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Summary. For homographic extensions of the one-sided Bernoulli shift we construct
o-finite invariant and ergodic product measures. We apply the above to the description
of invariant product probability measures for smooth extensions of one-sided Bernoulli
shifts.

0. Introduction. Let o be the one-sided (p,q)-Bernoulli shift on the
space 2 = {0,1}N, N = {0,1,2,...}, with the (p, ¢)-measure y, on (£2,B),
where B is the Borel product o-algebra. Let us consider two transforma-
tions Tp, Ty of the interval [0, 1] onto itself such that T; € C2[0,1], T} > 0,
T;(0) =0, T;(1) = 1 for ¢ = 0,1 and Ty > I, T1 < I where I(z) = z for
x € [0, 1]. We define the transformation

T(w,z) = (U(w),Tw_((l)) (x)).

This transformation is the realization of the random map T'(z) = T, !(z)
with probability p and T'(z) = Tl_l(:c) with probability g. Let A denote
the Lebesgue measure on [0,1]. It will cause no confusion if we use the
same letter to designate the Lebesgue measure on RT. Let M, denote the
set of T-invariant measures such that m|B x [0,1] = p, for m € M,. The
product measures in M), allow us to describe the distribution of almost every
trajectory of random map. Therefore our purpose is to get a description of
such measures in M. Some results on this topic have been obtained in [K] for
transformations T; = (1—¢;)x+¢;9(x), i = 0,1, where g € C?[0,1], g(0) = 0,
g(1) =1, (1 —supg’)™! < g0,e1 < (1 —infg’)~!. Here we additionally
assume that there exists exactly one point z for which ¢'(xg) = 1 and
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either ¢'(z) < 1 for x < xg or ¢’(x) > 1 for x < xg. Furthermore, the
above mentioned paper contains conditions which ensure that M, consists
of product measures and that it contains no absolutely continuous measures.
The present paper extends these results as follows. In Section 1 we con-
sider commuting homographic transformations 7;, ¢ = 0,1. For the homo-
graphic extensions of the one-sided Bernoulli shift we determine o-finite
invariant and ergodic equivalent product measures. Next, we describe the
cluster points of (A"I),en, where A is the operator acting on the set of dis-
tribution functions of probability measures determined by p and T;, ¢ = 0, 1.
In Section 2 we consider the transformations 7; (the same as in [K]), i =0, 1,
and the operator A7 determined by p and T;, i = 0, 1. We prove (Theorem 3)
that if lim, oo A1 = 0 or 1 then the set of product measures in M), is
conv{f, X 8¢y, ptp X 013} Next, using the results of Section 1 we show (for
some instances) how the cluster points of (A}.1),en may be determined. In
particular we extend the description of M, for the example from [K].

1. Homographic extensions of Bernoulli shifts. Let us consider the
transformation of the unit interval of the form

T(z)= actb where a,b,c,d € R.
cx+d

Under the assumptions:
T:[0,1] —[0,1], T(0)=0, T(@1)=1,
T0)>1, T'(1) <1 or T(0)<1, T'(1)>1

we have
T

Tl

Moreover, T\ > I for A\ € (0,1) and T < I for A € (—00,0). The one-
parameter family T of homographic maps commutes and

T(x) = Tx(x) where A\ € (—o0,1) \ {0}.

TrooTh =Ti(1-xg)1-n1):  In =T x/1-n)-

Let o be the one-sided (p,q)-Bernoulli shift. Take T}, T\, for Ao € (0,1)
and A1 € (—00,0) and define the transformation

(1) T(w,2) = (o(w), T2, (2))

Let D be the set of distribution functions of probability measures on [0, 1].
Define the operator A on D as follows:

AF (z) = pF(Tx,(x)) + qF(T)\,(z)) for F € D.

Let vr denote the measure determined by F'.
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Fact 1 ([K]). The measure ju, xvp is T-invariant if and only if AF =

We compute A"I:

n

n n n—
A=) <k>pkq T (o) (12
k=0

x " n k n—k k n—k T
— E 1— 1—
11—z Pt (k:)p 1 [( Ao)*(1 =) 11—z

for = € (0,1). Consequently,

-1

n T p g \"
< .
(2) Al(x)_l—:n(l—AOle—)\l) for x € (0,1)

Since

P q A(Ao — 1)
1 - v 7
T 1o TP TN

we get

Fact 2.

A1(Ao—1
lim A"I(z) =0 for x€[0,1) and p< M.

Fact 3. AI > 1 forp > )\1’\_1/\0 and Al <1 for p < )\;\(()/\—0;1%)

Proof. Observe that AI > I if and only if

D q
d(z) = >1
(@) S R VL W v

for every x € [0,1]. In particular

A1(Ao—1)
Ao — A1
Now d attains its minimum exactly at

—Aop ~Xop\ !
=1+ (4 1 - .
"o * < A1q )(AO M A1q >

Since xg > 1 if and only if p > /\1%1)\0, we get AI > [ for p > )\1);1)\0.
proof of the case Al < [ is similar. m

d0)>1 & p> and d(1) = 1.

We now state a result that will be of use later.
LEMMA 1.

%(A”I)(x) < for x € (0,1) and n € N.

(1—2)x
Proof. Let

) =3 ()=t 4

k=0

F.

The
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where a =1 — Xg, b =1 — A;. Then

fal@) == (k)p’fq" F@t T )
Therefore
‘fn i < > k n—k kbnfk+x/2)fl

and consequently

Q o< o n(3).

Combining the equalities

n n oz x
fn()——.AI<1+ ) and .AI(m)—l_xfn(l_x>
with (3) we get

%Anl@): (1—1x)2 f”<1fx> i (1—1x)2 5(1:«)

—A”I( ) < ﬁ(Anl( )+A”1(2_$)).

<2
(1—2)x

and

This gives

—A”I( ) < for z € (0,1)

and the proof is complete. =
The next lemma ensures the existence of a o-finite T-invariant measure.

LEMMA 2. For every
In(1— A1)

In(1=52)

p#

there exists s # 0 such that

AF, =F, forF:( ° )

1—x
Proof. We first observe that the following identity holds:

T)\(l') . 1 X
1-Tyz) 1-X1-=x
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for x € (0,1) and A € (—o0,1). From this it follows that

A(lf& BT (ixfwains(lfx)s

1 T s
1—)\0 (1—)\1)5 11—z '
Therefore,

® A<1fx)8: (1::)5 - p(l—lA[))s G —1A1>5 -

(I=X)*—1
P= oo o
(1=30)° -1
et (1= A1) —1
—_ — 1 —
7(5)——(%:§1)S_1 for s #0
0
and (1 — \y)
. ni(L — Ap
0) =lim~(s) = ————=.
2(0) = i) = =5

The function + is continuous, strictly decreasing on R and lim,_, o, y(s) =1,
lims_, y(s) = 0. This shows that for every p # v(0) there exists exactly
one s # 0 such that (4) holds, which completes the proof. =

Let T be given by (1) and m = pu, x vp,. By using the fact that p, is
Bernoulli it is easy to check that
tp X vy (T~1(B x [0, 2])) = j( B) AFy(2)

for every B € B and x € [0, 1]. Hence by Lemma 2 we see that m is a o-finite
infinite T-invariant measure equivalent to u, x A. The following theorem
ensures the ergodicity of (7', m):

THEOREM 1. If
In(1— A1)

In(l—X\p)
(5) In(1 — Xo) 1

is an irrational number and p # .
ln(l—)\o)

then the dynamical system (T, m) is ergodic.

Proof. Let B be a T-invariant set. By the theorem of Morita [M], B =
(2 x A for a measurable set A. Here T;(A) = A for T; = T),,i = 0, 1. Suppose
A(A) > 0. Our goal is to show that A(A) = 1. To do this we introduce the
set C' = J(A) where

_1—ac

Since
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we have
(1=X)"™(1=X\)"C=C.
Let a=In(1— Ag)/In(1— \;). By the assumption the set {ma+n: m,n € Z}
is dense in R and consequently the set
E={1-X)"1-A)":m,neZ}

is dense in R™. Suppose on the contrary that A(A) < 1. Then A(RT\C) > 0.
Let = and y # 0 be density points of R™\ C' and C, respectively. For ¢ < 1/2
there exists § > 0 such that for any interval @, if A(Q) < § and = € Q
(resp. y € Q) then
(6) AQNR\C)>(1-)A@Q) (resp. AQNC) > (1—e)AQ)).
Let @ be such that y € Q, (z/y)A(Q) < 6 and A(Q) < 6. By the density
of E in RT there exists § € F such that 3A(Q) < ¢ and z € Q. Thus we
get

ABQNRT\C) > (1-¢)BAQ)
and also

A(BQNC) = A(BQ N BC) = BAQNC)
> (1-¢)pA(Q) by (6),

which is impossible. u

COROLLARY 1. If Ao, A1,p satisfy (5) then (T, m) has no product abso-
lutely continuous tnvariant probability measure.

Proof. Suppose on the contrary that such a measure exists. Then T
is conservative and ergodic. Hence by the unicity of invariant measure
([A, Th. 1.5.6]) the measure v, is finite, which is impossible. m

COROLLARY 2. If Ao, A\1,p satisfy (5) then the cluster points of
1 n—1
k
)
k=0

are constant functions on (0,1).

neN

Proof. By Lemma 1 the family of functions A"I, n € N, is uniquely
Lipschitzian on [e,1 — €] for every 0 < € < 1. Therefore any cluster point F*

of
1 n—1
n
()
k=0 neN
is Lipschitzian on (0,1). Hence vp+ is a convex combination of dygy, o1y
and an absolutely continuous measure. Corollary 1 implies that F* = const

on (0,1). m

The following theorem describes the convergence of (A™I),en:.
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THEOREM 2. (i) If
M(Ag—1
< 1(Mo — 1)
Ao — A1
and Ao, A1, p satisfy (5) in the case of equality, then
lim A"I =0 almost uniformly on [0,1).

n—oo
(i) 1f
A1
D=
A1 = Ao
and Ao, A1, p satisfy (5) in the case of equality, then

lim A" =1 almost uniformly on (0,1].

n—oo

Proof. (i) The first part of (i) follows from Fact 2. Suppose now p =
A (Ao —1)/(Ag — A1) and Mg, A1, p satisfy (5). By Fact 3, A"HT < A" < T
for n = 1,2,..., and by Lemma 1, (A"]),cy is uniquely Lipschitzian on
[,1 — ¢] for every 0 < &€ < 1. Combining these with Corollary 2 we get
limy, o0 A™I =0 on [0, 1) almost uniformly

(ii) We first show a new estimate of A" which is more useful for our
aim. Let us compute

_'An ) Z < ) [p(1 - AO)]k[Q(l - >‘l)]n_ka_(l_)\o)k(l_h)nw (x).

Hence J
n 1 n
A (@) = —5 [p(1 = 20) + (1 = A1)

for x € (0, 1] Now, if A\1/(A1 — Ao) < p or equivalently p(1 — Xg) +¢q(1 — A1)
< 1 then d A" ](x) — 0 uniformly on (e, 1] for every 0 < ¢ < 1. By Fact 3,
I < AT < A™H for n = 1,2,.... This and the above imply lim,, o, A"
= 1 almost uniformly on (0,1]. Let p = A1 /(A1 — Ao) and suppose Ao, A1, p
satisfy (5). Since L.A"I(z) < 1/2% for x € (0,1], n = 1,2,..., (A™])nen
is uniquely Lipschitzian on (e, 1] for every 0 < ¢ < 1. Combining this with
Corollary 2 we get lim;,, .o A"I =1 on (0, 1] almost uniformly. =

2. Product measures for smooth extensions of Bernoulli shifts.
Let us consider two transformations of the unit interval

To(z) = (1 —eo)z + c09(x),
Ti(xz) = (1 +e1)r —e1g9(x),

where g € C?[0,1], g(0) = 0, g(1) = 1, (1 —supg’)™! < gp, —e1 <
(1 — inf ¢’)~!. We also suppose that there exists exactly one point xq for



164 Z. S. Kowalski

which ¢'(z9) = 1 and either ¢'(z) < 1 for < zg or ¢'(z) > 1 for x < zo.
Let
ArF = pF(Ty) + qF(T1) for F € D.

We are thus led to the following strengthening of Lemma 4 of [K].

THEOREM 3. If limy, oo A} =0 (resp. lim, o0 A"I = 1) for x € [0,1)
(resp. x € (0,1]) then the set of product measures in M, is conv{j, X 00y,
fp X O(1y}-

We will give the proof only for the case lim,, . A™I = 0, the second case
is similar. We precede the proof by a lemma.

LEMMA 3. If limy oo A}I = 0 for x € [0,1) then for any G € C|0,1]
we have lim, .o A7.G = G(0).

Proof. We first observe that lim, ..o A%(z*) = 0 on [0,1) for k =
1,2,.... This is an immediate consequence of the following implication:

b <z = AP < AR forze0,1]andn=1,2,....

Hence, lim, . A}w = w(0) on [0, 1) for any polynomial w. Since Ar is a
contraction in the supremum norm and the set of polynomials is dense in
10,1}, we get

lim A7G =G(0) in [0,1)

for any G € C[0,1]. =

Proof of Theorem 3. Let G be a distribution function. We define two new
ones as follows:

G(z) forz€|0,1),
Gil@) = {G(l_) for z =1,

and Ga(x) = Gi(z7) for x € (0,1]. Here Gi(x~) means the left-hand limit
of G at x. Now (1 is upper semicontinuous, being nondecreasing and right-
continuous. Similarly G4 is lower semicontinuous. By the definition

(7) Go(z) < G(x) < Gy(z) for x €[0,1).

By Baire’s theorem there are sequences of continuous functions (Hz)neNa

(H})nen such that H2 /' Gy and H} \, Gy. Also,
Tim_ H2(0) = Ga(0) = G(0) = G1(0) = lim H3(0)
From Lemma 3 and (7) we conclude that
Jim. ArG =G(0) for x € ]0,1).
Hence, if A7G = G for G € D then G = G(0) on [0,1), which proves the
theorem. m

To make use of the above theorem we apply Theorem 2 to determine the
limit of the sequence (A}T)pen.
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EXAMPLE 1. Let g(x) = Ty, (x) for Ao € (0,1) and
Te(z) = (14+e)x —eT),(z) for0<e<1/A—1.

Put A. = Ap. We will determine \; € (—00,0) such that sgn(7.(x) —
T\, (z)) = const for z € (0,1) or equivalently

Al 8)\0
-1 = t
Sgn|:($ )<)\11‘—|—1—>\1 +)\01‘—|—1—)\0):| cons
for x € (0,1). We have

e
(8) T.(z) > Ty () & A < m
(9) To(z) < Ty, (z) & —eXg <A <O.

By (8), A"I < A"] for n € N and A; < eXg/(Ao(1 + &) — 1). Therefore, by
Theorem 2(ii),

. n € 1
= > .
e E Y
Ifp = 1% 1_1)\0 then we assume that p, Ao, \1 = eXo/(Ao(l+¢) —1)

satisfy (5). Here we use the fact that

. >\1 E)\o
Ml ——
mln{)\l—)\o 1_)\0(1+8)—1}
is achieved for A\; = eXg/(Ao(1 +¢) —1).

REMARK. We have T.(z) > TA_Ol(ac) for e < 1 — Ay because TA_O1 =
T_x,/(1-x)- Hence, by Theorem 2 of [K],

1
lim A7 =1 forp>max{§,1i+g} and € <1 — Ap.

n—o0

By (9), AZI < A" for n € N and —e)\g < A1 < 0. Therefore, by The-
orem 2(i),
: n 5(1 — )‘0)
= < —-"
nan;oAEI 0 forp< T
If p=¢e(1—Xo)/(1+¢) then we furthermore assume that p, A\g, A\; = —e)\g
satisfy (5). Here we use the fact that
A1(Ao — 1)
——— e <A <
max{ Mo — A edo <A1 <0
is achieved for A1 = —e)q.

REMARK. We have T.(z) < T)\_O1 (x) for e > 1/(1 — Ao). Hence, by [K],

1 1
T}LIEOA?I:O forp<min{§,1j_€} and € > T

We summarize these considerations in the following theorem.
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THEOREM 4. If

€ € 1
0, — (1 o)| U S
p€<’1+e( 0)} [1+51—>\0’)

then the set of product measures in M, is

conv{py X Sgoys Hp X dg1y}-

Here
1 i 5 (1—2Xo) if p, Ao, A1 = —eXo satisfy (5),
p= € eNo
) Ao, \{ = ——————— sall 5).
1+€1—A0 lfpv 0y N1 )\0(1+€)_180/Z$fy()

Forp=c¢/(1+¢),
My, = conv{ju, X 0oy, fip X 6q1y, pp X A}
EXAMPLE 2. Let g(z) = 22 and
To(z) = (1 +e0)x —eoa®,  Ti(x) = (1 —e1)a +e1a?,
for 0 <eg; <1,i=0,1. We will determine \g € (0,1) such that
sgn(Tp(z) — Th,(z)) = const  for z € (0,1)
or equivalently

sgn[(1 — z)(egAor — €0Ao + €0 — Ao)] = const.

‘We have

€0
10 T >T S A <
(10) 0(z) > Ty, () 0= 1tey
(11) To(l‘) < T,\O(l‘) & g0 < Ag.
Similarly,

sgn(Ty(xz) — Ty, (x)) = const  for z € (0,1)
if and only if
sgn[(x — 1)(e1 Mz — e1A1 + €1 + A1)] = const.

Hence

(12) Ty(e) = Ty (¢) & A< -3 516 :
— €1

(13) Tl(ac) < T,\I(JJ) S —e1 < A1

Denote by Ap the operator determined by p and T;,¢ = 0,1. By (11)
and (13), A}I < A™I for n € N and for (Ao, A1) € [0, 1] x [—€1, 0]. Therefore,
by Theorem 2(i),

1—¢g

lim A% =0 forp<e )
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Ifp=e 61015601 then we additionally assume that p, A\g = &g, A1 = —&1

satisfy (5). Here we use the fact that

max{% : ()\0,)\1) € [60, 1] X [—61,0]}

is achieved for A\g = g9, Ay = —¢€1.
REMARK. By Theorem 2 of [K], if Ty o 77 < I then

1
lim A" =0 forp<min{—, £l }
n—oo 2 50+€1

The condition ThoT) < I is not always satisfied, e.g. for eg = 3/4, ¢1 = 1.
If the conditions (10) and (12) hold then

71> A" forn € Nand (Ao, A1) € [O’ 1 j_ogo} % <_OO’_1 5181]'

Therefore, by Theorem 2(ii),

. 1+¢
lim A7I =1 forp> e 0
n—00 €0+ €1
If p=¢ 510":201 then we furthermore assume that p, A\g = 1j_—060, A = —15151

satisfy (5). Here we use the fact that

: AL €0 €1
mln{/\l_/\o : (Ao, A1) € [O,1+€0] X < 00, 1—51}}

— __&
Al =15

is achieved for g = 5%,

REMARK. By Theorem 2 of |K], if Ty o 77 > I then

1 €1
lim AT =1 f > =, .
nl_)Iglo T or p max{2 €0+€1}

The condition Ty o 71 > I is not always satisfied, e.g. for g9 = &1 = 1/2.
We summarize Example 2 in the following theorem:

THEOREM 5. If

1— 1
pe|0,e1 £0 U ler +€O,1
eo+e1 €ot+é1

then the set of product measures in M, is

conv{fi, X dgoy, pp X O(13}-
Here
1-— €0
1
€o+ €1

I+e . 0
€ S, A= —, A\ = —
1Eo+€1 i Py Ao 14+ ¢g ! 1—¢

if p, Ao = €0, \1 = —¢1 satisfy (5),

satisfy (5).
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Forp=c¢1/(e0 + €1) we have
MP = COHV{NP x 5{0}5 Hp X 6{1}7:“’17 = A}
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