MATHEMATICAL LOGIC AND FOUNDATIONS

Fat *P*-sets in the Space ω^*

by

Ryszard FRANKIEWICZ, Magdalena GRZECH and Paweł ZBIERSKI

Presented by Czesław RYLL-NARDZEWSKI

Summary. We prove that—consistently—in the space ω^* there are no *P*-sets with the c-cc and any two fat *P*-sets with the c⁺-cc are coabsolute.

1. Introduction. A closed subset $A \subseteq X$ of a topological space X is said to be a *P*-set if the inclusion $A \subseteq \operatorname{int} \bigcap R$ holds for any countable family R of open neighborhoods of A. A point $x \in X$ is a *P*-point if the one-element set $\{x\}$ is a *P*-set. Here, we consider the case of $X = \omega^* = \beta[\omega] \setminus \omega$, the remainder of the Stone-Čech compactification of ω (= the nonnegative integers with the discrete topology). Hence, we may assume that the family R mentioned above consists of open-closed neighborhoods of A. The existence of *P*-points follows e.g. from the continuum hypothesis (see [6]), but it is not provable in set theory. In fact, Shelah constructed a model in which $\mathfrak{c} = \omega_2$ and there are no *P*-points (see [7]).

Let κ be a cardinal. We say that a set A has the κ -cc (the κ (anti-)chain condition) if every disjoint family of relatively open subsets of A has power less than κ . In [3] a construction is presented of a model in which $\mathfrak{c} = \omega_2$ and there are no P-sets with the ω_1 -cc in the remainder ω^* (see also [4] for all the references). In this paper we strengthen this theorem by describing a model in which $\mathfrak{c} = \omega_2$ and there are no P-sets with the \mathfrak{c} -cc. Moreover, in the constructed model any two fat (see below for the definition) P-sets with the \mathfrak{c}^+ -cc are alike in the sense that they are coabsolute (i.e. their Gleason spaces are homeomorphic).

The case of non-fat sets requires a different forcing and will be considered elsewhere.

²⁰⁰⁰ Mathematics Subject Classification: Primary 03E35; Secondary 03E40, 03E65. Key words and phrases: ω^* , Gregorieff forcing, P-set, fat, κ -cc.

Research partially supported by KBN grant 5 P03A 037 20.

2. Basic facts and definitions. If A, B are subsets of ω then $A \subseteq_* B$ means $A \setminus B$ is finite. Closed subsets of ω^* can be identified with filters on ω . Indeed, any closed set in ω^* can be written as

$$\bigcap \{ \overline{A} \setminus \omega : A \in F \}$$

where F is a filter on ω (\overline{A} is the closure of $A \subseteq \omega$ in $\beta[\omega]$), and vice versa. *P*-filters (filters corresponding to *P*-sets) are then characterized by the following condition:

For every family $\{A_i : i \in \omega\} \subseteq F$ there is an $A \in F$ such that $A \subseteq_* A_i$ for all $i \in \omega$.

Equivalently, *P*-ideals *I* (ideals dual to *P*-filters) have the following property:

For every $\{B_i : i \in \omega\} \subseteq I$ there is a $B \in I$ such that $B_i \subseteq_* B$ for all $i \in \omega$.

An ideal I (and its dual filter F) is called *fat* if it satisfies the following condition:

If $\{B_i : i \in \omega\} \subseteq I$ is such that $\lim_i \min B_i = \infty$, then there is an infinite $Z \subseteq \omega$ such that $\bigcup_{i \in Z} B_i \in I$.

In [5] it is proved that every *P*-set having the \mathfrak{c} -cc is fat.

For the rest of this section let us fix a fat P-filter F and its dual I.

The filter F determines a forcing $\mathbb{P} = \mathbb{P}(F)$ in the following way: Let \mathcal{T} consist of all trees $t = (t, \leq_t)$, which are suborderings of (ω, \leq) whose domains t are infinite elements of I. Fix a tree t_0 order isomorphic to the Cantor tree \mathcal{B} (i.e. a full binary tree of height ω). Moreover we can assume that $\min t_0 = 0$. So, \mathcal{B} can be treated as the set of all finite zero-one sequences. Moreover we can assume that if $h : \{0,1\}^{<\omega} \to (t_0, \leq_{t_0})$ is the required isomorphism then the following condition holds:

If x_1, x_2 are different elements of \mathcal{B} , length $(x_1 \cap x_2) = l$ and $x_1(l) < x_2(l)$ then $h(x_1|_{\{0,1,\ldots,l\}}) < h(x_2|_{\{0,1,\ldots,l\}})$.

We define the relation which partially orders the family \mathcal{T} as follows: $(t, \leq_t) \leq (s, \leq_s)$ if and only if (s, \leq_s) is a subordering of (t, \leq_t) and each branch of (t, \leq_t) contains cofinally a (unique) branch of (s, \leq_s) .

For any $t \in \mathcal{T}$ and $n \in \omega$ let $t^{(n)} = t \setminus \{0, \ldots, n\}$ denote the subtree of t obtained from t by deleting the elements $0, \ldots, n$.

Now define $\mathbb{P} = \mathbb{P}(F)$ as the set of all pairs $p = \langle t^p, f^p \rangle$, where $t^p \in \mathcal{T}$ and $t^p \leq t_0^{(n)}$ for some *n* and a tree t_0 , and $f^p : t^p \to \{0, 1\}$. The ordering on \mathbb{P} is defined as follows:

$$p \leq q \equiv t^p \leq t^q \text{ and } f^p \supseteq f^q.$$

Thus, the sets of branching points of the trees are exactly the same. (In fact, these points are precisely the branching points of the fixed tree t_0 .) It follows that each branch of the tree t^p is uniquely coded by a branch of t_0 (and \mathcal{B}).

To see how \mathbb{P} works, suppose that $G \subseteq \mathbb{P}$ is a generic filter. For any branch b of t_0 in V let b^p be the branch of t^p which almost contains b cofinally; put $t^G = \bigcup_{p \in G} t^p$, $f^G = \bigcup_{p \in G} f^p$ and $b^G = \bigcup_{p \in G} b^p$. Clearly, t^G is a tree (but $t^G \notin I$), $f^G : t^G \to \{0,1\}$ and b^G is a branch of t^G extending b. Define

$$X_b = \{i \in \omega : i \in b^G \text{ and } f^G(i) = 1\}.$$

By assumption, the sets t^p belong to I and therefore the set $(\omega \setminus t^p) \cap A$ is infinite, for each $A \in F$ and $p \in \mathbb{P}$. It follows that the sets

$$E_{n,\varepsilon}^{A,b} = \{ p \in \mathbb{P} : \exists i \ge n \ [i \in A \cap b^p \text{ and } f^p(i) = \varepsilon] \}$$

are dense for each $A \in F$, $n \in \omega$, $\varepsilon = 0, 1$ and any branch b of t_0 (in V). Hence, X_b intersects infinitely each set $A \in F$, and the complement $b^G \setminus X_b$ has the same property. In [3], it is proved that the countable product $\mathbb{P}^{\omega}(F) = \mathbb{P}(F) \times \mathbb{P}(F) \times \cdots$ is always ω -proper and ω^{ω} -bounding (i.e. each function $f : \omega \to \omega$ from V[G] is majorized by a function $g : \omega \to \omega$ from V). Thus ω_1 is not collapsed and since distinct branches b^G are almost disjoint we may say that the forcing \mathbb{P} adds uncountably many almost disjoint Gregoriefflike sets X_b . In particular, the Suslin number of the set $\bigcap \{\overline{A} \setminus \omega : A \in F\}$ determined by F will be uncountable in V[G].

A similar notion of forcing is used in [3] to construct a model in which there are no closed ccc *P*-sets (in ω^*). Since ω_1 is not collapsed, to obtain an uncountable family of relatively open subsets of $\bigcap F$ it is enough to add a new element X_b for every branch b^V of \mathcal{B}^V (i.e. every branch which belongs to the ground model). Since, starting with $\mathfrak{c} = \omega_1$, we iterate the forcing $\mathbb{P}^{\omega}(F) \ \omega_2$ times, in the resulting model we have $\mathfrak{c} = \omega_2$. So to ensure that each closed *P*-set is \mathfrak{c} -cc we have to add new elements of the type X_b for ω_2 (new) branches of \mathcal{B} .

Note that since the set t^G does not belong to the ground model its characteristic function is a new branch in the binary tree \mathcal{B} .

3. Construction of the model. Let us fix a ground model V in which $\mathfrak{c} = \omega_1, 2^{\omega_1} = \omega_2$ and the diamond principle holds:

There is a sequence $\langle T_{\alpha} : \alpha < \omega_2 \text{ and } cf(\alpha) = \omega_1 \rangle$ such that for every $Y \subseteq H(\omega_2)$ the set $\{\alpha < \omega_2 : cf(\alpha) = \omega_1 \text{ and } Y \cap H_{\alpha} = T_{\alpha}\}$ is stationary.

Here, $H(\omega_2)$ denotes the family of all sets of hereditary power less than ω_2 ; $H(\omega_2) = \bigcup_{\alpha < \omega_2} H_{\alpha}$ is a standard decomposition into a continuously increasing chain with $\operatorname{card}(H_{\alpha}) = \omega_1$. (As V we can take for example the constructible universe.)

Define by induction a countable support iteration $\langle \mathbb{P}_{\alpha} : \alpha < \omega_2 \rangle$ as follows:

- $\mathbb{P}_{\alpha} = \lim_{\beta < \alpha} \mathbb{P}_{\beta}$ (limit with countable supports) for limit α ,
- $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \mathbb{P}^{\omega}(T_{\alpha})$ if $cf(\alpha) = \omega_1$ and $\mathbb{P}_{\alpha} \Vdash ``T_{\alpha}$ is a fat *P*-filter'',
- $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \mathbb{Q}_{\alpha}$ in all remaining cases (\mathbb{Q}_{α} is a \mathbb{P}_{α} -name of an arbitrary forcing whose countable support iteration is proper and ω^{ω} -bounding).

We can assume that $\mathbb{P}_{\alpha} \subseteq H(\omega_2)$. In view of [7, Ch. V, Theorem 4.3] the forcing \mathbb{P}_{ω_2} is proper and ω^{ω} -bounding. Let G be a generic filter.

4. Main theorem. The model constructed in the previous section satisfies the following.

THEOREM 1. In the model V[G] there are no P-sets with the \mathfrak{c} -cc.

Proof. Suppose the opposite and derive a contradiction. Thus, there is a fat *P*-filter $F \in V[G]$. Clearly, we have

 $V[G] \models "\mathfrak{c} = (\omega_2)^{V}$ " and $V[G|\alpha] \models "\mathfrak{c} = \omega_1$ " for all $\alpha < \omega_2$. Set $F_{\alpha} = F \cap V[G|\alpha]$. We claim that

The set
$$C_1 = \{ \alpha < \omega_2 : F_\alpha \in V[G|\alpha] \}$$
 is an ω_1 -cub

(i.e. unbounded and closed under limits of length ω_1). Choose a canonical name $\underline{F} \subseteq H(\omega_2)$ of F consisting of some pairs $\langle x, p \rangle$ (in fact, *canonical* names for pairs, which are elements of $H(\omega_2)$), where x is a \mathbb{P}_{ω_2} -name of a subset of ω and $p \in \mathbb{P}_{\omega_2}$. Denote by $\underline{F}(x)$ the set $\{p : \langle x, p \rangle \in \underline{F}\}$). Since card $\underline{F}(x)$ is at most ω_1 , the set

$$C_2 = \{ \alpha < \omega_2 : \forall x \, [x \in V^{(\mathbb{P}_\alpha)} \to \underline{F}(x) \subseteq \mathbb{P}_\alpha] \}$$

is easily seen to be an ω_1 -cub. Plainly, the set $\underline{F}_{\alpha} = \underline{F} \cap (V^{(\mathbb{P}_{\alpha})} \times \mathbb{P}_{\alpha})$ is a \mathbb{P}_{α} -name and we have

$$\underline{F}_{\alpha}[G|\alpha] = \underline{F}[G] \cap V[G|\alpha] = F_{\alpha},$$

whence $F_{\alpha} \in V[G|\alpha]$ for all $\alpha \in C_2$.

In addition we may assert that the F_{α} 's are fat *P*-filters, because they are so on an ω_1 -cub subset of C_1 . Indeed, if $R = \{A_i : i \in \omega\} \subseteq F_{\alpha}$, then there is an $A \in F$ such that $A \subseteq_* A_i$ for all $i \in \omega$. There is a $\beta < \omega_2$ such that $A \in V[G|\beta]$ (cf. [7, Ch. V, 4.4]. Since there are at most $\mathfrak{c} = \omega_1$ countable subfamilies R of F_{α} in $V[G|\alpha]$, there must be an ordinal $\alpha^* \in C_1$ such that in $V[G|\alpha^*]$ we can find some lower bounds $A \in F$ for all such R's. Now define inductively $\alpha_0 = \alpha$, $\alpha_{\xi+1} = \alpha_{\xi}^*$ and $\alpha_{\lambda} = \sup_{\xi < \lambda} \alpha_{\xi}$ for limit λ . If $\beta = \sup_{\xi < \omega_1} \alpha_{\xi}$, then $\beta \in C_1$ and $F_{\beta} \in V[G|\beta]$ is a *P*-filter. Obviously, the set

$$C_1' = \{\beta < \omega_2 : F_\beta \text{ is a } P\text{-filter}\}$$

is ω_1 -closed, which proves that C'_1 is an ω_1 -cub.

In a similar way we show that F_{β} is fat on an ω_1 -cub subset $\subseteq C_1$, which proves the claim.

A standard reasoning also shows that the set

$$C_3 = \{ \alpha < \omega_2 : \underline{F} \cap H_\alpha = \underline{F}_\alpha \}$$

is an ω_1 -cub. Hence, $C = C_1 \cap C_3$ is also an ω_1 -cub. By the diamond principle applied to $Y = \underline{F} \subseteq H(\omega_2)$ there is an $\alpha < \omega_2$, with $cf(\alpha) = \omega_1$ such that T_{α} is a \mathbb{P}_{α} -name of the fat *P*-filter F_{α} . By the definition of the iteration we force with $\mathbb{P}^{\omega}(F_{\alpha})$ at stage α , i.e. $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * P^{\omega}(\underline{F}_{\alpha})$.

To finish the proof fix a $p \in \mathbb{P}_{\omega_2}$. Then the α th term $p(\alpha)$ can be written as $p(\alpha) = \langle p_n(\alpha) : n \in \omega \rangle$. Let b be a branch in the binary tree \mathcal{B} (in $V[G|\alpha]$) and denote by $b_{n,\alpha}^G$ the corresponding branch in $t_{n,\alpha}^G = \bigcup_{p \in G} t_{n,\alpha}^p$, where $p|_{\alpha} \Vdash "p(\alpha) = \langle t_{n,\alpha}^p, f_{n,\alpha}^p \rangle$ ". Define

$$X_{n,\alpha}^{\alpha}(b) = \{ k \in b_{n,\alpha}^G : f_{n,\alpha}^G(k) = 1 \}.$$

Note that for any $\xi > \alpha$ with $\operatorname{cf}(\xi) = \omega_1$, $t_{m,\xi}^G = \bigcup_{p \in G} t_{m,\xi}^p$ determines a new branch in the binary tree and thus a new branch $b_{n,\alpha}^{m,\xi}$ in the tree $t_{n,\alpha}^G$. Indeed, we can identify the set $t_{n,\xi}^G$ with its characterictic function. Such a function is just a (new) branch in the binary tree, say *b*. Let $b_{n,\alpha}^{m,\xi}$ be the corresponding branch of the tree $t_{n,\alpha}^G$. (Of course, this branch does not belong to the model $V[G|\alpha]$.) Define

$$X_{n,\alpha}^{m,\xi} = \{ k \in b_{n,\alpha}^{m,\xi} : f_{m,\alpha}^G(k) = 1 \}.$$

(Note that the sets $X_{n,\alpha}^{m,\xi}$ for $\alpha \leq \xi$ and $m \in \omega$ form a family of \mathfrak{c} almost disjoint Gregorieff-like sets centered with F_{α} .)

Actually, what we will use is

LEMMA 1. Assume that $\langle \xi_i : i \in \omega \rangle \in V$ is a sequence of ordinals greater then or equal to α , of cofinality ω_1 . Let $\langle n_i : i \in \omega \rangle \in V[G|\alpha]$ and $\langle m_i : i \in \omega \rangle \in V[G|\sup \xi_i]$ be sequences of natural numbers (the first one is injective). Suppose that a sequence $\langle b_i : i \in \omega \rangle$ of branches of the binary tree \mathcal{B} and a function $g : \omega \to \omega$ belong to $V[G|\alpha]$. Denote by X_i the set $X^{\alpha}_{n_i,\alpha}(b_i)$ if $\xi_i = \alpha$, and $X^{m_i,\xi}_{n_i,\alpha}$ otherwise. Then the set

$$\bigcap_{i \in \omega} [(\omega \setminus X_i) \cup [0, g(i))] \text{ is in the ideal } I_{\alpha} \text{ (dual to } F_{\alpha}).$$

Proof. The proof consists of two cases:

CASE 1. Suppose that $\xi_i = \alpha$ for all $i \in \omega$. It is enough to show that the assertion of the lemma holds for V and the forcing $\mathbb{P}^{\omega}(F_{\alpha})$. So suppose that

F is a fat P-filter in V. For a given $p = \langle (t_n, f_n) : n \in \omega \rangle$ there is a set B and integers $k_i \in \omega$ such that

 $t_{n_i} \setminus [0, k_i) \subseteq B$ for all $i \in \omega$.

We may assume that $g(i) < k_i < k_{i+1}$ and $y_i = [k_i, k_{i+1}) \setminus B \neq \emptyset$ for all *i*. Extend each t_{n_i} by adding to the branch b_i all elements of y_i and put $f_{n_i}(k) = 1$ for $k \in y_i$. Then q obtained in this way forces that

$$[(\omega \setminus X_i) \cup [0, g(i))] \cap y_i = \emptyset$$

and hence

$$\bigcap_{i \in \omega} [(\omega \setminus X_i) \cup [0, g(i))] \cap \bigcup_{i \in \omega} y_i = \emptyset.$$

But $\bigcup_{i \in \omega} y_i = [k_{m_0}, \infty) \setminus B$ and thus

$$q \Vdash ``\bigcap_{i \in \omega} (\omega \setminus X_i) \cup [0, g(i)) \subseteq_* B",$$

which proves the first case.

CASE 2. Suppose that there are $\xi_i > \alpha$. Without losing generality we can treat $V[G|\alpha]$ as a ground model. Define y_i as above. Then first of all, for all $i \in \{j : \xi_j = \alpha\}$, extend conditions (t_{n_i}, f_{n_i}) by adding new elements to the trees $t_{n_i,\alpha}$, in the way described above.

Let $\xi_i > \alpha$. By definition, $t_{n_i} \leq t_0^{(m)}$ for some $m \in \omega$. (In fact, $t_{n_i} \leq t_0^{(m)}(\xi_i, n_i)$, since the choice of the tree t_0 depends on an ideal $I(\xi_i, n_i)$ considered at stage ξ_i and for the index n_i . We can assume that if $I(\xi_1, n_1) \subseteq I(\xi_2, n_2)$ for some $\xi_1 < \xi_2$ or $\xi_1 = \xi_2$ and $n_1 < n_2$, then $t_0(\xi_1, n_1) \subseteq t_0(\xi_2, n_2)$.) We choose a finite sequence of pairwise comparable conditions $p = p_0 \geq p_1 \geq \cdots \geq p_k$ which forces all properties listed below. To simplify notation we will write h_i, x_l, y_i etc. instead of their canonical names.

For a fixed isomorphism $h_i : \mathcal{B} \to t_0$ denote by c_l the images $h_i(x_l)$, where x_l is a sequence of length l and range {1}. Put

$$c_i = c_{l_0^i}, \text{ where } l_0^i = \{l : c_l \in t_{n_i}\}.$$

Thus c_i is the least branching point of t_{n_i} which belongs to the branch $u_i = \bigcup_{l \in \omega} h_i(x_l)$.

We extend t_{n_i} as follows: For all $r \in y_i$ and $r < c_i$ we put $r \leq_{t_{n_i}} c$. There exists the least $l_i \in \omega$ such that

$$y_i \setminus \{0, 1, \ldots, c_i\} \subset [c_i, c_{l_i}) \cap \omega.$$

Thus we add all elements of y_i to the branch corresponding to u_i and put $f_{n_i}(r) = 1$ for each of them. Moreover extend the condition $p(\xi_i)(m_i) = (t_{m_i,\xi_i}, f_{m_i,\xi_i})$ in such a way that

$$p|_{\xi_i} \Vdash ``\{0, 1, \dots, l_i\} \subset t_{m_i, \xi_i}$$
.

The condition p_k obtained in this way forces the same as the q defined in Case 1. So Lemma 1 is proved.

Now, we can finish the proof of Theorem 1. From the **c**-cc assumption it follows that for every $i \in \omega$ there is an $\eta_i < \omega_2$ such that $\omega \setminus X_{n_i,\alpha}^{m_i,\xi} \in F$ for all $\xi \geq \eta_i$ with $\operatorname{cf}(\xi) = \omega_1$ and $m_i \in \omega$. Let $\omega_2 > \xi_i > \eta_j$ with $\operatorname{cf}(\xi_i) = \omega_1$ and $m_i \in \omega$.

Since F is a P-set, there is an $A \in F$ and a function $g: \omega \to \omega$ such that

$$A \setminus [0, g(i)) \subseteq \omega \setminus X_{n_i, \alpha}^{m_i, \xi_i} \quad \text{for each } i \in \omega,$$

which implies $\bigcap_{i \in \omega} (\omega \setminus X_{n_i,\alpha}^{m_i,\xi_i}) \cup [0,g(i)) \in F_{\alpha}$. Since \mathbb{P}_{ω_2} is bounding we may assume that $g \in V$. This contradicts Lemma 1 and the proof is finished.

5. Structure of a fat *P*-set. The coabsoluteness assertion follows easily from the following theorem, which clarifies the structure of any fat *P*-set.

THEOREM 2. In the model $V^{\mathbb{P}_{\omega_2}}[G]$ every fat *P*-set *F* has a π -base tree of height ω , each vertex of which splits into \mathfrak{c} elements.

Proof. Let F denote also the corresponding filter. Keeping the notation from the preceding proof we use the sets X^i_{γ} to construct a dense tree in the factor algebra $P(\omega)/F$. Fix an enumeration of the branches of the binary tree $\{b_{\gamma} : \gamma < \omega_2\}$. Denote by X^i_{γ} the set $X^{m_i,\xi_i}_{i,\alpha}$ if b_{γ} is the characteristic function of the tree $t^G_{m_i,\xi_i}$ ($\xi_i > \alpha$), and the set $X^{\alpha}_{n_i,\alpha}(b_{\gamma})$ if b_{γ} belongs to the model $V[G|\alpha]$. Notice first that for a given positive element $a = [A] > \mathbb{O}$ from $P(\omega)/F$, there is an $i \in \omega$ such that

$$a \cdot x^i_{\gamma} > \mathbb{O}$$
 for \mathfrak{c} -many γ ,

where $x_{\gamma}^{i} = [X_{\gamma}^{i}]$ denotes the equivalence class mod F of elements determined by the branch b_{γ} in the tree $t_{i,\alpha}^{G}$.

Indeed, suppose the opposite, i.e. for each $i \in \omega$ there is a β_i such that

$$A \cap X^i_{\gamma} \in I$$
 for every $\gamma \geq \beta_i$.

Let $\gamma > \sup_{j \in \omega} \beta_j$ with $cf(\gamma) = \omega_1$. We then have

 $A \setminus B_i \subseteq \omega \setminus X^i_\gamma$ for all $i \in \omega$,

where the B_i 's belong to I. Since I is a P-ideal there is a set $B \in I$ such that $B_i \subseteq_* B$ for all $i \in \omega$ and hence

$$A \setminus B \subseteq \bigcap_{i \in \omega} (\omega \setminus X^i_{\gamma}) \cup [0, g(i)),$$

where g may be assumed to be in V, as the forcing is bounding. Now, Lemma 1 implies that $A \setminus B$ and hence A are in I, which contradicts the positivity of a = [A]. Clearly, deleting "small" sets (i.e. those from I) and renumbering we may assume that we are given a matrix

$$M = \{ x^i_{\gamma} : i \in \omega \text{ and } \gamma < \mathfrak{c} \}$$

such that every element x_{γ}^{i} is positive in $P(\omega)/F$ and each positive element $a > \mathbb{O}$ intersects \mathfrak{c} elements x_{γ}^{i} in some row i (depending on a). Obviously, each row in M is an antichain. Finally, note that any positive $a > \mathbb{O}$ splits into \mathfrak{c} elements. To see this, we check that the filter

$$F_a = \{X \subseteq \omega : [a] \le [X]\} = \{X \subseteq \omega : A \setminus X \in I\}$$

is a fat *P*-filter, as *F* is, and then apply Theorem 1 to convince ourselves that the algebra $P(\omega)/F_a$ has an antichain of power \mathfrak{c} .

Now, define a tree T as follows. Extend, if necessary, the first row $\{x_{\gamma}^{0}: \gamma < \mathfrak{c}\}$ to a maximal antichain $T_{0} = \{y_{\beta}^{0}: \beta < \mathfrak{c}\}.$

Assume that the levels T_0, \ldots, T_{n-1} are already defined so that each $T_i = \{y_{\beta}^i : \beta < \mathfrak{c}\}$ is a maximal antichain. Extend each of the antichains $\{y_{\beta}^{n-1} \cap x_{\gamma}^n : \gamma < \mathfrak{c}\} \setminus \{\mathbb{O}\}$ to a maximal T_n^{β} . By the remark above we may assert that T_n^{β} always has \mathfrak{c} elements. Let $T_n = \bigcup_{\beta < \mathfrak{c}} T_n^{\beta}$. Clearly, in the resulting tree $T = \bigcup_{n \in \omega} T_n$ each vertex splits into \mathfrak{c} elements and every positive $a > \mathbb{O}$ intersects \mathfrak{c} elements of some level T_n . Hence, to each $a > \mathbb{O}$ we may assign an element $y_a \in T$ such that $a \cdot y_a > \mathbb{O}$ and $y_a \neq y_b$ whenever $a \neq b$, as in [1]. Replace any such y_a by $a \cdot y_a$ if $y_a - a > \mathbb{O}$, and the same for all $y \leq y_a$. Clearly, the tree T so modified becomes additionally a π -base.

6. Final remarks. From Theorem 2 it follows immediately that for any two fat *P*-filters F_1 and F_2 in V[G] the Boolean algebras $P(\omega)/F_1$ and $P(\omega)/F_2$ have order isomorphic dense subsets. This, in turn, implies that the completions of $P(\omega)/F_1$ and $P(\omega)/F_2$ are Boolean isomorphic, or, equivalently, the Gleasons $\mathbb{G}(F_1)$ and $\mathbb{G}(F_2)$ are homeomorphic.

Finally, let us comment on other consistent configurations of P-sets. For example, we can construct a model with $\mathfrak{c} > \omega_1$ in which there are no P-points and there are two fat P-sets, one with the ω_1 -cc and the other with the ω_2 -cc. In connection with Theorem 2 we note that it is consistent to have two fat P-sets having the \mathfrak{c}^+ -cc with distinct Gleasons. The proof is more difficult and will be published elsewhere.

References

- B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), 11-24.
- [2] J. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 271-288.

- R. Frankiewicz, S. Shelah and P. Zbierski, On closed P-sets with ccc in the space ω^{*}, J. Symbolic Logic 58 (1993), 1171–1177.
- [4] R. Frankiewicz and P. Zbierski, Hausdorff Gaps and Limits, Elsevier, 1994.
- [5] —, —, Strongly discrete subsets in ω^* , Fund. Math. 129 (1988), 173–180.
- [6] W. Rudin, Homogeneity problems in the theory of Čech compactification, Duke Math. J. 23 (1956), 409-419.
- [7] S. Shelah, *Proper Forcing*, Lecture Notes in Math. 940, Springer, Berlin, 1982.

Ryszard Frankiewicz Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland E-mail: rf@impan.gov.pl Magdalena Grzech Institute of Mathematics Cracow University of Technology Warszawska 24 31-155 Kraków, Poland E-mail: smgrzech@cyf-kr.edu.pl

Paweł Zbierski Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland

> Received January 25, 2005; received in final form June 23, 2005 (7433)