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FUNCTIONAL ANALYSIS

On Property β of Rolewiz in Köthe�BohnerFuntion SpaesbyPaweª KOLWICZPresented by Aleksander PE�CZY�SKI
Summary. It is proved that the Köthe�Bohner funtion spae E(X) has property β ifand only if X is uniformly onvex and E has property β. In partiular, property β doesnot lift from X to E(X) in ontrast to the ase of Köthe�Bohner sequene spaes.1. Introdution. The geometry of Köthe�Bohner spaes E(X) of ve-tor-valued funtions has been intensively developed during the last years (seefor example [2℄, [3℄, [9℄, [14℄, [16℄, [21℄, [22℄ and [27℄). A survey of geometryin Köthe�Bohner spaes an be found in [23℄. E(X) are generalizations ofLebesgue�Bohner and Orliz�Bohner spaes. One of the prinipal problemsin these spaes is the question whether or not a geometri property lifts from
X and E to E(X). The answer is often the same in the ase of funtion andsequene Köthe�Bohner spaes. However, the really peuliar situation iswhen the relevant riteria are di�erent. This is the ase for the Kade�Kleeproperty (KK for short), uniform Kade�Klee property (UKK) and nearlyuniform onvexity (NUC).Property KK is also known as the Radon�Riesz property ([10℄). It hasbeen intensively studied in Köthe�Bohner spaes, and shown to lift from
X to E(X) when E is a Köthe sequene spae, but not neessarily if E is aKöthe funtion spae ([2℄, [16℄, [22℄ and [27℄).Properties UKK and NUC have been introdued by Hu� in [10℄. Heproved that a Banah spae is nearly uniformly onvex if and only if it hasthe uniform Kade�Klee property and is re�exive. The riteria for UKK and
NUC of Köthe�Bohner sequene spaes have been proved in [14℄ and [21℄.2000 Mathematis Subjet Classi�ation: 46E40, 46B20, 46E30.Key words and phrases: Köthe�Bohner spae, property β, uniform onvexity, orthog-onal uniform onvexity, uniform monotoniity.[75℄
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It turns out that the funtion and sequene ases are essentially di�erentwith regard to these properties (see [23℄ and also Theorem 1 below).In the whole paper, onsidering a property A in the lass of Banahspaes, we denote by (A) the lass of spaes with property A.In this paper we study property β in Köthe�Bohner funtion spaes.This property was introdued by Rolewiz in [26℄. He proved the implia-tions UC ⇒ β ⇒ NUC, where UC denotes uniform onvexity. Moreover,the lass of spaes with an equivalent norm with property β oinides neitherwith that of superre�exive spaes ([18℄ and [25℄) nor with the lass of nearlyuniformly onvexi�able spaes ([17℄). It is known that in Orliz sequenespaes property β oinides with re�exivity, and in Orliz�Lorentz funtionspaes property β and uniform onvexity are equivalent ([4℄ and [13℄). More-over, if a Banah spae X has property β, then both X and X∗ have the�xed point property (FPP for short) for nonexpansive self-maps on losed,bounded, onvex and nonempty sets. For X, this follows from the theoremthat if X ∈ (NUC), then X ∈ (FPP) ([11℄). Moreover, property β impliesnormal struture of the dual spae ([20℄). Sine normal struture impliesweak normal struture and they oinide in the lass of re�exive spaes, andproperty β implies re�exivity, it follows that property β implies the �xedpoint property for the dual spae.Denote by N, R and R+ the sets of natural, real and non-negative realnumbers, respetively. We will let (T, Σ, µ) be a σ-�nite, omplete measurespae. By L0 = L0(T ) we denote the set of all µ-equivalene lasses ofreal-valued measurable funtions de�ned on T .A Banah spae E = (E, ‖ · ‖E) is said to be a Köthe spae if E is linearsubspae of L0 and:(i) if x ∈ E, y ∈ L0, |y| ≤ |x| µ-a.e. in T , then y ∈ E and ‖y‖E ≤ ‖x‖E ,(ii) there exists a funtion x in E that is positive on the whole T (see[12℄ and [24℄).Every Köthe spae is a Banah lattie under the obvious order (x ≥ 0if x(t) ≥ 0 for µ-a.e. t ∈ T ). In partiular, if we onsider the spae E overthe non-atomi measure spae (T, Σ, µ), then we shall say that E is a Köthefuntion spae. If we replae the measure spae (T, Σ, µ) by the ountingmeasure spae (N, 2N, m), then E is a Köthe sequene spae.A Köthe spae E is said to be uniformly monotone (E ∈ (UM)) if forevery q ∈ (0, 1) there exists p ∈ (0, 1) suh that for all 0 ≤ y ≤ x satisfying
‖x‖E = 1 and ‖y‖E ≥ q, we have

‖x − y‖E ≤ 1 − p(see [7℄). Then the modulus p(·) of uniform monotoniity of E is de�ned asfollows:
p(q) = inf{1 − ‖x − y‖E : ‖x‖E = 1, ‖y‖E ≥ q, 0 ≤ y ≤ x}.
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A Köthe spae E is alled order ontinuous (E ∈ (OC)) if for every

x ∈ E and every sequene (xm) ⊂ E suh that 0 ≤ xm ≤ |x| and xm → 0
µ-a.e. in T, we have ‖xm‖E → 0 (see [12℄ and [24℄).For a real Banah spae (X, ‖ · ‖X), B(X) and S(X) stand for the losedunit ball and the unit sphere of X, respetively. For any subset A of X, wedenote by conv(A) the onvex hull of A.A Banah spae (X, ‖ · ‖X) is said to be uniformly onvex (X ∈ (UC))if for eah ε > 0 there is δ > 0 suh that for any x, y ∈ S(X) the inequality
‖x − y‖X > ε implies ‖x + y‖X < 2(1 − δ).We say that for a given ε > 0 a sequene {xn} ⊂ X is ε-separated if

sep{xn}X = inf{‖xn − xm‖X : n 6= m} > ε.Although the original de�nition of property β uses the Kuratowski measureof nonompatness (see [26℄), the following equivalent formulation given byKutzarova in [19℄ is more onvenient for our onsiderations.Lemma 1. A Banah spae X has property β if and only if for every
ε > 0 there exists δ = δ(ε) > 0 suh that for eah x ∈ B(X) and eahsequene (xn) in B(X) with sep{xn}X ≥ ε there is an index k for whih
‖(x + xk)/2‖X ≤ 1 − δ.A Banah spae X is said to be nearly uniformly onvex (X ∈ (NUC))if for every ε > 0 there exists δ ∈ (0, 1) suh that for every sequene {xn} ⊆
B(X) with sep{xn}X ≥ ε, we have conv({xn}) ∩ (1 − δ)B(X) 6= ∅. Thisproperty has been independently introdued and studied by Goebel andS�kowski using the Kuratowski measure of nonompatness ([11℄).A Banah spae X is said to have the uniform Kade-Klee property (X ∈
(UKK) for short) if for every ε > 0 there exists δ ∈ (0, 1) suh that ‖x‖X <

1 − δ whenever (xn) ⊂ B(X), xn
w
→ x and sep{xn}X ≥ ε.Now, let us de�ne the type of spaes to be onsidered in this paper. For areal Banah spae (X, ‖ · ‖X), denote by M(T, X), or just M(X), the familyof strongly measurable funtions x : T → X, where funtions whih are equal

µ-almost everywhere are identi�ed. De�ne
x̃(·) = ‖x(·)‖X and E(X) = {x ∈ M(X) : x̃ ∈ E}.Then E(X) equipped with the norm ‖x‖ = ‖x̃‖E beomes a Banah spaethat is alled a Köthe�Bohner spae.2. Auxiliary lemmas. De�ne r ∧ s = min{r, s} and r ∨ s = max{r, s}for r, s ∈ R.Lemma 2 ([9, Lemma 1℄). Let x, y ∈ X \ {0}. Set x̂ = x/‖x‖X .(i) If ‖x̂ − ŷ‖X ≥ ε and ‖x‖X ∧ ‖y‖X ≥ η{‖x‖X ∨ ‖y‖X}, then

‖x + y‖X ≤ (1 − ηδX(ε))(‖x‖X + ‖y‖X),
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where δX(·) is the modulus of onvexity of the spae X, i.e.

δX(ε) = inf
{
1 − 1

2‖x + y‖X : x, y ∈ S(X), ‖x − y‖X ≥ ε
}
.(ii) We have

‖x + y‖X ≤ |‖x‖X − ‖y‖X | + {‖x‖X ∧ ‖y‖X}(‖x̂ + ŷ‖X).A geometri property, alled orthogonal uniform onvexity, is essential instudying property β in Köthe�Bohner spaes ([8℄). It has been introduedin [13℄ in order to investigate property β in Banah latties.Definition 1. We say that a Köthe spae (E, ‖ · ‖E) is orthogonallyuniformly onvex (E ∈ (UC
⊥)) if for eah ε > 0 there is δ = δ(ε) > 0suh that for x, y ∈ B(E) the inequality ‖xχAxy

‖E ∨ ‖yχAxy
‖E ≥ ε impliesthat ‖(x + y)/2‖E ≤ 1 − δ, where Axy = suppx ÷ supp y and A ÷ B =

(A \ B) ∪ (B \ A).Obviously, if E ∈ (UC), then E ∈ (UC
⊥). It is known that any uniformlyonvex Köthe spae is uniformly monotone ([7℄). Moreover, the followingstronger result is true.Lemma 3 ([13, Lemma 3℄). Let E be a Köthe spae. If E ∈ (UC

⊥), then
E ∈ (UM).It is known that in Köthe sequene spaes one has the impliations UC ⇒
UC

⊥ ⇒ β and none of them an be reversed in general ([15℄). On the otherhand, the impliations(1) UC ⇒ β⇒ UC
⊥hold in Köthe funtion spaes and the last one annot be reversed ([13℄, [15℄and [26℄).3. ResultsTheorem 1. Suppose that (T, Σ, µ) is a measure spae whih is notpurely atomi. Let X be a real Banah spae. Assume that X is separable or

X∗ has the Radon�Nikodym property. If E(X) has the uniform Kade�Kleeproperty , then X is uniformly onvex.Proof. We apply some tehniques from the proof of Theorem 3.5 in [2℄and Theorem 3.4.9 in [23℄. Sine (T, Σ, µ) is not purely atomi, there exists
A ∈ Σ suh that 0 < µ(A) < ∞ and A has no atoms. De�ne the family of sets
A(j, 2k), for j = 1, 2, . . . , 2k and k = 1, 2, . . . , by the following iteration. Wedivide A into two disjoint subsets A(1, 2) and A(2, 2) suh that µ(A(1, 2)) =
µ(A(2, 2)). Suppose that for a �xed k the sets A(j, 2k) (1 ≤ j ≤ 2k) arealready de�ned. To obtain A(j, 2k+1) (1 ≤ j ≤ 2k+1) we divide every set
A(j, 2k) (1 ≤ j ≤ 2k) into two disjoint subsets A(2j−1, 2k+1) and A(2j, 2k+1)suh that µ(A(2j − 1, 2k+1)) = µ(A(2j, 2k+1)). De�ne
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A1

k =
2k⋃

i=1

A(2i − 1, 2k) and A2
k =

2k⋃

i=1

A(2i, 2k) for k = 1, 2, . . . .De�ne the kth Rademaher funtion on A by
rk(t) =

{
1 for t ∈ A1

k,

−1 for t ∈ A2
k.Suppose for ontradition that E(X) ∈ (UKK) and X 6∈ (UC). Then thereexists a number ε > 0 and sequenes (xn)∞n=1 and (yn)∞n=1 in B(X) satisfying(2) ‖xn − yn‖X ≥ ε and ‖xn + yn‖X ≥ 2(1 − 1/n)for eah n ∈ N. Let

fn
k (t) =

1

‖χA‖E

(xnχA1

k
(t) + ynχA2

k
(t)) for k = 1, 2, . . . ,

fn(t) =
1

2‖χA‖E

(xn + yn)χA(t)for every n ∈ N. Then
‖fn

k ‖ =
1

‖χA‖E

∥∥‖xn‖XχA1

k
+ ‖yn‖XχA2

k

∥∥
E
≤

1

‖χA‖E

‖χA1

k
+ χA2

k
‖E = 1for all n, k ∈ N. Analogously, we onlude that fn ∈ B(E(X)) for every

n ∈ N. We will show that for eah n ∈ N we have fn
k

w
→ fn as k → ∞ in

E(X). Let f∗ be a ontinuous linear funtional on E(X). Note that from theimpliations E(X) ∈ (UKK) ⇒ E ∈ (UKK) ⇒ E ∈ (KK) it follows that
E ∈ (OC), beause KK ⇒ OC in any Köthe spae ([5℄). Hene, applyingTheorem 5.3 from [6℄ or the orresponding result from [1℄, we an write thisfuntional in the form

f∗(f) =
\
T

〈f(t), g(t)〉 dµ for any f ∈ E(X),where 〈x, x∗〉 stands for the value of x∗ ∈ X∗ at x ∈ X, and g ∈ E′(X∗),that is, g is a strongly measurable funtion from T to X∗ and E
′ is the Köthedual of E equipped with the norm de�ned by

‖h‖E
′ = sup

{\
T

|f(t)h(t)| dµ : f ∈ E, ‖f‖E ≤ 1
}

for any h ∈ M(R). Hene for any �xed n ∈ N and f∗ ∈ (E(X))∗, we have
lim

k→∞
f∗(fn

k − fn) = lim
k→∞

\
T

〈(fn
k − fn)(t), g(t)〉 dµ(3)

=
1

2‖χA‖E
lim

k→∞

\
A

rk(t)〈(xn − yn), g(t)〉 dµ = 0.
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This follows from the fats that 〈(xn − yn), g(·)〉χA is a real integrable fun-tion, the set of simple funtions is dense in L1, and limk→∞

T
A

rk(t)b(t) dµ
= 0 for every simple funtion b de�ned on A.De�ne hn

k = fn
k − fn for all n, k ∈ N. By (3) we onlude that hn

k

w
→ 0 as

k → ∞ in E(X) for every n ∈ N. Moreover, by (2), we get
‖hn

k‖ =

∥∥∥∥
‖xn − yn‖X

2‖χA‖E
χA1

k
+

‖yn − xn‖X

2‖χA‖E
χA2

k

∥∥∥∥
E

≥
ε

2for all n, k ∈ N. Then, applying the Hahn�Banah theorem, it is easy toprove that for eah n ∈ N there exists a subsequene (zn
k )∞k=1 of (hn

k)∞k=1suh that sep{zn
k }E(X) ≥ ε/4. Denote this subsequene still by (hn

k)∞k=1. Sine
sep{hn

k}E(X) = sep{fn
k }E(X), for every n ∈ N we an �nd an element fn ∈

B(E(X)) and a sequene (fn
k )∞k=1 ⊂ B(E(X)) suh that sep{fn

k }E(X) ≥ ε/4and fn
k

w
→ fn as k → ∞ in E(X). On the other hand, ‖fn‖ ≥ 1 − 1/n forevery n ∈ N. This means that E(X) does not have the uniform Kade�Kleeproperty.Theorem 2. Let E be a Köthe funtion spae and X be a Banah spae.If X is uniformly onvex and E has property β, then E(X) has property β.Proof. Let ε ∈ (0, 2). Note that property β an be equivalently onsid-ered on the unit sphere instead of the unit ball ([8℄). Take x, xn ∈ S(E(X)),

n = 1, 2, . . . , suh that sep{xn}E(X) ≥ ε. By Lemma 3 and (1) we on-lude that E ∈ (UC
⊥) and E ∈ (UM). Denote by p(·) the modulus ofuniform monotoniity of E, by δX(·) the modulus of onvexity of X de�nedin Lemma 2, by δE(·) the funtion δ(·) used for E in Lemma 1, and by δ⊥E (·)the funtion δ(·) from De�nition 1 for E. We de�ne some onstants:

(4)
δ1 = δ⊥E (ε/32) > 0, 0 < α < δ1/8 ∧ ε/224,

0 < b < α,

(1 − ε/16) ∨ (1 − αb/4) < u < 1, δ2 = δE

(
αb(1 − u)

2(1 + u)

)
> 0,

p1 = p(4αbδX(ε/32)) > 0, p2 = p(α2b2δX(ε/32)/2) > 0.For any n 6= m set
A1

nm = {t ∈ T : ‖xn(t)‖X ∧ ‖xm(t)‖X < u(‖xn(t)‖X ∨ ‖xm(t)‖X)}and A2
nm = T \ A1

nm. We divide the proof into two parts.I. Suppose that for any n 6= m we have ‖(xn−xm)χA1
nm

‖ ≥ αb/2. Notiethat for any x, y ∈ X satisfying ‖x‖X ∧ ‖y‖X < u(‖x‖X ∨ ‖y‖X) we have(5) ‖x − y‖X ≤ | ‖x‖X − ‖y‖X |

(
1 +

2u

1 − u

)
.
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If ‖x‖X ≥ ‖y‖X , then ‖x‖X − ‖y‖X ≥ (1/u − 1)‖y‖X . Hene

‖x − y‖X ≤ ‖x‖X + ‖y‖X = ‖x‖X − ‖y‖X + 2‖y‖X

≤ ‖x‖X − ‖y‖X + 2u
‖x‖X − ‖y‖X

1 − u

= (‖x‖X − ‖y‖X)

(
1 +

2u

1 − u

)
.In the ase when ‖x‖X < ‖y‖X , the proof is analogous. Applying (5) andthe de�nition of the set A1

nm, we get
αb/2 ≤

∥∥‖(xn − xm)(·)‖XχA1
nm

∥∥
E
≤

(
1 +

2u

1 − u

)∥∥‖xn(·)‖X − ‖xm(·)‖X

∥∥
Efor any n 6= m. Set g(·) = ‖x(·)‖X and gn(·) = ‖xn(·)‖X . Then ‖g‖E =

‖gn‖E = 1 and sep{gn}E ≥ αb(1 − u)/2(1 + u). By property β of E weonlude that there exists k ∈ N suh that ‖g+gk‖E ≤ 2(1−δ2), where δ2 isde�ned in (4). Finally, ‖x+xk‖ =
∥∥‖(x+xk)(·)‖X

∥∥
E
≤ ‖g+gk‖E ≤ 2(1−δ2).II. Assume that for some n 6= m we have(6) ‖(xn − xm)χA1

nm
‖ < αb/2.Set A1

nm = A1, A2
nm = A2, i.e.

A2 = {t ∈ T : ‖xn(t)‖X ∧ ‖xm(t)‖X ≥ u(‖xn(t)‖X ∨ ‖xm(t)‖X)}.Then ‖(xn − xm)χA2‖ ≥ ε − αb/2 ≥ ε/2. Let
A21 = {t ∈ A2 : ‖xn(t) − xm(t)‖X ≥ ε/8(‖xn(t)‖X ∨ ‖xm(t)‖X)},

A22 = {t ∈ A2 : ‖xn(t) − xm(t)‖X < ε/8(‖xn(t)‖X ∨ ‖xm(t)‖X)}.It is easy to see that(7) ‖(xn − xm)χA21‖ ≥ ε/4.Indeed, if not, then ‖(xn − xm)χA22‖ ≥ ε/4. Hene, applying strit mono-toniity of E, we get ε/4 ≤ ‖(xn−xm)χA22‖ < 2ε/8, whih is a ontradition.For x ∈ X \ {0} set x̂ = x/‖x‖X . We will prove that(8) ‖x̂n(t) − x̂m(t)‖X ≥ ε/16for every t ∈ A21. We laim that for any y, z ∈ B(X) satisfying ‖y‖X ∧
‖z‖X ≥ u(‖y‖X ∨ ‖z‖X) and ‖y − z‖X ≥ ε/8, we have(9) ‖ŷ − ẑ‖X ≥ ε/16.By Lemma 2(ii), we get

ε/8 ≤ ‖y − z‖X ≤ | ‖y‖X − ‖z‖X | + (‖y‖X ∧ ‖z‖X)(‖ŷ − ẑ‖X)

≤ 1 − u + ‖ŷ − ẑ‖X ,whih proves the laim in view of (4). Then, to dedue (8) it is enough to
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apply the de�nition of the sets A2, A21 and (9) with

y(t) =
xn(t)

‖xn(t)‖X ∨ ‖xm(t)‖X

and z(t) =
xm(t)

‖xn(t)‖X ∨ ‖xm(t)‖Xfor eah t ∈ A21. Moreover, by (4), (7) and the de�nition of the set A2, itfollows that(10) ‖xiχA21‖E ≥ ε/16 for i = n, m.De�ne
B = {t ∈ suppx : ‖x(t)‖X ∧ ‖xn(t)‖X ≥ b(‖x(t)‖X ∨ ‖xn(t)‖X)},

C = suppx \ B,

B1 = {t ∈ B : ‖x̂n(t) − x̂(t)‖X ≥ ε/32}, B2 = B \ B1,

C1 = {t ∈ C : ‖x(t)‖X = ‖x(t)‖X ∧ ‖xn(t)‖X}, C2 = C \ C1and
D1 = {t ∈ B2 : ‖xm(t)‖X ∧ ‖xn(t)‖X ≥ αb(‖xm(t)‖X ∨ ‖xn(t)‖X)},

D2 = B2 \ D1,

E1 = {t ∈ D1 : ‖x̂n(t) − x̂m(t)‖X ≥ ε/16},

E2 = D1 \ E1.II.1. Suppose that ‖xχB1‖ ≥ 8α. Applying Lemma 2(i), we get
‖(x + xn)(·)‖XχB1 ≤ (1 − bδX(ε/32))(‖x(·)‖X + ‖xn(·)‖X)χB1 .Consequently,∥∥∥∥

x + xn

2
(·)

∥∥∥∥
X

≤
‖x(·)‖X + ‖xn(·)‖X

2
−

bδX(ε/32)

2
(‖x(·)‖X + ‖xn(·)‖X)χB1 .Hene, applying uniform monotoniity of E, we get ‖(x + xn)/2‖ ≤ 1 − p1,where p1 is de�ned in (4).II.2. Let(11) ‖xχB1‖ < 8α.We divide the proof into two parts.a. Assume that ‖xmχE1‖ ≥ α. For every t ∈ E1 we have

‖xm(t)‖X ∧ ‖x(t)‖X ≥ αb2(‖xm(t)‖X ∨ ‖x(t)‖X).It follows by the de�nition of E1 and B2 that
‖x̂m(t) − x̂(t)‖X = ‖x̂m(t) − x̂n(t) − (x̂(t) − x̂n(t))‖X ≥ ε/32for every t ∈ E1. Applying Lemma 2(i) we get

‖(x + xm)(·)‖XχE1 ≤ (1 − αb2δX(ε/32))(‖x(·)‖X + ‖xm(·)‖X)χE1 .Consequently,
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∥∥∥∥
x + xm

2
(·)

∥∥∥∥
X

≤
‖x(·)‖X + ‖xm(·)‖X

2

−
αb2δX(ε/32)

2
(‖x(·)‖X + ‖xm(·)‖X)χE1 .Hene, similarly to ase II.1, we onlude that ‖(x+xm)/2‖ ≤ 1−p2, where

p2 is de�ned in (4).b. Suppose that ‖xmχE1‖ < α. First we will show that(12) ∥∥ ∣∣‖xn(·)‖X − ‖xm(·)‖X

∣∣ ∥∥
E

< αb.In view of (6), we get ∥∥ ∣∣‖xn(·)‖X − ‖xm(·)‖X

∣∣χA1

∥∥
E

< αb/2. Moreover, bythe de�nition of the set A2, we get ∥∥ ∣∣‖xn(·)‖X−‖xm(·)‖X

∣∣χA2

∥∥
E

< 2(1−u).Consequently, by (4),∥∥ ∣∣‖xn(·)‖X − ‖xm(·)‖X

∣∣ ∥∥
E

< αb/2 + 2(1 − u) < αb.Note that if ‖xχC1‖ ≥ α, then ‖xn‖ ≥ ‖xnχC1‖ ≥ (1/b)α > 1. Hene(13) ‖xχC1‖ < α.Furthermore ‖xnχC2‖ < b < α. Consequently, if ‖xmχC2‖ ≥ 2α, then∥∥ ∣∣‖xn(·)‖X − ‖xm(·)‖X

∣∣χC2

∥∥
E
≥ α > αb,but this ontradits inequality (12). Thus(14) ‖xmχC2‖ < 2α.Moreover, we will show that(15) ‖xmχD2‖ < 4αb.Suppose onversely that ‖xmχD2‖ ≥ 4αb and let

D21 = {t ∈ D2 : ‖xm(t)‖X = ‖xm(t)‖X ∧ ‖xn(t)‖X}, D22 = D2 \ D21.If ‖xmχD21‖ ≥ 2αb, then ‖xnχD21‖ ≥ 2. But xn ∈ B(E(X)). Hene
‖xmχD22‖ ≥ 2αb. On the other hand, ‖xnχD22‖ < αb. Consequently,∥∥‖xn(·)‖X − ‖xm(·)‖X

∥∥
E

≥ αb, whih ontradits (12), so inequality (15)is proved.Then, by (14) and (15), we get(16) ‖xmχC2∪D2∪E1‖ < 3α + 4αb < 7α.Notie that, in view of inequality (8) and the de�nition of E2, we get
A21 ∩ E2 = ∅. Furthermore, inequality (10) yields ‖xmχA21‖E ≥ ε/16. Con-sequently, by (4) and (16), we obtain(17) ‖xmχA21\(B2∪C2)‖ = ‖xmχA21\(D2∪E1∪E2∪C2)‖ ≥

ε

16
− 7α ≥

ε

32
.Let z1 = ‖x(·)‖XχB2∪C2 and z2 = ‖xm(·)‖X . De�ne G = supp z1 ÷ supp z2.Then, by (17), we get ‖z2χG‖E ≥ ε/32. Sine E ∈ (UC

⊥), so ‖z1 + z2‖E ≤
2(1 − δ1), where δ1 is de�ned in (4). Thus, by (4), (11) and (13), we obtain
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∥∥∥∥
x + xm

2

∥∥∥∥ ≤

∥∥∥∥
‖x(·)‖XχB2∪C2 + ‖x(·)‖XχT\(B2∪C2) + ‖xm(·)‖X

2

∥∥∥∥
E

≤
9α

2
+

∥∥∥∥
z1 + z2

2

∥∥∥∥
E

≤ 5α + 1 − δ1 ≤ 1 − 3δ1/8.Combining all of the ases, we get ‖(x + xk)/2‖E ≤ 1 − λ for some k ∈ N,where λ = min{δ2, p1, p2, 3δ1/8}, whih �nishes the proof.It is known that if X is re�exive, then X∗ has the Radon�Nikodymproperty. Moreover, E is embedded isometrially into E(X) and property
β is inherited by subspaes. Consequently, as an immediate onsequene ofTheorems 1 and 2, we getCorollary 1. Let X be a real Banah spae and E be a Köthe funtionspae. Then E(X) has property β if and only if X is uniformly onvex and
E has property β.Let us ollet results onerning property β in Köthe�Bohner sequenespaes. If X is an in�nite-dimensional Banah spae and E is a Köthe se-quene spae, then E(X) has property β if and only if X has property β and
E is orthogonally uniformly onvex ([8℄). If X is a �nite-dimensional Banahspae, then E(X) ∈ (β) if and only if E ∈ (β) ([8℄).The Orliz�Lorentz funtion spae ΛΦ,ω is a generalization of Orliz fun-tion spae. On the other hand, ΛΦ,ω is a speial Calderón�Lozanowski�� spae(see [7℄ and [13℄ for the de�nition and bibliography). Applying the resultsfrom [9℄, [13℄ and Corollary 1, we get the followingCorollary 2. Let ΛΦ,ω be an Orliz�Lorentz funtion spae over the�nite or in�nite non-atomi measure spae. Let X be a real Banah spae.Then ΛΦ,ω(X) ∈ (UC) if and only if ΛΦ,ω(X) ∈ (β).
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