A question that naturally arises is whether or not for every ontinuousmap f : X → Rn there exists a point x ∈ X suh that f(ψ(x)) = f(ϕ(x)).
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We �rst onsider the one-dimensional ase. If X is a ompat and on-neted spae, then for every ontinuous map f : X → R it is possible toshow that there exists a point x ∈ X suh that

f(ψ(x)) = f(ϕ(x)).(1.1)The proof is elementary. However, for n = 2, X = Sk and ψ = IdSk theanswer is negative. E. Pannwitz proved in [7℄ that for any k ≥ 2, there existontinuous maps ϕ : Sk → Sk and f : Sk → R2 suh that f(x) 6= f(ϕ(x))for any x ∈ Sk.In this paper, our objetive is to show that, under ertain onditions, fora given ontinuous map f : X → R2, although the existene of a point x ∈ Xsuh that (1.1) holds annot always be assured, it is possible to establish aninteresting relation between the points
u = f(ψϕ(x)), v = f(ϕ2(x)), w = f(ψ2(x))(1.2)when f(ϕ(x)) 6= f(ψ(x)) for any x ∈ X. In general, suh points are vertiesof a triangle in R2 and we prove that this triangle degenerates to a losedline segment determined by the verties v and w for, at least, a point x ina speial subset of X. The existene of suh a subset is ensured when Xis a omplete metri spae and ϕ is an α-ontration on X, where α is themeasure of nonompatness.When ψ is the identity map and ϕ is a free involution on X, we obtaina version of the Borsuk�Ulam theorem in the two-dimensional ase.We denote by [v, w] the losed line segment in R2 joining the points vand w. We will spei�ally prove the followingTheorem 1.1. Let X be a Hausdor� spae and A a ompat , onnetedand loally pathwise onneted subset of X. Let ψ,ϕ : X → X be ontinuousmaps suh that A is invariant under ψ and ϕ, that is, ψ(A) ⊂ A and

ϕ(A) ⊂ A. Suppose that(i) ψ∗ − ϕ∗ : i∗(H1(A,Q)) → i∗(H1(A,Q)) is a surjetive map;(ii) (ψ ◦ ϕ)(x) = (ϕ ◦ ψ)(x) for any x ∈ A.Then for every ontinuous map f : X → R2, either there exists a point
x ∈ X suh that f(ϕ(x)) = f(ψ(x)) or there exists a point x ∈ A suh that
f(ϕψ(x)) ∈ [f(ϕ2(x)), f(ψ2(x))].

2. Proof of Theorem 1.1. For the proof of Theorem 1.1, we need thefollowingLemma 2.1. Let X be a onneted spae and K 6= ∅ a ompat subsetof X. Let g1, g2 : X → R be ontinuous maps suh that g1(K) ⊂ g2(K).Then there exists a point x ∈ X suh that g1(x) = g2(x).
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Proof. Consider the ontinuous map h : X → R given by h(x) =

g2(x)−g1(x) for any x ∈ X. Sine K is ompat, there exist x0, x1 ∈ K suhthat
g2(x0) ≤ g2(x) ≤ g2(x1)(2.1)for any x ∈ K. Furthermore, g1(x) ∈ g2(K) for any x ∈ K and it followsfrom (2.1) that

g2(x0) ≤ g1(x) ≤ g2(x1), ∀x ∈ K,whih implies that h(x0) ≤ 0 ≤ h(x1) and onsequently there is an x ∈ Xsuh that h(x) = 0, that is, g1(x) = g2(x).As a diret onsequene we obtain the followingCorollary 2.2. Let X be a onneted spae and K a ompat subsetof X. Let ψ,ϕ : X → X be ontinuous maps suh that ψ(K) ⊂ ϕ(K). Thenfor every ontinuous map g : X → R there exists a point x ∈ X suh that
g(ψ(x)) = g(ϕ(x)).Lemma 2.3. Let X be a topologial spae and let f, g : X → Sn beontinuous maps. Suppose that there exists u ∈ Hn(X,Z) suh that f∗(u) 6=
(−1)n+1g∗(u). Then there exists x ∈ X suh that f(x) = g(x).Proof. Suppose that f(x) 6= g(x) for any x ∈ X. Then the line segmentin Rn+1 from f(x) to −g(x) does not pass through the origin, sine otherwisethese points would be antipodal and onsequently f(x) = g(x). Hene wean de�ne a map F : X × I → Sn by

F (x, t) =
(1 − t)(−g(x)) + t · f(x)

‖(1 − t)(−g(x)) + t · f(x)‖
, ∀(x, t) ∈ X × I,(2.2)whih is a homotopy between f and −g = A ◦ g, where A : Sn → Sndenotes the antipodal map, whose degree is (−1)n+1. It follows that for any

u ∈ Hn(X,Z), f∗(u) = (−1)n+1g∗(u).Proof of Theorem 1.1. Suppose that f(ϕ(x)) 6= f(ψ(x)) for any x ∈ X.Then we an de�ne a ontinuous map h : X → S1 by
h(x) =

f(ψ(x)) − f(ϕ(x))

‖f(ψ(x)) − f(ϕ(x))‖
.Let g : A→ S1 be the restrition of h to A. It su�es to show the existeneof a point x ∈ A suh that g(ϕ(x)) = g(ψ(x)) or equivalently,

f(ψϕ(x)) − f(ϕ2(x))

‖f(ψϕ(x)) − f(ϕ2(x))‖
=

f(ψ2(x)) − f(ϕψ(x))

‖f(ψ2(x)) − f(ϕψ(x))‖
.(2.3)In fat, for any x ∈ A set u = f(ψϕ(x)) = f(ϕψ(x)), v = f(ϕ2(x)) and
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w = f(ψ2(x)). Then (2.3) is equivalent to

u− v

‖u− v‖
=

w − u

‖w − u‖
,and so

u =

(

‖u− v‖

‖u− v‖ + ‖w − u‖

)

w +

(

‖w − u‖

‖u− v‖ + ‖w − u‖

)

v,that is, u = f(ψϕ(x)) belongs to the line segment in R2 from v = f(ϕ2(x))to w = f(ψ2(x)).Let h∗ : H1(X,Q) → H1(S
1,Q). There are two ases to onsider:(1) there exists v ∈ i∗(H1(A,Q)) suh that h∗(v) 6= 0,(2) h∗(v) = 0 for any v ∈ i∗(H1(A,Q)).In the �rst ase, sine ψ∗ − ϕ∗ is surjetive, there exists u ∈ i∗(H1(A,Q))suh that v = ψ∗(u) − ϕ∗(u). Then

h∗(v) = h∗(ψ∗(u)−ϕ∗(u)) = g∗(ψ∗(u)−ϕ∗(u)) = (g◦ψ)∗(u)−(g◦ϕ)∗(u) 6= 0,whih implies that (g ◦ψ)∗(u) 6= (g ◦ϕ)∗(u). It follows from Lemma 2.3 thatthere exists x ∈ A suh that g(ψ(x)) = g(ϕ(x)).Now suppose that h∗(v) = 0 for any v ∈ i∗(H1(A,Q)) and let u∈H1(A,Q);then i∗(u) = v ∈ i∗(H1(A,Q)) and thus
h∗(v) = h∗(i∗(u)) = (h ◦ i)∗(u) = g∗(u) = 0,that is, g∗ : H1(A,Q) → H1(S

1,Q) is the zero map, whih implies that
g∗ : H1(A,Z) → H1(S

1,Z) is also trivial.It follows from the ommutative diagram
(2.4) π1(A)

��

g∗ // π1(S
1)

��
H1(A,Z)

g∗ // H1(S
1,Z)where the vertial arrows denotes the Hurewiz homomorphism, that

g∗ : π1(A) → π1(S
1) is the zero map. Sine A is Hausdor� and loallypathwise onneted, by the lifting theorem (see, for example, [5, p. 89℄ and[4, p. 26, Theorem 6.1℄) there exists g̃ : A→ R suh that the diagram

(2.5) R

p

��
A

g̃
>>

~
~

~
~

~
~

~
~

g
// S1is ommutative, where p : R → S1 is the universal overing. On the otherhand, sine A is invariant under ϕ, we obtain the sequene {ϕn(A)}n∈N ofsubsets of A suh that
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· · · ⊂ ϕn(A) ⊂ ϕn−1(A) ⊂ · · · ⊂ ϕ2(A) ⊂ ϕ(A) ⊂ A.We onsider the following ompat subset of A:

K =
⋂

n∈N

ϕn(A),(2.6)and we observe that ψ(K) ⊂ K = ϕ(K). In fat, by hypothesis A is invariantunder ψ and ϕ. Furthermore, ϕ ◦ ψ = ψ ◦ ϕ on A. Thus
ψ(K) = ψ

(

⋂

n∈N

ϕn(A)

)

⊂
⋂

n∈N

ψ(ϕn(A)) ⊂
⋂

n∈N

ϕn(ψ(A)) ⊂
⋂

n∈N

ϕn(A) = K.It follows from Corollary 2.2 that there exists a point x ∈ A suh that
g̃(ϕ(x)) = g̃(ψ(x)). Then p ◦ g̃(ϕ(x)) = p ◦ g̃(ψ(x)), whih implies that
g(ϕ(x)) = g(ψ(x)), and the result follows.We have the following immediate orollary:Corollary 2.4. Let X be a Hausdor� spae and A a ompat , on-neted and loally pathwise onneted subset of X. Let ϕ : X → X be afree involution suh that ϕ(A) ⊂ A. Suppose that Id∗ −ϕ∗ : i∗(H1(A,Q)) →
i∗(H1(A,Q)) is a surjetive map. Then for every ontinuous map f : X → R2there exists x ∈ X suh that f(x) = f(ϕ(x)).Remark 2.5. When A = X = S2 and ϕ is the antipodal map, we obtainthe lassial Borsuk�Ulam theorem in the two-dimensional ase.We observe that when i∗(H1(A,Q)) is the trivial group, the homomor-phism ψ∗ − ϕ∗ must be surjetive. Example 2.6 illustrates this ase.Example 2.6. Let Tn = T♯ · · · ♯T be the n-fold onneted sum of tori,whih is embedded in R3 symmetrially with respet to the origin. Let ϕ :
Tn → Tn be the antipodal map. If n is even, there exists a loop A in Tn,homologous to zero, whih separates Tn into two omponents symmetrialwith respet to the origin suh that ϕ(A) = A, as indiated in Figure 1.

   A

Fig. 1
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The group i∗(H1(A,Q)) is trivial, and so by Corollary 2.4, for everyontinuous map f : Tn → R2 there exists a point x ∈ Tn suh that f(x) =

f(ϕ(x)). If n is odd, one an show that this is not true.Remark 2.7. The referee remarked that it is possible to show the exis-tene of a point x ∈ Tn suh that f(x) = f(ϕ(x)) by using the Yang�Smithindex.Remark 2.8. In [8, Theorem A℄, we prove that if (X,T ) is a free involu-tion and X is pathwise onneted suh that Hr(X,Z2) = 0 for 1 ≤ r ≤ n−1,then for every ontinuous map f : X → Rk with k ≤ n there exists a point
x ∈ X suh that f(x) = f(T (x)). We observe that the above example annotbe obtained from that theorem, sine H1(Tn,Z2) 6= 0.Theorem 2.9. Let X be a Hausdor� spae and A a ompat , onnetedand loally pathwise onneted subset of X. Let ϕ : X → X be a ontin-uous map suh that ϕ(A) ⊂ A. Suppose that Id∗ − ϕ∗ : i∗(H1(A,Q)) →
i∗(H1(A,Q)) is a surjetive map. Then for every ontinuous map g : X → Rthere exists x ∈ X suh that

g(x) ≤ g(ϕ(x)) ≤ g(ϕ2(x)) ≤ g(ϕ3(x)) or
g(x) ≥ g(ϕ(x)) ≥ g(ϕ2(x)) ≥ g(ϕ3(x)).Proof. Consider the ontinuous map f : X → R2 given by

f(x) = (g(x), g(ϕ(x))), ∀x ∈ X.By Theorem 1.1, there exists x ∈ X suh that f(ϕ(x)) belongs to the losedline segment in R2 from f(ϕ2(x)) to f(x). Suppose that f(ϕ(x)) = f(x);this implies that
g(x) = g(ϕ(x)) = g(ϕ2(x)).Sine g(ϕ2(x)) ≤ g(ϕ3(x)) or g(ϕ2(x)) ≥ g(ϕ3(x)), the result follows. Theproof remains the same when f(ϕ(x)) = f(ϕ2(x)).Now, suppose that f(ϕ(x)) 6= f(x) and f(ϕ(x)) 6= f(ϕ2(x)). Then

f(ϕ(x)) belongs to the open line segment in R2 from f(ϕ2(x)) to f(x), thatis, there exists 0 < λ < 1 suh that f(ϕ(x)) = f(x) + λ(f(ϕ2(x)) − f(x)).Thus,
gϕ(x) = g(x) + λ(gϕ2(x) − g(x)),

gϕ2(x) = gϕ(x) + λ(gϕ3(x) − gϕ(x)),whih implies the required alternative of inequalities.We have the following immediate orollary:Corollary 2.10. Let X be a Hausdor� spae and A a ompat , on-neted and loally pathwise onneted subset of X. Let ϕ : X → X be a
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ontinuous map suh that ϕ(A) ⊂ A and ϕ3 = IdX . Suppose that

Id∗ − ϕ∗ : i∗(H1(A,Q)) → i∗(H1(A,Q))is a surjetive map. Then for every ontinuous map g : X → R there existsa point x ∈ X suh that g(x) = g(ϕ(x)) = g(ϕ2(x)).Example 2.11. Let S3 be the 3-dimensional standard sphere in omplex
2-spae C2. Let ϕ : S3 → S3 be the transformation de�ned by

ϕ(z0, z1) = (e2πi/3z0, e
2πi/3z1),where z0, z1 are omplex numbers with ∑

1

i=0
|zi| = 1. Then ϕ ats freely on

S3 and generates the yli group Z3.Sine H1(S
3,Q) = 0, we see that Id∗ − ϕ∗ is surjetive. It follows fromCorollary 2.10 that for every ontinuous map g : S3 → R there exists x ∈ S3suh that g(x) = g(ϕ(x)) = g(ϕ2(x)).

3. The partiular ase that ϕ is an α-ontration. In the proof ofTheorem 1.1, sine A is a ompat subset of X, it was possible to onstruta ompat subset K of A suh that ψ(K) ⊂ ϕ(K) (see (2.6)). In Lemma 3.4,we prove that even if A is not ompat, it is possible to ensure the existeneof suh a subset, provided X is a metri spae, A is omplete and ϕ is an
α-ontration. Consider the followingDefinition 3.1. Let X be a normed linear spae. For any boundedsubset A ⊂ X, we de�ne the measure α(A) of nonompatness of A to be

α(A) = inf{k > 0 : A has a �nite overing by sets of diameter ≤ k}.Some important properties of α are given in the following proposition(for more details see, for example, [3℄ and [6℄).Proposition 3.2. Suppose A, B are bounded subsets of X and k ∈ R.Then:(1) A ⊂ B implies α(A) ≤ α(B);(2) α(A ∪B) = max{α(A), α(B)};(3) α(A+B) ≤ α(A) + α(B);(4) α(kA) = |k|α(A);(5) α(CoA) = α(A), where CoA denotes the onvex hull of A;(6) α(A) = α(A), where A denotes the losure of A;(7) α(A) = 0 if and only if A is totally bounded.Definition 3.3. Suppose A is a subset of X and ϕ : A → X is aontinuous map. The map ϕ is said to be an α-ontration if there exists an
r, 0 ≤ r < 1, suh that α(ϕ(B)) ≤ rα(B) for any bounded subset B of A.
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Lemma 3.4. Let M be a metri spae and A a bounded and ompletesubset of M . Let ψ,ϕ : M →M be ontinuous maps suh that A is invariantunder ψ and ϕ and (ψ ◦ ϕ)(a) = (ϕ ◦ ψ)(a) for any a ∈ A. Then if ϕ isan α-ontration on A, there exists a ompat subset K ⊂ A suh that

ψ(K) ⊂ ϕ(K) = K.Proof. Let K be the intersetion of subsets Kn of A indutively de�nedby K1 = ϕ(A) and Kn+1 = ϕ(Kn). We will show that α(K) = 0, whihimplies by Proposition 3.2(7) that K is totally bounded, and sine A isomplete we onlude that K is ompat. In fat, for any n ∈ N, sine ϕ isan α-ontration, from Proposition 3.2(1) and (6) we have
α(Kn) = α(ϕ(Kn−1)) = α(ϕ(Kn−1)) ≤ rα(Kn−1)(3.1)

≤ r2α(Kn−2) ≤ · · · ≤ rn−1α(K1) ≤ rnα(A).Sine K =
⋂

Kn, we have K ⊂ Kn for any n ∈ N. It follows from Proposi-tion 3.2(1) and from (3.1) that
α(K) ≤ α(Kn) ≤ rnα(A), ∀n ∈ N.(3.2)Sine 0 ≤ r < 1, we have limn→∞ rn = 0 and from (3.2) we onlude that

α(K) = 0.Now, we will show that K = ϕ(K). It is easy to see that ϕ(K) ⊂ K. Onthe other hand, K ⊂ ϕ(Kn) for any n ∈ N. Let x ∈ K. Then x = ϕ(xn) forsome xn ∈ Kn. Let S = {x1, x2, . . .} and observe that α(S) = 0; thus S isompat and so (xn)n∈N has a subsequene onverging to some y ∈ K. Then
x = ϕ(y) and thus K ⊂ ϕ(K). The ondition ψ(K) ⊂ K = ϕ(K) followsfrom the ommutativity of the maps ϕ and ψ on A.As a onsequene of Lemma 3.4 we have the following version of Theo-rem 1.1 in the ase that ϕ is an α-ontration.Theorem 3.5. Let M be a metri spae and let A be a bounded , om-plete, onneted and loally pathwise onneted subset of M . Let ψ,ϕ :
M → M be ontinuous maps suh that A is invariant under ψ and ϕ.Suppose that(i) ψ∗ − ϕ∗ : i∗(H1(A,Q)) → i∗(H1(A,Q)) is a surjetive map;(ii) (ψ ◦ ϕ)(x) = (ϕ ◦ ψ)(x) for any x ∈ A.Then for every ontinuous map f : X → R2, either there exists a point
x ∈ X suh that f(ϕ(x)) = f(ψ(x)) or there exists a point x ∈ X suh that
f(ϕψ(x)) ∈ [f(ϕ2(x)), f(ψ2(x))].Proof. The arguments are similar to those used in the proof of Theo-rem 1.1: just observe that the existene of a ompat subset K of A suhthat ψ(K) ⊂ ϕ(K), as in (2.6), is ensured by Lemma 3.4.
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