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Summary. We show that Billard’s theorem on a.s. uniform convergence of random
Fourier series with independent symmetric coefficients is not true when the coeflicients are
only assumed to be centered independent. We give some necessary or sufficient conditions
to ensure the validity of Billard’s theorem in the centered case.

1. Introduction. In this paper we deal with a.s. uniform convergence
of random Fourier series. Let I' be the unit circle, and denote by C(I")
the Banach space of continuous functions on I', with the sup-norm that we
denote by [ - [[¢(r). Given a sequence {X,} of independent centered random
variables defined on a probability space ({2,P), one wonders whether, for
P-almost every x € (2, the series >~ X,(2)A" is uniformly convergent
on I

Since the early study of Paley and Zygmund [14], this matter benefited
from many works by Salem and Zygmund [16], Billard [1], Kahane [8], Mar-
cus [11], Cuzick and Lai [2], Marcus and Pisier [12], [13], Talagrand [17],
Fernique [4], and Weber [18].

Most of the time, the sequence {X,,} is first assumed to be symmetric, so
that, by a theorem of Billard [1], it suffices to prove that, a.s., Y7 | X, (z)\"
represents a continuous function. Then, one may hope to reach the general
centered case by symmetrization.

Our purpose is to prove that this procedure may fail sometimes. We
show that Billard’s theorem is no longer true when the independent sequence
{X,} is only assumed to be centered. To illustrate our result, we recall some
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more or less known moment conditions which ensure the validity of Billard’s
theorem, and give also necessary or sufficient conditions.

2. Conditions for validity of Billard’s theorem. Let us first recall
Billard’s theorem, as it appears in Kahane [8, Theorem 3, p. 58].

THEOREM 2.1 (Billard). Let {X,} be a sequence of independent sym-
metric complez-valued random variables. Then the following conditions are
equivalent for the random Fourier series Y o | X, A™:

(i) Almost surely the series represents a bounded function.
(ii) Almost surely the series represents a continuous function.
(iii) Almost surely the series is convergent at every point.

(iv) Almost surely the series is uniformly convergent.

We would like to know what happens in the centered case. We discuss
conditions which allow one to proceed by symmetrization. We denote by
Li(P,C(I')) the Banach space of all C(I")-valued random variables £ on
2 with the norm {, [|{|lc(ry dP. The following result is a simple combi-
nation of a theorem of It6 and Nisio [6] (see also Ledoux and Talagrand
[9, Theorem 6.1]), and a theorem of Hoffman-Jgrgensen [5] (see also Jain
and Marcus [7]).

THEOREM 2.2. Let {X,,} C Li(PP) be a sequence of independent complex-
valued centered random wvariables on (£2,P). Assume that E(sup,~;|Xn|)
< o0o. Let {X]} be an independent copy of {X,}, defined on (£2','). The
following conditions are equivalent:

(i) Almost surely the series Y -~ | X, A" converges in C(I).
ii) Almost surely in 2 x 2 the series Y o (X, — X/ )\" converges
n=1 n
in C(I).
(iii) The series > > (Xn — X,)A" converges in Li(P @ P, C(I")).
(iv) The series > o> | Xpn A" converges in L1 (P, C(I)).

Moreover, if any of the above holds, then sup,, >, maxy— | S (Xe=X) M|
and sup,,>; maxy_1 | Y_p_q XeA¥| are integrable.

Proof. Clearly (i)=-(ii). By assumption E(sup,,~; | X, — X],|) < oo, hence
(ii)=-(iii) by [5, Corollary 3.3]. The implication (iii)=(iv) follows by indepen-
dence and convexity (see [12, Lemma 4.2, p. 42]). The implication (iv)=-(i)
follows from the It6 and Nisio theorem [6]. If one of the conditions (i)—(iv)
holds, then the integrability of the maximal functions follows by [5, Corol-
lary 3.3]. =
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REMARK. In the above theorem, if we assume that {X,} C L,(P) for
some 1 < p < oo, and E(sup,,;>; | Xn|?) < oo, then we have, in fact, conver-
gence in Ly (P, C(I")) and L,(P, C(I"))-integrability of the maximal functions
(see [5, Corollary 3.3]).

The next lemma is a simple case of Lemma 3.1 in [7].

LEMMA 2.3. Let {X,,} C Li(P) be a sequence of independent random
variables. Then E(sup, > [Xn|) < oo if and only if 3 27 E(|Xnl1{x,>a})
< 00 for some a > 0.

COROLLARY 2.4. Let 1 <p < 2, and let {an} be a sequence of complex
numbers such that

s 00 p\1/p
S P

= n(log n)l/p

Let {X,} C Li(P) be a sequence of centered independent random variables.
Assume that for some M > 0 we have P(|X,| > u) < M/uP for every u>1
and n > 1. Then the series Y .- anXp\" is a.s. uniformly convergent.

Proof. 1t follows from Fernique [4] (see also Marcus and Pisier [13, Theo-
rem B and the discussion in Remark 4.4]) that the result is true for symmetric
independent {X,,}. Now, by the condition on the tails of the variables { X},
we have, for a, # 0,

E(anXnl 10, x,511) = lan] | P(Xn| > ) du+ P(janXn| > 1)
1/lan|

< L ianlr.
p—1
Hence, by Lemma 2.3 we have E(sup,>; |a,X»|) < oo. So, Theorem 2.2
yields the result. =

REMARK. In a similar way, the results of Fernique for 2 < p < oo (see
[4, Examples (d) and (e)]) can be extended to the centered case.

COROLLARY 2.5. Let 1 < p <2, and let {X,,} C L,(P) be a sequence of
centered independent random variables. If

i (re EIXk[P) P

n(logn)L/p

< 00,

n=2

in particular, if for some e >0 the series Y oo o E| X, |P(logn)P~!(log log n)P*e

converges, then the random Fourier series Y -, X,\" is a.s. convergent
in C(I).

Proof. First we prove the case p = 2. By Theorem 5.1.5 of Salem

and Zygmund [16], and by the principle of reduction [8, p. 9] (see also
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[12, Ch. VII, §1]), we obtain the assertion for the case where {X,} are
symmetric random variables. Since the condition of the theorem implies
E(sup,;>1 | Xn|?) < 0o, the non-symmetric case follows from the symmetriza-
tion argument of Theorem 2.2.

In the case 1 < p < 2 we do the following: for X,, # 0 put a, =
(E|X,|P)Y/P and Y;,, = X,,/(E|X,[?)/P. Otherwise put a, = 0 and Y;, = 0.
Clearly, we have P(|Y,,| > u) < 1/uP. By application of Corollary 2.4 to {a,}
and {Y,,}, we obtain the result. m

REMARK. Under the condition of the corollary above, E(sup,,>; |Xn|?)
< o0o. Hence, Theorem 2.2 also yields convergence in L,(IP,C(I")) and L,-
integrability of the maximal function (see the remark after Theorem 2.2).

COROLLARY 2.6 (Cuzick and Lai, [2]). Let {Z,} be centered i.i.d. ran-
dom variables with §, | Z1|1log" | Z1| dP < co. Then the series Y oo | (Zn/n)A"
s a.s. uniformly convergent.

Proof. Tt was proved in Cuzick and Lai [2] and Talagrand [17] that for
a symmetric ii.d. sequence {Z,} with {,|Z1|log" log" |Z1|dP < oo, the
conclusion of the corollary holds. Now, since {,|Z1|log™ |Zi|dP < oo we
have

[1Z1)]+1

;E<7 I{ann}) S ’Z nz:l {‘Z;LP }dP < S |Z1’ Z EdP

(9} 2 n=1
g | Z1|1og(|Z1] + 1) dP < oo,

where [|Z1|] denotes the integral part of |Z;|. Hence, Lemma 2.3 and Theo-
rem 2.2 yield the result. m

REMARKS 1. Corollary 2.6 is already proven in [2]. We gave it to illus-
trate the use of Theorem 2.2, and also because the statement of this corollary
is very close to the situation of the counterexample given in Theorem 3.1 be-
low. Indeed, modulo a rearrangement, the sequence {a, } defined in the proof
of Theorem 3.1 is essentially the sequence {1/n}, and by Lemma 2.3, the con-
dition E(sup |Z,|/n) < oo is actually equivalent to {|Z1|log® |Z;|dP < oc.
In Theorem 3.1 we have {|Z1|(log® |Z1])! 7 dP < oo for every € > 0, while
S |21’ 10g+ ’Zl| dP = .

2. The optimality of the condition {|Z1|log® |Z1|dP < oo is also justified
by the discussion in Marcinkiewicz and Zygmund [10, p. 78].

3. When {Z,} are symmetric i.i.d., Talagrand [17]| proved that the con-
dition {|Z1]|log™ log® |Z1|dP < oo is necessary and sufficient for the a.s.
uniform convergence of > >° | Z,A\"/n.
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Using Billard’s theorem and the symmetrization argument of The-
orem 2.2, we obtain the following extension of Billard’s theorem in the cen-
tered case.

THEOREM 2.7. Let {X,,} C L1(P) be a complex sequence of centered
independent random wvariables. If E(sup,>; |Xn|) < oo, then the following
conditions are equivalent for the random Fourier series y o | X\

(i) Almost surely the series represents a bounded function.
(ii) Almost surely the series represents a continuous function.
(iii) Almost surely the series converges everywhere.

(iv) Almost surely the series converges uniformly.

DEFINITION 2.1. We say that the random Fourier series » .~ | X, A" has
property B if conditions (i)—(iv) of Theorem 2.7 are all equivalent, i.e., either
all of them hold or all of them are false.

REMARK. The condition sup,s; || Y5_y XeX[c(ry < oo as. implies
that, almost surely, >_;_; X,,\" represents a bounded function (see [19, The-
orem 4.2(ii), p. 136]). Hence, under the assumption E(sup,>;|Xn|) < oo
assertions (i)-(iv) are all equivalent to sup,> || > ;_; Xk)\kHC(p) < o0 a.s.,
for centered independent variables. In the symmetric case, this remains true
without the assumption E(sup,,> [Xy|) < oo, by Billard’s theorem (see also
the discusssion in [8, Theorem 1, p. 13]).

Here we give a different type of moment condition.

COROLLARY 2.8. Let {X,} C L4(P) be a sequence of independent cen-
tered random variables, and assume that sup,>; E(|X,|*)/(E|X,[?)? < oo.
Then the series Y .-y X, A" has property B.

Proof. Let {X]} be an independent copy of {X,}, and denote by E’
the corresponding expectation. If one of the above conditions (i)—(iv) holds,
then it also holds for > > (X, — X, )A". Billard’s theorem shows that
as. o2 (X, — X])A" converges uniformly. By the Riesz—Fischer theo-
rem, > °° | X, — X/ |* converges a.s. Since EE'|X,, — X/,|* < 16E|X,,|* and
EE'|X,, — X/,|? = 2E|X,|?, we find that

sup EE'(| X, — X, M)/ (BE'| X, — X},|?)? < 0.

n>1
Theorem 5 in [8, Ch. 3, p. 33|, applied to {|X, — X/|?}, shows that
> EE|X, — X!|? < 00, and that yields E(sup,,>1 | X,|%) < Yo E|X,|?
< 00. Theorem 2.7 yields the result. =

COROLLARY 2.9. Let {a,} be a sequence of complex numbers, and let
{X,} C Li(P) be a sequence of centered independent random variables. As-
sume that there exists C' > 0 such that | P(|X,| > v) dv < CuP(|X,| > u)
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for every n > 1 and uw > 1. Then the random Fourier series Zzozl an X A"
has property B.

REMARKS. 1. If there exists p > 1 such that for every n > 1 the function
u — uPP(|X,| > u) is non-increasing, then the condition of the corollary is
satisfied.

2. The condition is also satisfied in the case where the {X,} are cen-
tered i.i.d., and the tail P(|X;| > u) is regularly varying with exponent
0 < —1 (see the definition in Feller [3, p. 276], and use [3, Theorem 1(a),
p. 281]).

Proof of Corollary 2.9. Assume that the series Y 7, a, X, \" satisfies
one of the conditions (i)-(iv) above. Conditions (iii) or (iv) yield a, X, — 0
a.s. Conditions (i) or (ii) and the Riemann-Lebesgue lemma imply that
anX, — 0 a.s. Hence, the events {|a,X;,| > 1} take place a finite number of
times a.s., and by the Borel-Cantelli lemma, the series > > | P(|a, X,,| > 1)
converges. By the assumption on the tail, applied with v = 1/|a,| (when
an # 0), we obtain

o0
E(|anXnl 1, x,513) = lan] | P(Xn| > v)dv + P(janX,| > 1)
1/]an|
< (C+ DP(|lanXn| > 1).
Hence by Lemma 2.3 we have E(sup,,~; |anXn|) < 0o, and the result follows
by Theorem 2.7. m -

THEOREM 2.10. Let {X,,} be a sequence of centered independent random
variables. If the deterministic series ) " B(X,1yx,|<13)\" is uniformly

convergent, then the random Fourier series Y .- 1 X, A" has property B.

Proof. Assume the series y 2 | X, \" satisfies one of the conditions
(i)—(iv) above, say (j) € {(i),...,(iv)}. As shown in the proof of Corol-
lary 2.9, we have X, — 0 as., so Y -2, Xnlyx,|<1yA" satisfies condi-
tion (j). Since Y 72| E(X,1qx,|<1})A" is uniformly convergent, the series
Y1 [ Xnlgx, <1y — E(Xn1{x,|<13)]\" satisfies condition (j). Theorem 2.7
shows that it is a.s. uniformly convergent, so the series > >~ ; Xnl{x,<iyA"

is a.s. uniformly convergent. Since X,, — 0 a.s., the series > > ; X,,\" satis-
fies (i)—(iv). m

THEOREM 2.11. Let {X,,} be a sequence of centered independent random
variables. If the random Fourier seriesy - | X, A" satisfies one of the above
conditions (i)—(iv), then also the deterministic series " | E(Xp1yx, |<1}) A"
satisfies this condition.

Proof. Assume the series Y 2 | X, \" satisfies one of the conditions
(i)-(iv) above, say (j) € {(i),...,(iv)}. So, X;;, — 0 a.s., and the series
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Y ome1 Xnlyx, <1y A" satisfies condition (j). Let {X},} be an independent
copy of {X,}, and let E’ be the corresponding expectation in the probabil-
ity space of {X/ }. For every n > 1, define the symmetric random variables
Yo = Xolyx, <1y — quzl{\Xg\gl}- Now, the series > > ¥, \" satisfies con-
dition (j), so by Billard’s theorem it is a.s. uniformly convergent. Hence,
by Theorem 2.2, the series > [X,1{x, <1} — E(Xnlqx,|<i})]\" is as.
uniformly convergent, and the result follows. m

3. A counterexample in the centered case

THEOREM 3.1. There exist a sequence {Z,} of independent identically
distributed centered (hence in Li) real random variables and a sequence
{an} € lo of complex numbers such that almost surely the Fourier series
Yoo anZp A" converges at every X\ € I' and represents a continuous func-
tion, while Y 7 | anZp A" is almost surely not uniformly convergent. More-
over, almost surely, the partial sums of the series are uniformly bounded on
the circle.

REMARKS. 1. Cuzick and Lai [2, p. 10] constructed an example of a
random Fourier series for which a.s. there is convergence at each point, except
one for which, in fact, the random Fourier series diverges to infinity. So, the
limit function is not continuous.

2. The sequence {a,Z,} in the theorem is complex. We do not know of
any counterexample with {a,Z,} being real-valued.

Theorem 3.1 is based on the following basic result.

PROPOSITION 3.2. There exists C > 0 such that for all | > 2, we have

n

sup su sin ki ‘< ¢
no neb | 2= (k+ D log(k + )| ~ logl’
Proof. Define .
sin kx
Sp(x) = -
k=1

for every n > 1. It is well known (see e.g. Zygmund [19, Vol. I, p. 61]) that
{Sn} is uniformly bounded, i.e., K := sup,>1 sup,cg |Sn(7)| < oo. Define

n

sin kx
Rip(z) =

pot (k+1)log(k +1)
for every n > 1, and put Sy(z) = 0. Also, for any [ > 2 and k > 1 define
1 l
kY= ———— d k)= .
W =gty T G st 1)

By Abel’s summation by parts we have
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n k
Ryp(z) = ;[Sk(w) = Sp-1(@)] (k+ D) log(k +1)

3

[Sk(2) = Sk—1(2)][w (k) = vi (k)]

ol

S|l

—_

Si(@)[wi(k) — vi(k) — w(k + 1) + v (k + 1)]

B
Il

1
+ Sp(z)[w(n+1) — v (n +1)].
Hence, by monotonicity (in k) of {u;(k)} and {v;(k)} we have

Rin(@)] < 3154 k) — vk +1)] + 3 1Su@) (k) — vk + 1)
k=1 k=1
+ [Sn(@)|[w(n + 1) — v (n + 1)
< K[ul(l) —ul(n + 1)] + K[Ul(l) —vl(n + 1)] + K[ul(n + 1) + vl(n + 1)]
l 2K
log+ 1) " U+ Dlogll 1 1)] “logl+ D) "
Proof of Theorem 3.1. For any n>1 put u, =22" and v, = (tn+tnt1)/2.
In addition put

gKmunmngK[

_ f 1<k<wv,—-1
un—l—vn—ke Hu, +1 < k<o, ,
ak = 1 ik/n
—-— e ifo, +1 <k <upy — 1,
Up — Up + Kk
0 otherwise.
Let Z be a real random variable with distribution law given by

(o.9]
P(Z=-1)=a, PZ2t)=8\|fx)dz fort>2,
¢
where f(z) = m, and « and [ are chosen such that Z be a centered
random variable.
Let {Z,} be a sequence of independent copies of Z. We want to prove
that the series 220:1 anZp A" satisfies the assertions of the theorem.
As suggested by Theorems 2.10 and 2.11, we will proceed by truncation
in order to reduce our proof to the case of a deterministic Fourier series.
For any n > 1 put
Up + Uy — k
log(uy + vy, — k)
Up — Up + K
log(uy, — vy, + k)
0 otherwise.

if u, <k<w, —1,

by,

if v, <k <upp—1,



Billard’s Theorem 47

We define Y, = Z,1{7,<p,}, and we show that the series Y | |an||Z, — Yy
converges a.s.

(i) Since E|Z| < oo,

> P(lak| 121 - Yl > 1)

k=5
o vp—1 Un41—1

:Z( N P(Zk - Vil Zuntoa—k) + Y ]P’(\Zk—Yk]ZUn—vn—i—k))
n=1 k=u,+1 k=vnp+1

0o vn—1 Up41—1
=Z< > P(Zk > un+vn— k) + Z P(Zkzun—vﬁk))
k

n=1 =un+1 k=vn+1
oo vp—1 0
=2 Y P(Z=k)<2) P(Z>n)<x
n=1k=u,+1 n=>5

(ii) In a similar way, breaking the sums, we have

oo
> Ellarl 12k = Yellgjay 1z vi<1))

k=5
00 vn—1 Upt1—1
=) ( Yo Bzl cz<a/imy) + D |ak|]E(Zk1{bk<zk31/|ak|}))
n=1 k=up+1 k=vnp+1
e’} vn—1 1
= — E(Z1,; uptvn-
nz::l poayy Unton — k ( {mﬁziun“’rk})

oo Und41— 1

+Z Z un_vn+k ( I{MSZgun—vn—i-k})

n=1 k=uv,+1 g(un—vn+k)
0 vn—1 1 e’} 1
=2y > % E(Z1 {4 0gh<z<k}) <2 - E(Z1(10gn<z<n})
n=1 k=un+1 n=>5

) 1
ZZﬁZE S d:L’—QBZ <1ogn—log10gn >

n=5 n/logn logn
<0 loglogn
~ “n(logn)?

Combining (i) and (ii) shows that > >7 | |a,||Z, — Y;| converges a.s.
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We have
0 tntl 1/2
S oY Elavif?)
n=1 k=un,+1
0o vp—1 1 1/2
< 22”/2<2 > pE(Z“{stc/logk}))
n=1 k=un+1
o 00 1 k/logk 1/2
SﬁZZ”m( Z ﬁ<a+ S xzf(m)dx)>
n=1 k=un+1 2

G n 1 1/2 G -n
<o v 3 ) OLres

k>un+1 n=1

for some positive constants C' and C'.
Let {Y,'} be an independent copy of {Y,,} and write ¥;, =Y,, —Y,. Then

Un+1

22”/2< Z E|ak?k|2)1/2 < 0.

n>1 k=un+1
By the proof of Theorem 1 in [8, Ch. 7, p. 84] (see also [18, Theorem 10]), al-
most surely, the random Fourier series > 7 an}/}n)\" is uniformly convergent.
Since by construction we have sup,,~ |a,Y,| < oo everywhere, Theorem 2.2
shows that the random Fourier series >0 1 an (Y, —EY,) A" is a.s. uniformly
convergent. Since by (i) and (ii) above the series Y | a,(Y;, — Zp)A" is
a.s. absolutely convergent, the random Fourier series Y > | a,Z,A\" a.s. con-
verges everywhere (or uniformly), or represents a continuous function if and
only if the deterministic series > | 4, EY; A" converges everywhere (or uni-
formly), or represents a continuous function.

For any k > 5 we have

E(Z1{z<kpogky) = —E(Z1({z5k/108k})

N p
=—f S zf(r)de = — .
k/logh logk — loglog k

Hence,

EY, =

~log|ay| — loglog x|’

and we obtain

(+) EY, = —— +o<710g1°g|‘”“|>.

-~ log |ax| log? |ax|
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Using the convention 0/log0 = 0, define
af k
T\ = g A
*) = log |ax|

in La(dX). By (%) we have
o
k=1
Hence, it is enough for our purpose to study the behavior of T'(\).
For any n > 1, define

Ba,

arEY, + ———
log |ax|

vn—1 A \20n—k
n(A) = )
@n(A) k:uZH (up, + vy, — k)log(uy + v, — k)
We have
i Z ) -y ”"zl (e/mA) — (et n)2on
= qullog|ak| v o un—l—vn—k)log(un—i-vn—k)
Since .
Un— )\k _ AQUn*k
n A) =
@n(A) Z (Un + vy, — k) log(u, + vy, — k)
k=un+1
VUp—Un—1 )\—k . )\k
kZ:1 (k + up)log(k + uy)’
Proposition 3.2 yields
2C 20
|@ulloir) < o < g

map A flog lag| = Y1, Qr(e/*\) converge uni-
formly, necessarily to T'(\), so T represents a continuous function.

Now we show that > 72 | axA¥/log|ak| converges pointwise to T(\). For
any u, < m < up41 we have

Hence the partial sums Zk

i ak)\k ’ el ak)\ )’+ i ak)\k
loglax| o logfax]

As already shown, the first term on the right hand side converges uniformly
to zero, so it is enough to show that pointwise

P og |l

max
Un<M<Up41
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Since we clearly have

m m

ap\F ap\F

mt | 2 Toglanl| = w2 | 2= Toglad
< og |a < og |a
Un <M< Up41 k—n 1 g Ak Un<Mmvp, k—n 1 g Ak

i ap\F

+ max I
2 Toglay

M
U <M< Up41 k

it is enough to show that each of the terms on the right hand side goes to
zero pointwise. Put D,,(t) := > ;_, €. Simple computation yields | Dy (t)|
< 4/Jt| for 0 < |t| < 7. Fix A\g = €. Using Abel’s summation by parts we
have

i akA’g B i ‘ak‘ez’k(l/n—i-to)
e Joglasl oy = loglay
_ zm: lag|[D(1/n + to) — Dg—1(1/n +to)]
Wit log |ay|

_ zm: ( || |41 )Dk(l/n+to)

it log|ag|  log|agi1]

_ |@un+1|Du, (1/n + to) 4 |am+1|Dim(1/n + to)
log |au,,+1] log |an41]

For any ty we have eventually |1/n + t9|] > 0. Using monotonicity of
{—l|ag|/log|ax|} we have

in: ak)\lg

8 1 1
~ |1/n+to] \uplogu, vyloguv, )

log |a
k=un+1 g’ k’
Hence
akAg
max n
Un <Mm<vp a1 log \ak\
Similarly
m
ap\F
max E ﬁ n0
<m< og |a
B & 10k
pointwise.

Now, by evaluating certain blocks of the series > 7o apA¥/log|ag]
along the sequence {e~/"}, we show that >_7_; axA\*/log |a| is not Cauchy
in C(I'), hence does not converge uniformly. This is established by the fol-
lowing:
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vn—l —i Un—l vn—1
are ik/n 1
Y TeglaT| = 2 - >
k=un+1 log |ak| k=up+1 (un +Un — k) lOg(un +vp — k' ]{? log k
> loglog(v, — 1) —loglog(u, + 1) > log log(un+1/2) — loglog(2uy,)

Y

log((2"T — 1) log2) — log((2™ + 1)1log2) > log2 + o(1/2").
On the other hand, since

= o~ apA = |ag|
sup max < sup max rE— +sup{ 7}
m>1 =1 Zlogml n>1 Al=1 ;10g|ak| n>1 kz — log |ay|
= =up+1
fe'e) vp—1 1
ik \) 2
< D10 Wlewn + 23w Y o)
k= k=un+1

< 4C + 2 sup(log log(vy,) — loglog(uy))
n>1

< 4C + 2 sup(log log(22n+1) —loglog(2?")) = 4C + 21log 2,

n>1
the partial sums > j_, axA¥/log |ax| are uniformly bounded. m

REMARK. The construction in Theorem 3.1 is inspired by the counterex-
ample of Fejér as presented in Zygmund [19, Vol. I, p. 299].

COROLLARY 3.3. There exist a sequence {Z,} of independent identically
distributed centered real random variables and a sequence {a,} € ¢ of com-
plex numbers such that almost surely, for any contraction T on a Hilbert
space H the series Y .o | anZpyT"h converges in norm for every h € H, but

the Fourier series Y - | anZp A" does not converge uniformly.

Proof. For the sequence constructed in the previous theorem, a.s. the
partial sums >, _, ap ZpA\* are uniformly bounded. We use the spectral the-
orem and the dominated convergence theorem to establish the corollary for
unitary operators. Then we apply the unitary dilation theorem to pass to
the contraction case (see [15, Appendix 4, §153|). =

REMARK. Let {b,} be a series of complex numbers, and let {v,} be a
dense sequence in I'. On ¢» we define a unitary operator U by the following
rule: Uc = {y,¢,} for every ¢ := {c,} € ls. It is easy to check that uniform
convergence of > >, b,A" is equivalent to operator norm convergence of
Y2 b, U™ Hence, in the above corollary we cannot have operator norm
convergence for all contractions T (even only all unitary operators) on some
Hilbert space.
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