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FOURIER ANALYSIS

On Billard's Theorem for Random Fourier SeriesbyGuy COHEN and Christophe CUNYPresented by Stanisªaw KWAPIE�
Summary. We show that Billard's theorem on a.s. uniform onvergene of randomFourier series with independent symmetri oe�ients is not true when the oe�ients areonly assumed to be entered independent. We give some neessary or su�ient onditionsto ensure the validity of Billard's theorem in the entered ase.1. Introdution. In this paper we deal with a.s. uniform onvergeneof random Fourier series. Let Γ be the unit irle, and denote by C(Γ )the Banah spae of ontinuous funtions on Γ , with the sup-norm that wedenote by ‖ · ‖C(Γ ). Given a sequene {Xn} of independent entered randomvariables de�ned on a probability spae (Ω, P), one wonders whether, for
P-almost every x ∈ Ω, the series ∑∞

n=1 Xn(x)λn is uniformly onvergenton Γ .Sine the early study of Paley and Zygmund [14℄, this matter bene�tedfrom many works by Salem and Zygmund [16℄, Billard [1℄, Kahane [8℄, Mar-us [11℄, Cuzik and Lai [2℄, Marus and Pisier [12℄, [13℄, Talagrand [17℄,Fernique [4℄, and Weber [18℄.Most of the time, the sequene {Xn} is �rst assumed to be symmetri, sothat, by a theorem of Billard [1℄, it su�es to prove that, a.s., ∑∞
n=1 Xn(x)λnrepresents a ontinuous funtion. Then, one may hope to reah the generalentered ase by symmetrization.Our purpose is to prove that this proedure may fail sometimes. Weshow that Billard's theorem is no longer true when the independent sequene

{Xn} is only assumed to be entered. To illustrate our result, we reall some
2000 Mathematis Subjet Classi�ation: Primary 42A61, 60G17; Seondary 60G50.Key words and phrases: Banah valued random variables, random Fourier series, al-most sure uniform onvergene, Billard's theorem.[39℄
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more or less known moment onditions whih ensure the validity of Billard'stheorem, and give also neessary or su�ient onditions.

2. Conditions for validity of Billard's theorem. Let us �rst reallBillard's theorem, as it appears in Kahane [8, Theorem 3, p. 58℄.Theorem 2.1 (Billard). Let {Xn} be a sequene of independent sym-metri omplex-valued random variables. Then the following onditions areequivalent for the random Fourier series ∑∞
n=1 Xnλn:(i) Almost surely the series represents a bounded funtion.(ii) Almost surely the series represents a ontinuous funtion.(iii) Almost surely the series is onvergent at every point.(iv) Almost surely the series is uniformly onvergent.We would like to know what happens in the entered ase. We disussonditions whih allow one to proeed by symmetrization. We denote by

L1(P, C(Γ )) the Banah spae of all C(Γ )-valued random variables ξ on
Ω with the norm T

Ω ‖ξ‖C(Γ ) dP. The following result is a simple ombi-nation of a theorem of It� and Nisio [6℄ (see also Ledoux and Talagrand[9, Theorem 6.1℄), and a theorem of Ho�man-Jørgensen [5℄ (see also Jainand Marus [7℄).Theorem 2.2. Let {Xn} ⊂ L1(P) be a sequene of independent omplex-valued entered random variables on (Ω, P). Assume that E(supn≥1 |Xn|)
< ∞. Let {X ′

n} be an independent opy of {Xn}, de�ned on (Ω′, P′). Thefollowing onditions are equivalent :(i) Almost surely the series ∑∞
n=1 Xnλn onverges in C(Γ ).(ii) Almost surely in Ω × Ω′ the series ∑∞

n=1(Xn − X ′
n)λn onvergesin C(Γ ).(iii) The series ∑∞

n=1(Xn − X ′
n)λn onverges in L1(P ⊗ P

′, C(Γ )).(iv) The series ∑∞
n=1 Xnλn onverges in L1(P, C(Γ )).Moreover , if any of the above holds, then supn≥1 max|λ|=1 |

∑n
k=1(Xk−X ′

k)λ
k|and supn≥1 max|λ|=1 |

∑n
k=1 Xkλ

k| are integrable.Proof. Clearly (i)⇒(ii). By assumption E(supn≥1 |Xn−X ′
n|) < ∞, hene(ii)⇒(iii) by [5, Corollary 3.3℄. The impliation (iii)⇒(iv) follows by indepen-dene and onvexity (see [12, Lemma 4.2, p. 42℄). The impliation (iv)⇒(i)follows from the It� and Nisio theorem [6℄. If one of the onditions (i)�(iv)holds, then the integrability of the maximal funtions follows by [5, Corol-lary 3.3℄.
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Remark. In the above theorem, if we assume that {Xn} ⊂ Lp(P) forsome 1 ≤ p < ∞, and E(supn≥1 |Xn|p) < ∞, then we have, in fat, onver-gene in Lp(P, C(Γ )) and Lp(P, C(Γ ))-integrability of the maximal funtions(see [5, Corollary 3.3℄).The next lemma is a simple ase of Lemma 3.1 in [7℄.Lemma 2.3. Let {Xn} ⊂ L1(P) be a sequene of independent randomvariables. Then E(supn≥1 |Xn|) < ∞ if and only if ∑∞

n=1 E(|Xn|1{|Xn|≥a})
< ∞ for some a > 0.Corollary 2.4. Let 1 < p < 2, and let {an} be a sequene of omplexnumbers suh that

∞∑

n=1

(
∑∞

k=n |ak|p)1/p

n(log n)1/p
< ∞.Let {Xn} ⊂ L1(P) be a sequene of entered independent random variables.Assume that for some M > 0 we have P(|Xn| ≥ u) ≤ M/up for every u ≥ 1and n ≥ 1. Then the series ∑∞

n=1 anXnλn is a.s. uniformly onvergent.Proof. It follows from Fernique [4℄ (see also Marus and Pisier [13, Theo-rem B and the disussion in Remark 4.4℄) that the result is true for symmetriindependent {Xn}. Now, by the ondition on the tails of the variables {Xn},we have, for an 6= 0,
E(|anXn|1{|anXn|≥1}) = |an|

∞\
1/|an|

P(|Xn| > u) du + P(|anXn| ≥ 1)

≤ p

p − 1
M |an|p.Hene, by Lemma 2.3 we have E(supn≥1 |anXn|) < ∞. So, Theorem 2.2yields the result.

Remark. In a similar way, the results of Fernique for 2 ≤ p < ∞ (see[4, Examples (d) and (e)℄) an be extended to the entered ase.Corollary 2.5. Let 1 < p ≤ 2, and let {Xn} ⊂ Lp(P) be a sequene ofentered independent random variables. If
∞∑

n=2

(
∑∞

k=n E|Xk|p)1/p

n(log n)1/p
< ∞,in partiular , if for some ε>0 the series ∑∞

n=2 E|Xn|p(log n)p−1(log log n)p+εonverges, then the random Fourier series ∑∞
n=1 Xnλn is a.s. onvergentin C(Γ ).Proof. First we prove the ase p = 2. By Theorem 5.1.5 of Salemand Zygmund [16℄, and by the priniple of redution [8, p. 9℄ (see also
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[12, Ch. VII, �1℄), we obtain the assertion for the ase where {Xn} aresymmetri random variables. Sine the ondition of the theorem implies
E(supn≥1 |Xn|p) < ∞, the non-symmetri ase follows from the symmetriza-tion argument of Theorem 2.2.In the ase 1 < p < 2 we do the following: for Xn 6= 0 put an =
(E|Xn|p)1/p and Yn = Xn/(E|Xn|p)1/p. Otherwise put an = 0 and Yn = 0.Clearly, we have P(|Yn| > u) ≤ 1/up. By appliation of Corollary 2.4 to {an}and {Yn}, we obtain the result.
Remark. Under the ondition of the orollary above, E(supn≥1 |Xn|p)

< ∞. Hene, Theorem 2.2 also yields onvergene in Lp(P, C(Γ )) and Lp-integrability of the maximal funtion (see the remark after Theorem 2.2).Corollary 2.6 (Cuzik and Lai, [2℄). Let {Zn} be entered i.i.d. ran-dom variables with TΩ |Z1| log+ |Z1| dP <∞. Then the series ∑∞
n=1(Zn/n)λnis a.s. uniformly onvergent.Proof. It was proved in Cuzik and Lai [2℄ and Talagrand [17℄ that fora symmetri i.i.d. sequene {Zn} with TΩ |Z1| log+ log+ |Z1| dP < ∞, theonlusion of the orollary holds. Now, sine TΩ |Z1| log+ |Z1| dP < ∞ wehave

∞∑

n=1

E

( |Zn|
n

1{|Zn|≥n}

)
≤
\
Ω

|Z1|
∞∑

n=1

1{|Z1|≥n}

n
dP ≤

\
Ω

|Z1|
[|Z1|]+1∑

n=1

1

n
dP

≤
\
Ω

|Z1| log(|Z1| + 1) dP < ∞,

where [|Z1|] denotes the integral part of |Z1|. Hene, Lemma 2.3 and Theo-rem 2.2 yield the result.
Remarks 1. Corollary 2.6 is already proven in [2℄. We gave it to illus-trate the use of Theorem 2.2, and also beause the statement of this orollaryis very lose to the situation of the ounterexample given in Theorem 3.1 be-low. Indeed, modulo a rearrangement, the sequene {an} de�ned in the proofof Theorem 3.1 is essentially the sequene {1/n}, and by Lemma 2.3, the on-dition E(sup |Zn|/n) < ∞ is atually equivalent to T|Z1| log+ |Z1| dP < ∞.In Theorem 3.1 we have T|Z1|(log+ |Z1|)1−ε dP < ∞ for every ε > 0, whileT

|Z1| log+ |Z1| dP = ∞.2. The optimality of the ondition T|Z1| log+ |Z1| dP < ∞ is also justi�edby the disussion in Marinkiewiz and Zygmund [10, p. 78℄.3. When {Zn} are symmetri i.i.d., Talagrand [17℄ proved that the on-dition T|Z1| log+ log+ |Z1| dP < ∞ is neessary and su�ient for the a.s.uniform onvergene of ∑∞
n=1 Znλn/n.
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Using Billard's theorem and the symmetrization argument of The-orem 2.2, we obtain the following extension of Billard's theorem in the en-tered ase.Theorem 2.7. Let {Xn} ⊂ L1(P) be a omplex sequene of enteredindependent random variables. If E(supn≥1 |Xn|) < ∞, then the followingonditions are equivalent for the random Fourier series ∑∞

n=1 Xnλn:(i) Almost surely the series represents a bounded funtion.(ii) Almost surely the series represents a ontinuous funtion.(iii) Almost surely the series onverges everywhere.(iv) Almost surely the series onverges uniformly.Definition 2.1. We say that the random Fourier series ∑∞
n=1 Xnλn hasproperty B if onditions (i)�(iv) of Theorem 2.7 are all equivalent, i.e., eitherall of them hold or all of them are false.

Remark. The ondition supn≥1 ‖
∑n

k=1 Xkλ
k‖C(Γ ) < ∞ a.s. impliesthat, almost surely, ∑n

k=1 Xnλn represents a bounded funtion (see [19, The-orem 4.2(ii), p. 136℄). Hene, under the assumption E(supn≥1 |Xn|) < ∞assertions (i)�(iv) are all equivalent to supn≥1 ‖
∑n

k=1 Xkλ
k‖C(Γ ) < ∞ a.s.,for entered independent variables. In the symmetri ase, this remains truewithout the assumption E(supn≥1 |Xn|) < ∞, by Billard's theorem (see alsothe disusssion in [8, Theorem 1, p. 13℄).Here we give a di�erent type of moment ondition.Corollary 2.8. Let {Xn} ⊂ L4(P) be a sequene of independent en-tered random variables, and assume that supn≥1 E(|Xn|4)/(E|Xn|2)2 < ∞.Then the series ∑∞

n=1 Xnλn has property B.Proof. Let {X ′
n} be an independent opy of {Xn}, and denote by E

′the orresponding expetation. If one of the above onditions (i)�(iv) holds,then it also holds for ∑∞
n=1(Xn − X ′

n)λn. Billard's theorem shows thata.s. ∑∞
n=1(Xn − X ′

n)λn onverges uniformly. By the Riesz�Fisher theo-rem, ∑∞
n=1 |Xn − X ′

n|2 onverges a.s. Sine EE
′|Xn − X ′

n|4 ≤ 16E|Xn|4 and
EE

′|Xn − X ′
n|2 = 2E|Xn|2, we �nd that

sup
n≥1

EE
′(|Xn − X ′

n|4)/(EE
′|Xn − X ′

n|2)2 < ∞.Theorem 5 in [8, Ch. 3, p. 33℄, applied to {|Xn − X ′
n|2}, shows that∑∞

n=1 EE
′|Xn −X ′

n|2 < ∞, and that yields E(supn≥1 |Xn|2) ≤
∑∞

n=1 E|Xn|2
< ∞. Theorem 2.7 yields the result.Corollary 2.9. Let {an} be a sequene of omplex numbers, and let
{Xn} ⊂ L1(P) be a sequene of entered independent random variables. As-sume that there exists C > 0 suh that T∞u P(|Xn| > v) dv ≤ CuP(|Xn| > u)
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for every n ≥ 1 and u ≥ 1. Then the random Fourier series ∑∞

n=1 anXnλnhas property B.
Remarks. 1. If there exists p > 1 suh that for every n ≥ 1 the funtion

u 7→ up
P(|Xn| > u) is non-inreasing, then the ondition of the orollary issatis�ed.2. The ondition is also satis�ed in the ase where the {Xn} are en-tered i.i.d., and the tail P(|X1| > u) is regularly varying with exponent

̺ < −1 (see the de�nition in Feller [3, p. 276℄, and use [3, Theorem 1(a),p. 281℄).Proof of Corollary 2.9. Assume that the series ∑∞
n=1 anXnλn satis�esone of the onditions (i)�(iv) above. Conditions (iii) or (iv) yield anXn → 0a.s. Conditions (i) or (ii) and the Riemann�Lebesgue lemma imply that

anXn → 0 a.s. Hene, the events {|anXn| ≥ 1} take plae a �nite number oftimes a.s., and by the Borel�Cantelli lemma, the series ∑∞
n=1 P(|anXn| ≥ 1)onverges. By the assumption on the tail, applied with u = 1/|an| (when

an 6= 0), we obtain
E(|anXn|1{|anXn|≥1}) = |an|

∞\
1/|an|

P(|Xn| > v) dv + P(|anXn| ≥ 1)

≤ (C + 1)P(|anXn| ≥ 1).Hene by Lemma 2.3 we have E(supn≥1 |anXn|) < ∞, and the result followsby Theorem 2.7.Theorem 2.10. Let {Xn} be a sequene of entered independent randomvariables. If the deterministi series ∑∞
n=1 E(Xn1{|Xn|≤1})λ

n is uniformlyonvergent , then the random Fourier series ∑∞
n=1 Xnλn has property B.Proof. Assume the series ∑∞

n=1 Xnλn satis�es one of the onditions(i)�(iv) above, say (j) ∈ {(i), . . . , (iv)}. As shown in the proof of Corol-lary 2.9, we have Xn → 0 a.s., so ∑∞
n=1 Xn1{|Xn|≤1}λ

n satis�es ondi-tion (j). Sine ∑∞
n=1 E(Xn1{|Xn|≤1})λ

n is uniformly onvergent, the series∑∞
n=1[Xn1{|Xn|≤1}−E(Xn1{|Xn|≤1})]λ

n satis�es ondition (j). Theorem 2.7shows that it is a.s. uniformly onvergent, so the series ∑∞
n=1 Xn1{|Xn|≤1}λ

nis a.s. uniformly onvergent. Sine Xn → 0 a.s., the series ∑∞
n=1 Xnλn satis-�es (i)�(iv).Theorem 2.11. Let {Xn} be a sequene of entered independent randomvariables. If the random Fourier series ∑∞

n=1 Xnλn satis�es one of the aboveonditions (i)�(iv), then also the deterministi series ∑∞
n=1E(Xn1{|Xn|≤1})λ

nsatis�es this ondition.Proof. Assume the series ∑∞
n=1 Xnλn satis�es one of the onditions(i)�(iv) above, say (j) ∈ {(i), . . . , (iv)}. So, Xn → 0 a.s., and the series
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∑∞

n=1 Xn1{|Xn|≤1}λ
n satis�es ondition (j). Let {X ′

n} be an independentopy of {Xn}, and let E
′ be the orresponding expetation in the probabil-ity spae of {X ′

n}. For every n ≥ 1, de�ne the symmetri random variables
Yn = Xn1{|Xn|≤1} − X ′

n1{|X′

n|≤1}. Now, the series ∑∞
n=1 Ynλn satis�es on-dition (j), so by Billard's theorem it is a.s. uniformly onvergent. Hene,by Theorem 2.2, the series ∑∞

n=1[Xn1{|Xn|≤1} − E(Xn1{|Xn|≤1})]λ
n is a.s.uniformly onvergent, and the result follows.

3. A ounterexample in the entered aseTheorem 3.1. There exist a sequene {Zn} of independent identiallydistributed entered (hene in L1) real random variables and a sequene
{an} ∈ ℓ2 of omplex numbers suh that almost surely the Fourier series∑∞

n=1 anZnλn onverges at every λ ∈ Γ and represents a ontinuous fun-tion, while ∑∞
n=1 anZnλn is almost surely not uniformly onvergent. More-over , almost surely , the partial sums of the series are uniformly bounded onthe irle.

Remarks. 1. Cuzik and Lai [2, p. 10℄ onstruted an example of arandom Fourier series for whih a.s. there is onvergene at eah point, exeptone for whih, in fat, the random Fourier series diverges to in�nity. So, thelimit funtion is not ontinuous.2. The sequene {anZn} in the theorem is omplex. We do not know ofany ounterexample with {anZn} being real-valued.Theorem 3.1 is based on the following basi result.Proposition 3.2. There exists C > 0 suh that for all l ≥ 2, we have
sup
n≥1

sup
x∈R

∣∣∣∣
n∑

k=1

sin kx

(k + l) log(k + l)

∣∣∣∣ ≤
C

log l
.Proof. De�ne

Sn(x) =

n∑

k=1

sin kx

kfor every n ≥ 1. It is well known (see e.g. Zygmund [19, Vol. I, p. 61℄) that
{Sn} is uniformly bounded, i.e., K := supn≥1 supx∈R |Sn(x)| < ∞. De�ne

Rl,n(x) =

n∑

k=1

sin kx

(k + l) log(k + l)for every n ≥ 1, and put S0(x) ≡ 0. Also, for any l ≥ 2 and k ≥ 1 de�ne
ul(k) =

1

log(k + l)
and vl(k) =

l

(k + l) log(k + l)
.By Abel's summation by parts we have
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Rl,n(x) =

n∑

k=1

[Sk(x) − Sk−1(x)]
k

(k + l) log(k + l)

=
n∑

k=1

[Sk(x) − Sk−1(x)][ul(k) − vl(k)]

=

n∑

k=1

Sk(x)[ul(k) − vl(k) − ul(k + 1) + vl(k + 1)]

+ Sn(x)[ul(n + 1) − vl(n + 1)].Hene, by monotoniity (in k) of {ul(k)} and {vl(k)} we have
|Rl,n(x)| ≤

n∑

k=1

|Sk(x)|[ul(k) − ul(k + 1)] +
n∑

k=1

|Sk(x)|[vl(k) − vl(k + 1)]

+ |Sn(x)||ul(n + 1) − vl(n + 1)|
≤ K[ul(1)−ul(n + 1)] + K[vl(1)−vl(n + 1)] + K[ul(n + 1) + vl(n + 1)]

≤ K[ul(1) + vl(1)] ≤ K

[
1

log(l + 1)
+

l

(l + 1) log(l + 1)

]
≤ 2K

log(l + 1)
.Proof of Theorem 3.1. For any n≥1 put un =22n and vn = (un+un+1)/2.In addition put

ak =






1

un + vn − k
eik/n if un + 1 ≤ k ≤ vn − 1,

− 1

un − vn + k
eik/n if vn + 1 ≤ k ≤ un+1 − 1,

0 otherwise.Let Z be a real random variable with distribution law given by
P(Z = −1) = α, P(Z ≥ t) = β

∞\
t

f(x) dx for t ≥ 2,where f(x) = 1
x2(log x)2

, and α and β are hosen suh that Z be a enteredrandom variable.Let {Zn} be a sequene of independent opies of Z. We want to provethat the series ∑∞
n=1 anZnλn satis�es the assertions of the theorem.As suggested by Theorems 2.10 and 2.11, we will proeed by trunationin order to redue our proof to the ase of a deterministi Fourier series.For any n ≥ 1 put

bk =






un + vn − k

log(un + vn − k)
if un ≤ k ≤ vn − 1,

un − vn + k

log(un − vn + k)
if vn ≤ k ≤ un+1 − 1,

0 otherwise.
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We de�ne Yn = Zn1{Zn≤bn}, and we show that the series ∑∞

n=1 |an| |Zn−Yn|onverges a.s.(i) Sine E|Z| < ∞,
∞∑

k=5

P(|ak| |Zk − Yk| ≥ 1)

=

∞∑

n=1

( vn−1∑

k=un+1

P(|Zk − Yk| ≥ un +vn−k) +

un+1−1∑

k=vn+1

P(|Zk−Yk| ≥ un−vn +k)
)

=
∞∑

n=1

( vn−1∑

k=un+1

P(Zk ≥ un + vn − k) +

un+1−1∑

k=vn+1

P(Zk ≥ un − vn + k)

)

= 2

∞∑

n=1

vn−1∑

k=un+1

P(Z ≥ k) ≤ 2

∞∑

n=5

P(Z ≥ n) < ∞.

(ii) In a similar way, breaking the sums, we have
∞∑

k=5

E(|ak| |Zk − Yk|1{|ak| |Zk−Yk|≤1})

=

∞∑

n=1

( vn−1∑

k=un+1

|ak|E(Zk1{bk<Zk≤1/|ak|}) +

un+1−1∑

k=vn+1

|ak|E(Zk1{bk<Zk≤1/|ak|})
)

=
∞∑

n=1

vn−1∑

k=un+1

1

un + vn − k
E(Z1{ un+vn−k

log (un+vn−k)
≤Z≤un+vn−k})

+
∞∑

n=1

un+1−1∑

k=vn+1

1

un − vn + k
E(Z1{ un−vn+k

log(un−vn+k)
≤Z≤un−vn+k})

= 2
∞∑

n=1

vn−1∑

k=un+1

1

k
E(Z1{k/log k≤Z≤k}) ≤ 2

∞∑

n=5

1

n
E(Z1{n/log n≤Z≤n})

= 2β
∞∑

n=5

1

n

n\
n/log n

xf(x) dx = 2β
∞∑

n=5

1

n

(
1

log n − log log n
− 1

log n

)

≤ C

∞∑

n=5

log log n

n(log n)2
< ∞.

Combining (i) and (ii) shows that ∑∞
n=1 |an| |Zn − Yn| onverges a.s.
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We have

∞∑

n=1

2n/2
( un+1∑

k=un+1

E|akYk|2
)1/2

≤
∞∑

n=1

2n/2

(
2

vn−1∑

k=un+1

1

k2
E(Z2

1{|Z|≤k/log k})

)1/2

≤
√

2

∞∑

n=1

2n/2

( ∞∑

k=un+1

1

k2

(
α +

k/log k\
2

x2f(x) dx
))1/2

≤ C
∞∑

n=1

2n/2

( ∑

k≥un+1

1

k(log k)3

)1/2

≤ C ′
∞∑

n=1

2−n/2 < ∞,

for some positive onstants C and C ′.Let {Y ′
n} be an independent opy of {Yn} and write Ŷn = Yn − Y ′

n. Then
∑

n≥1

2n/2
( un+1∑

k=un+1

E|akŶk|2
)1/2

< ∞.

By the proof of Theorem 1 in [8, Ch. 7, p. 84℄ (see also [18, Theorem 10℄), al-most surely, the random Fourier series ∑∞
n=1 anŶnλn is uniformly onvergent.Sine by onstrution we have supn≥1 |anYn| < ∞ everywhere, Theorem 2.2shows that the random Fourier series ∑∞
n=1 an(Yn−EYn)λn is a.s. uniformlyonvergent. Sine by (i) and (ii) above the series ∑∞

n=1 an(Yn − Zn)λn isa.s. absolutely onvergent, the random Fourier series ∑∞
n=1 anZnλn a.s. on-verges everywhere (or uniformly), or represents a ontinuous funtion if andonly if the deterministi series ∑∞

n=1 anEYnλn onverges everywhere (or uni-formly), or represents a ontinuous funtion.For any k ≥ 5 we have
E(Z1{Z≤k/log k}) = −E(Z1{Z>k/log k})

= −β

∞\
k/log k

xf(x) dx = − β

log k − log log k
.Hene,

EYk = − β

log |ak| − log log |ak|
,and we obtain

(∗) EYk = − β

log |ak|
+ O

(
log log |ak|
log2 |ak|

)
.
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Using the onvention 0/log 0 = 0, de�ne

T (λ) =
∞∑

k=1

ak

log |ak|
λk

in L2(dλ). By (∗) we have
∞∑

k=1

∣∣∣∣akEYk +
βak

log |ak|

∣∣∣∣ < ∞.Hene, it is enough for our purpose to study the behavior of T (λ).For any n ≥ 1, de�ne
Qn(λ) =

vn−1∑

k=un+1

λk − λ2vn−k

(un + vn − k)log(un + vn − k)
.We have

T (λ) =

∞∑

n=1

un+1−1∑

k=un+1

ak

log |ak|
λk =

∞∑

n=1

vn−1∑

k=un+1

(ei/nλ)k − (ei/nλ)2vn−k

(un + vn − k) log(un + vn − k)

=
∞∑

n=1

Qn(ei/nλ).Sine
Qn(λ) =

vn−1∑

k=un+1

λk − λ2vn−k

(un + vn − k) log(un + vn − k)

= λvn

vn−un−1∑

k=1

λ−k − λk

(k + un)log(k + un)
,Proposition 3.2 yields

‖Qn‖C(Γ ) ≤
2C

log un
≤ 2C

2n
.Hene the partial sums ∑un+1

k=1 akλ
k/log |ak| =

∑n
k=1 Qk(e

i/kλ) onverge uni-formly, neessarily to T (λ), so T represents a ontinuous funtion.Now we show that ∑∞
k=1 akλ

k/log |ak| onverges pointwise to T (λ). Forany un < m ≤ un+1 we have
∣∣∣∣

m∑

k=1

akλ
k

log |ak|
− T (λ)

∣∣∣∣ ≤
∣∣∣∣

un∑

k=1

akλ
k

log |ak|
− T (λ)

∣∣∣∣ +

∣∣∣∣
m∑

k=un+1

akλ
k

log |ak|

∣∣∣∣.As already shown, the �rst term on the right hand side onverges uniformlyto zero, so it is enough to show that pointwise
max

un<m≤un+1

∣∣∣∣
m∑

k=un+1

akλ
k

log |ak|

∣∣∣∣ →n 0.
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Sine we learly have

max
un<m≤un+1

∣∣∣∣
m∑

k=un+1

akλ
k

log |ak|

∣∣∣∣ ≤ max
un<m≤vn

∣∣∣∣
m∑

k=un+1

akλ
k

log |ak|

∣∣∣∣

+ max
vn<m≤un+1

∣∣∣∣
m∑

k=vn+1

akλ
k

log |ak|

∣∣∣∣,it is enough to show that eah of the terms on the right hand side goes tozero pointwise. Put Dn(t) :=
∑n

k=1 eint. Simple omputation yields |Dn(t)|
≤ 4/|t| for 0 < |t| ≤ π. Fix λ0 = eit0 . Using Abel's summation by parts wehave

m∑

k=un+1

akλ
k
0

log |ak|
=

m∑

k=un+1

|ak|eik(1/n+t0)

log |ak|

=
m∑

k=un+1

|ak|[Dk(1/n + t0) − Dk−1(1/n + t0)]

log |ak|

=
m∑

k=un+1

( |ak|
log |ak|

− |ak+1|
log |ak+1|

)
Dk(1/n + t0)

− |aun+1|Dun
(1/n + t0)

log |aun+1|
+

|am+1|Dm(1/n + t0)

log |am+1|
.For any t0 we have eventually |1/n + t0| > 0. Using monotoniity of

{−|ak|/log |ak|} we have
∣∣∣∣

m∑

k=un+1

akλ
k
0

log |ak|

∣∣∣∣ ≤
8

|1/n + t0|

(
1

un log un
− 1

vn log vn

)
.

Hene
max

un<m≤vn

∣∣∣∣
m∑

k=un+1

akλ
k
0

log |ak|

∣∣∣∣ →n 0.

Similarly
max

vn<m≤un+1

∣∣∣∣
m∑

k=vn+1

akλ
k

log |ak|

∣∣∣∣ →n 0

pointwise.Now, by evaluating ertain bloks of the series ∑∞
k=1 akλ

k/log |ak|along the sequene {e−i/n}, we show that ∑n
k=1 akλ

k/log |ak| is not Cauhyin C(Γ ), hene does not onverge uniformly. This is established by the fol-lowing:
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∣∣∣∣

vn−1∑

k=un+1

ake
−ik/n

log |ak|

∣∣∣∣ =

vn−1∑

k=un+1

1

(un +vn−k) log(un +vn−k)
=

vn−1∑

k=un+1

1

k log k

≥ log log(vn − 1) − log log(un + 1) ≥ log log(un+1/2) − log log(2un)

≥ log((2n+1 − 1) log 2) − log((2n + 1) log 2) ≥ log 2 + o(1/2n).On the other hand, sine
sup
m≥1

max
|λ|=1

∣∣∣∣
m∑

k=1

akλ
k

log |ak|

∣∣∣∣ ≤ sup
n≥1

max
|λ|=1

∣∣∣∣
un∑

k=1

akλ
k

log |ak|

∣∣∣∣ + sup
n≥1

{ un+1∑

k=un+1

|ak|
− log |ak|

}

≤
∞∑

k=1

‖Qk(e
i/kλ)‖C(Γ ) + 2 sup

n≥1

{ vn−1∑

k=un+1

1

k log k

}

≤ 4C + 2 sup
n≥1

(log log(vn) − log log(un))

≤ 4C + 2 sup
n≥1

(log log(22n+1
) − log log(22n

)) = 4C + 2 log 2,

the partial sums ∑n
k=1 akλ

k/log |ak| are uniformly bounded.
Remark. The onstrution in Theorem 3.1 is inspired by the ounterex-ample of Fejér as presented in Zygmund [19, Vol. I, p. 299℄.Corollary 3.3. There exist a sequene {Zn} of independent identiallydistributed entered real random variables and a sequene {an} ∈ ℓ2 of om-plex numbers suh that almost surely , for any ontration T on a Hilbertspae H the series ∑∞

n=1 anZnTnh onverges in norm for every h ∈ H, butthe Fourier series ∑∞
n=1 anZnλn does not onverge uniformly.Proof. For the sequene onstruted in the previous theorem, a.s. thepartial sums ∑n

k=1 akZkλ
k are uniformly bounded. We use the spetral the-orem and the dominated onvergene theorem to establish the orollary forunitary operators. Then we apply the unitary dilation theorem to pass tothe ontration ase (see [15, Appendix 4, �153℄).

Remark. Let {bn} be a series of omplex numbers, and let {γn} be adense sequene in Γ . On ℓ2 we de�ne a unitary operator U by the followingrule: Uc = {γncn} for every c := {cn} ∈ ℓ2. It is easy to hek that uniformonvergene of ∑∞
n=1 bnλn is equivalent to operator norm onvergene of∑∞

n=1 bnUn. Hene, in the above orollary we annot have operator normonvergene for all ontrations T (even only all unitary operators) on someHilbert spae.
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