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Summary. For homographi
 extensions of the one-sided Bernoulli shift we 
onstru
t
σ-�nite invariant and ergodi
 produ
t measures. We apply the above to the des
riptionof invariant produ
t probability measures for smooth extensions of one-sided Bernoullishifts.0. Introdu
tion. Let σ be the one-sided (p, q)-Bernoulli shift on thespa
e Ω = {0, 1}N, N = {0, 1, 2, . . .}, with the (p, q)-measure µp on (Ω,B),where B is the Borel produ
t σ-algebra. Let us 
onsider two transforma-tions T0, T1 of the interval [0, 1] onto itself su
h that Ti ∈ C2[0, 1], T ′

i > 0,
Ti(0) = 0, Ti(1) = 1 for i = 0, 1 and T0 ≥ I, T1 ≤ I where I(x) = x for
x ∈ [0, 1]. We de�ne the transformation

T (ω, x) = (σ(ω), T−1
ω(0)(x)).This transformation is the realization of the random map T (x) = T−1

0 (x)with probability p and T (x) = T−1
1 (x) with probability q. Let Λ denotethe Lebesgue measure on [0, 1]. It will 
ause no 
onfusion if we use thesame letter to designate the Lebesgue measure on R

+. Let Mp denote theset of T -invariant measures su
h that m|B × [0, 1] = µp for m ∈ Mp. Theprodu
t measures in Mp allow us to des
ribe the distribution of almost everytraje
tory of random map. Therefore our purpose is to get a des
ription ofsu
h measures in Mp. Some results on this topi
 have been obtained in [K℄ fortransformations Ti = (1−εi)x+εig(x), i = 0, 1, where g ∈ C2[0, 1], g(0) = 0,
g(1) = 1, (1 − sup g′)−1 < ε0, ε1 < (1 − inf g′)−1. Here we additionallyassume that there exists exa
tly one point x0 for whi
h g′(x0) = 1 and2000 Mathemati
s Subje
t Classi�
ation: Primary 37A40.Key words and phrases: homographi
 extension of one-sided Bernoulli shift, invariantprodu
t measure.Resear
h supported by KBN Grant 2 P03A 046 22 (2002-2005).[157℄
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either g′(x) < 1 for x < x0 or g′(x) > 1 for x < x0. Furthermore, theabove mentioned paper 
ontains 
onditions whi
h ensure that Mp 
onsistsof produ
t measures and that it 
ontains no absolutely 
ontinuous measures.The present paper extends these results as follows. In Se
tion 1 we 
on-sider 
ommuting homographi
 transformations Ti, i = 0, 1. For the homo-graphi
 extensions of the one-sided Bernoulli shift we determine σ-�niteinvariant and ergodi
 equivalent produ
t measures. Next, we des
ribe the
luster points of (AnI)n∈N, where A is the operator a
ting on the set of dis-tribution fun
tions of probability measures determined by p and Ti, i = 0, 1.In Se
tion 2 we 
onsider the transformations Ti (the same as in [K℄), i = 0, 1,and the operator AT determined by p and Ti, i = 0, 1. We prove (Theorem 3)that if limn→∞An

T I = 0 or 1 then the set of produ
t measures in Mp is
conv{µp × δ{0}, µp × δ{1}}. Next, using the results of Se
tion 1 we show (forsome instan
es) how the 
luster points of (An

T I)n∈N may be determined. Inparti
ular we extend the des
ription of Mp for the example from [K℄.1. Homographi
 extensions of Bernoulli shifts. Let us 
onsider thetransformation of the unit interval of the form
T (x) =

ax + b

cx + d
where a, b, c, d ∈ R.Under the assumptions:

T : [0, 1] → [0, 1], T (0) = 0, T (1) = 1,

T ′(0) > 1, T ′(1) < 1 or T ′(0) < 1, T ′(1) > 1we have
T (x) = Tλ(x) =

x

λx + 1 − λ
, where λ ∈ (−∞, 1) \ {0}.Moreover, Tλ ≥ I for λ ∈ (0, 1) and Tλ ≤ I for λ ∈ (−∞, 0). The one-parameter family Tλ of homographi
 maps 
ommutes and

Tλ0 ◦ Tλ1 = T1−(1−λ0)(1−λ1), T−1
λ = T−λ/(1−λ).Let σ be the one-sided (p, q)-Bernoulli shift. Take Tλ0 , Tλ1 for λ0 ∈ (0, 1)and λ1 ∈ (−∞, 0) and de�ne the transformation

(1) T (ω, x) = (σ(ω), T−1
λω(0)

(x)).Let D be the set of distribution fun
tions of probability measures on [0, 1].De�ne the operator A on D as follows:
AF (x) = pF (Tλ0(x)) + qF (Tλ1(x)) for F ∈ D.Let νF denote the measure determined by F .
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Fact 1 ([K℄). The measure µp×νF is T -invariant if and only if AF = F .We 
ompute AnI:

AnI =

n
∑

k=0

(

n

k

)

pkqn−kT1−(1−λ0)k(1−λ1)n−k

=
x

1 − x

n
∑

k=0

(

n

k

)

pkqn−k

[

(1 − λ0)
k(1 − λ1)

n−k +
x

1 − x

]−1

for x ∈ (0, 1). Consequently,
(2) AnI(x) ≤

x

1 − x

(

p

1 − λ0
+

q

1 − λ1

)n for x ∈ (0, 1).Sin
e
p

1 − λ0
+

q

1 − λ1
< 1 ⇔ p <

λ1(λ0 − 1)

λ0 − λ1we get
Fact 2.

lim
n→∞

AnI(x) = 0 for x ∈ [0, 1) and p <
λ1(λ0 − 1)

λ0 − λ1
.

Fact 3. AI ≥ I for p ≥ λ1
λ1−λ0

and AI ≤ I for p ≤ λ1(λ0−1)
λ0−λ1.Proof. Observe that AI ≥ I if and only if

d(x) =
p

λ0x + 1 − λ0
+

q

λ1x + 1 − λ1
≥ 1for every x ∈ [0, 1]. In parti
ular

d(0) ≥ 1 ⇔ p ≥
λ1(λ0 − 1)

λ0 − λ1
and d(1) = 1.Now d attains its minimum exa
tly at

x0 = 1 +

(

√

−λ0p

λ1q
− 1

)(

λ0 − λ1

√

−λ0p

λ1q

)−1

.Sin
e x0 ≥ 1 if and only if p ≥ λ1
λ1−λ0

, we get AI ≥ I for p ≥ λ1
λ1−λ0

. Theproof of the 
ase AI ≤ I is similar.We now state a result that will be of use later.
Lemma 1.

d

dx
(AnI)(x) ≤

2

(1 − x)x
for x ∈ (0, 1) and n ∈ N.Proof. Let

fn(x) =
n

∑

k=0

(

n

k

)

pkqn−k(akbn−k + x)−1
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where a = 1 − λ0, b = 1 − λ1. Then

f ′
n(x) = −

n
∑

k=0

(

n

k

)

pkqn−k(akbn−k + x)−2.

Therefore
|f ′

n(x)| ≤
1

2x

n
∑

k=0

(

n

k

)

pkqn−k(akbn−k + x/2)−1

and 
onsequently
(3) |f ′

n(x)| ≤
1

2x
fn

(

x

2

)

.Combining the equalities
fn(x) =

1

x
AnI

(

x

1 + x

) and AnI(x) =
x

1 − x
fn

(

x

1 − x

)

with (3) we get
d

dx
AnI(x) =

1

(1 − x)2
fn

(

x

1 − x

)

+
x

1 − x

1

(1 − x)2
f ′

n

(

x

1 − x

)

and
d

dx
AnI(x) ≤

1

(1 − x)x

(

AnI(x) + AnI

(

x

2 − x

))

.This gives
d

dx
AnI(x) ≤

2

(1 − x)x
for x ∈ (0, 1)and the proof is 
omplete.The next lemma ensures the existen
e of a σ-�nite T -invariant measure.

Lemma 2. For every
p 6=

ln(1 − λ1)

ln
(

1−λ1
1−λ0

)there exists s 6= 0 su
h that
AFp = Fp for Fp =

(

x

1 − x

)s

.Proof. We �rst observe that the following identity holds:
Tλ(x)

1 − Tλ(x)
=

1

1 − λ

x

1 − x
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for x ∈ (0, 1) and λ ∈ (−∞, 1). From this it follows that

A

(

x

1 − x

)s

= p
1

(1 − λ0)s

(

x

1 − x

)s

+ q
1

(1 − λ1)s

(

x

1 − x

)s

=

[

p
1

(1 − λ0)s
+ q

1

(1 − λ1)s

](

x

1 − x

)s

.Therefore,
A

(

x

1 − x

)s

=

(

x

1 − x

)s

⇔ p
1

(1 − λ0)s
+ q

1

(1 − λ1)s
= 1(4)

⇔ p =
(1 − λ1)

s − 1
(

1−λ1
1−λ0

)s
− 1

.Let
γ(s) =

(1 − λ1)
s − 1

(

1−λ1
1−λ0

)s
− 1

for s 6= 0and
γ(0) = lim

s→0
γ(s) =

ln(1 − λ1)

ln
(

1−λ1
1−λ0

) .The fun
tion γ is 
ontinuous, stri
tly de
reasing on R and lims→−∞ γ(s) = 1,
lims→∞ γ(s) = 0. This shows that for every p 6= γ(0) there exists exa
tlyone s 6= 0 su
h that (4) holds, whi
h 
ompletes the proof.Let T be given by (1) and m = µp × νFp

. By using the fa
t that µp isBernoulli it is easy to 
he
k that
µp × νFp

(T−1(B × [0, x])) = µ(B)AFp(x)for every B ∈ B and x ∈ [0, 1]. Hen
e by Lemma 2 we see that m is a σ-�nitein�nite T -invariant measure equivalent to µp × Λ. The following theoremensures the ergodi
ity of (T, m):
Theorem 1. If

(5)
ln(1 − λ1)

ln(1 − λ0)
is an irrational number and p 6=

ln(1 − λ1)

ln
(

1−λ1
1−λ0

)then the dynami
al system (T, m) is ergodi
.Proof. Let B be a T -invariant set. By the theorem of Morita [M℄, B =
Ω×A for a measurable set A. Here Ti(A) = A for Ti = Tλi

, i = 0, 1. Suppose
Λ(A) > 0. Our goal is to show that Λ(A) = 1. To do this we introdu
e theset C = J(A) where

J(x) =
1 − x

x
.Sin
e

J(Tm
0 Tn

1 (x)) = (1 − λ0)
m(1 − λ1)

nJ(x)
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we have

(1 − λ0)
m(1 − λ1)

nC = C.Let α = ln(1−λ0)/ln(1−λ1). By the assumption the set {mα+n : m, n∈Z}is dense in R and 
onsequently the set
E = {(1 − λ0)

m(1 − λ1)
n : m, n ∈ Z}is dense in R

+. Suppose on the 
ontrary that Λ(A) < 1. Then Λ(R+\C) > 0.Let x and y 6= 0 be density points of R
+ \C and C, respe
tively. For ε < 1/2there exists δ > 0 su
h that for any interval Q, if Λ(Q) < δ and x ∈ Q(resp. y ∈ Q) then

(6) Λ(Q ∩ R
+ \ C) ≥ (1 − ε)Λ(Q) (resp. Λ(Q ∩ C) ≥ (1 − ε)Λ(Q)).Let Q be su
h that y ∈ Q, (x/y)Λ(Q) < δ and Λ(Q) < δ. By the densityof E in R

+ there exists β ∈ E su
h that βΛ(Q) < δ and x ∈ βQ. Thus weget
Λ(βQ ∩ R

+ \ C) > (1 − ε)βΛ(Q)and also
Λ(βQ ∩ C) = Λ(βQ ∩ βC) = βΛ(Q ∩ C)

≥ (1 − ε)βΛ(Q) by (6),whi
h is impossible.
Corollary 1. If λ0, λ1, p satisfy (5) then (T, m) has no produ
t abso-lutely 
ontinuous invariant probability measure.Proof. Suppose on the 
ontrary that su
h a measure exists. Then Tis 
onservative and ergodi
. Hen
e by the uni
ity of invariant measure([A, Th. 1.5.6℄) the measure νFp

is �nite, whi
h is impossible.
Corollary 2. If λ0, λ1, p satisfy (5) then the 
luster points of

(

1

n

n−1
∑

k=0

AkI

)

n∈Nare 
onstant fun
tions on (0, 1).Proof. By Lemma 1 the family of fun
tions AnI, n ∈ N, is uniquelyLips
hitzian on [ε, 1− ε] for every 0 < ε < 1. Therefore any 
luster point F ∗of
(

1

n

n−1
∑

k=0

AnI

)

n∈Nis Lips
hitzian on (0, 1). Hen
e νF ∗ is a 
onvex 
ombination of δ{0}, δ{1}and an absolutely 
ontinuous measure. Corollary 1 implies that F ∗ = 
onston (0, 1).The following theorem des
ribes the 
onvergen
e of (AnI)n∈N.
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Theorem 2. (i) If

p ≤
λ1(λ0 − 1)

λ0 − λ1and λ0, λ1, p satisfy (5) in the 
ase of equality , then
lim

n→∞
AnI = 0 almost uniformly on [0, 1).(ii) If

p ≥
λ1

λ1 − λ0and λ0, λ1, p satisfy (5) in the 
ase of equality , then
lim

n→∞
AnI = 1 almost uniformly on (0, 1].Proof. (i) The �rst part of (i) follows from Fa
t 2. Suppose now p =

λ1(λ0 − 1)/(λ0 − λ1) and λ0, λ1, p satisfy (5). By Fa
t 3, An+1I ≤ AnI ≤ Ifor n = 1, 2, . . . , and by Lemma 1, (AnI)n∈N is uniquely Lips
hitzian on
[ε, 1 − ε] for every 0 < ε < 1. Combining these with Corollary 2 we get
limn→∞AnI = 0 on [0, 1) almost uniformly.(ii) We �rst show a new estimate of d

dxA
nI whi
h is more useful for ouraim. Let us 
ompute

d

dx
AnI(x) =

1

x2

n
∑

k=0

(

n

k

)

[p(1 − λ0)]
k[q(1 − λ1)]

n−kT 2
1−(1−λ0)k(1−λ1)n−k(x).Hen
e

d

dx
AnI(x) ≤

1

x2
[p(1 − λ0) + q(1 − λ1)]

nfor x ∈ (0, 1]. Now, if λ1/(λ1 − λ0) < p or equivalently p(1− λ0) + q(1− λ1)

< 1 then d
dxA

nI(x) → 0 uniformly on (ε, 1] for every 0 < ε < 1. By Fa
t 3,
I ≤ AnI ≤ An+1I for n = 1, 2, . . . . This and the above imply limn→∞AnI
= 1 almost uniformly on (0, 1]. Let p = λ1/(λ1 − λ0) and suppose λ0, λ1, psatisfy (5). Sin
e d

dxA
nI(x) ≤ 1/x2 for x ∈ (0, 1], n = 1, 2, . . . , (AnI)n∈Nis uniquely Lips
hitzian on (ε, 1] for every 0 < ε < 1. Combining this withCorollary 2 we get limn→∞AnI = 1 on (0, 1] almost uniformly.2. Produ
t measures for smooth extensions of Bernoulli shifts.Let us 
onsider two transformations of the unit interval

T0(x) = (1 − ε0)x + ε0g(x),

T1(x) = (1 + ε1)x − ε1g(x),where g ∈ C2[0, 1], g(0) = 0, g(1) = 1, (1 − sup g′)−1 < ε0, −ε1 <
(1 − inf g′)−1. We also suppose that there exists exa
tly one point x0 for
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whi
h g′(x0) = 1 and either g′(x) < 1 for x < x0 or g′(x) > 1 for x < x0.Let

AT F = pF (T0) + qF (T1) for F ∈ D.We are thus led to the following strengthening of Lemma 4 of [K℄.
Theorem 3. If limn→∞An

T I = 0 (resp. limn→∞AnI = 1) for x ∈ [0, 1)(resp. x ∈ (0, 1]) then the set of produ
t measures in Mp is conv{µp × δ{0},
µp × δ{1}}.We will give the proof only for the 
ase limn→∞AnI = 0, the se
ond 
aseis similar. We pre
ede the proof by a lemma.
Lemma 3. If limn→∞An

T I = 0 for x ∈ [0, 1) then for any G ∈ C[0, 1]we have limn→∞An
T G = G(0).Proof. We �rst observe that limn→∞An

T (xk) = 0 on [0, 1) for k =
1, 2, . . . . This is an immediate 
onsequen
e of the following impli
ation:

xk ≤ x ⇒ An
T (xk) ≤ An

T I for x ∈ [0, 1] and n = 1, 2, . . . .Hen
e, limn→∞An
T w = w(0) on [0, 1) for any polynomial w. Sin
e AT is a
ontra
tion in the supremum norm and the set of polynomials is dense in

C[0, 1], we get
lim

n→∞
An

T G = G(0) in [0, 1)for any G ∈ C[0, 1].Proof of Theorem 3. Let G be a distribution fun
tion. We de�ne two newones as follows:
G1(x) =

{

G(x) for x ∈ [0, 1),
G(1−) for x = 1,and G2(x) = G1(x

−) for x ∈ (0, 1]. Here G1(x
−) means the left-hand limitof G1 at x. Now G1 is upper semi
ontinuous, being nonde
reasing and right-
ontinuous. Similarly G2 is lower semi
ontinuous. By the de�nition

(7) G2(x) ≤ G(x) ≤ G1(x) for x ∈ [0, 1).By Baire's theorem there are sequen
es of 
ontinuous fun
tions (H2
n)n∈N,

(H1
n)n∈N su
h that H2

n ր G2 and H1
n ց G1. Also,

lim
n→∞

H2
n(0) = G2(0) = G(0) = G1(0) = lim

n→∞
H1

n(0).From Lemma 3 and (7) we 
on
lude that
lim

n→∞
An

T G = G(0) for x ∈ [0, 1).Hen
e, if AT G = G for G ∈ D then G ≡ G(0) on [0, 1), whi
h proves thetheorem.To make use of the above theorem we apply Theorem 2 to determine thelimit of the sequen
e (An
T I)n∈N.
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Example 1. Let g(x) = Tλ0(x) for λ0 ∈ (0, 1) and

Tε(x) = (1 + ε)x − εTλ0(x) for 0 < ε < 1/λ0 − 1.Put Aε = AT . We will determine λ1 ∈ (−∞, 0) su
h that sgn(Tε(x) −
Tλ1(x)) = 
onst for x ∈ (0, 1) or equivalentlysgn[

(x − 1)

(

λ1

λ1x + 1 − λ1
+

ελ0

λ0x + 1 − λ0

)]

= 
onstfor x ∈ (0, 1). We have
Tε(x) ≥ Tλ1(x) ⇔ λ1 ≤

ελ0

λ0(1 + ε) − 1
,(8)

Tε(x) ≤ Tλ1(x) ⇔ −ελ0 ≤ λ1 < 0.(9)By (8), AnI ≤ An
ε I for n ∈ N and λ1 ≤ ελ0/(λ0(1 + ε) − 1). Therefore, byTheorem 2(ii),

lim
n→∞

An
ε I = 1 for p ≥

ε

1 + ε

1

1 − λ0
.If p = ε

1+ε
1

1−λ0
then we assume that p, λ0, λ1 = ελ0/(λ0(1 + ε) − 1)satisfy (5). Here we use the fa
t that
min

{

λ1

λ1 − λ0
: λ1 ≤

ελ0

λ0(1 + ε) − 1

}

is a
hieved for λ1 = ελ0/(λ0(1 + ε) − 1).
Remark. We have Tε(x) ≥ T−1

λ0
(x) for ε ≤ 1 − λ0 be
ause T−1

λ0
=

T−λ0/(1−λ0). Hen
e, by Theorem 2 of [K℄,
lim

n→∞
An

ε I = 1 for p > max

{

1

2
,

ε

1 + ε

} and ε ≤ 1 − λ0.By (9), An
ε I ≤ AnI for n ∈ N and −ελ0 ≤ λ1 < 0. Therefore, by The-orem 2(i),

lim
n→∞

An
ε I = 0 for p ≤

ε(1 − λ0)

1 + ε
.If p = ε(1 − λ0)/(1 + ε) then we furthermore assume that p, λ0, λ1 = −ελ0satisfy (5). Here we use the fa
t that

max

{

λ1(λ0 − 1)

λ0 − λ1
: −ελ0 ≤ λ1 ≤ 0

}

is a
hieved for λ1 = −ελ0.
Remark. We have Tε(x) ≤ T−1

λ0
(x) for ε ≥ 1/(1 − λ0). Hen
e, by [K℄,

lim
n→∞

An
ε I = 0 for p < min

{

1

2
,

ε

1 + ε

} and ε ≥
1

1 − λ0
.We summarize these 
onsiderations in the following theorem.
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Theorem 4. If

p ∈

(

0,
ε

1 + ε
(1 − λ0)

]

∪

[

ε

1 + ε

1

1 − λ0
, 1

)

then the set of produ
t measures in Mp is
conv{µp × δ{0}, µp × δ{1}}.Here

p =











ε

1 + ε
(1 − λ0) if p, λ0, λ1 = −ελ0 satisfy (5),

ε

1 + ε

1

1 − λ0
if p, λ0, λ1 =

ελ0

λ0(1 + ε) − 1
satisfy (5).For p = ε/(1 + ε),

Mp = conv{µp × δ{0}, µp × δ{1}, µp × Λ}.

Example 2. Let g(x) = x2 and
T0(x) = (1 + ε0)x − ε0x

2, T1(x) = (1 − ε1)x + ε1x
2,for 0 ≤ εi ≤ 1, i = 0, 1. We will determine λ0 ∈ (0, 1) su
h thatsgn(T0(x) − Tλ0(x)) = 
onst for x ∈ (0, 1)or equivalently sgn[(1 − x)(ε0λ0x − ε0λ0 + ε0 − λ0)] = 
onst.We have

T0(x) ≥ Tλ0(x) ⇔ λ0 ≤
ε0

1 + ε0
,(10)

T0(x) ≤ Tλ0(x) ⇔ ε0 ≤ λ0.(11)Similarly, sgn(T1(x) − Tλ1(x)) = 
onst for x ∈ (0, 1)if and only if sgn[(x − 1)(ε1λ1x − ε1λ1 + ε1 + λ1)] = 
onst.Hen
e
T1(x) ≥ Tλ1(x) ⇔ λ1 ≤ −

ε1

1 − ε1
,(12)

T1(x) ≤ Tλ1(x) ⇔ −ε1 ≤ λ1.(13)Denote by AT the operator determined by p and Ti, i = 0, 1. By (11)and (13), An
T I ≤ AnI for n ∈ N and for (λ0, λ1) ∈ [ε0, 1]×[−ε1, 0]. Therefore,by Theorem 2(i),

lim
n→∞

An
T I = 0 for p ≤ ε1

1 − ε0

ε0 + ε1
.
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If p = ε1

1−ε0
ε0+ε1

then we additionally assume that p, λ0 = ε0, λ1 = −ε1satisfy (5). Here we use the fa
t that
max

{

λ1(λ0 − 1)

λ0 − λ1
: (λ0, λ1) ∈ [ε0, 1] × [−ε1, 0]

}

is a
hieved for λ0 = ε0, λ1 = −ε1.
Remark. By Theorem 2 of [K℄, if T0 ◦ T1 ≤ I then

lim
n→∞

AnI = 0 for p < min

{

1

2
,

ε1

ε0 + ε1

}

.The 
ondition T0◦T1 ≤ I is not always satis�ed, e.g. for ε0 = 3/4, ε1 = 1.If the 
onditions (10) and (12) hold then
An

T I ≥ AnI for n ∈ N and (λ0, λ1) ∈

[

0,
ε0

1 + ε0

]

×

(

−∞,−
ε1

1 − ε1

]

.Therefore, by Theorem 2(ii),
lim

n→∞
An

T I = 1 for p ≥ ε1
1 + ε0

ε0 + ε1
.If p = ε1

1+ε0
ε0+ε1

then we furthermore assume that p, λ0 = ε0
1+ε0

, λ1 = − ε1
1−ε1satisfy (5). Here we use the fa
t that

min

{

λ1

λ1 − λ0
: (λ0, λ1) ∈

[

0,
ε0

1 + ε0

]

×

(

−∞,−
ε1

1 − ε1

]}

is a
hieved for λ0 = ε0
1+ε0

, λ1 = − ε1
1−ε1

.
Remark. By Theorem 2 of [K℄, if T0 ◦ T1 ≥ I then

lim
n→∞

An
T I = 1 for p > max

{

1

2
,

ε1

ε0 + ε1

}

.The 
ondition T0 ◦ T1 ≥ I is not always satis�ed, e.g. for ε0 = ε1 = 1/2.We summarize Example 2 in the following theorem:
Theorem 5. If

p ∈

(

0, ε1
1 − ε0

ε0 + ε1

]

∪

[

ε1
1 + ε0

ε0 + ε1
, 1

)

then the set of produ
t measures in Mp is
conv{µp × δ{0}, µp × δ{1}}.Here

p =















ε1
1 − ε0

ε0 + ε1
if p, λ0 = ε0, λ1 = −ε1 satisfy (5),

ε1
1 + ε0

ε0 + ε1
if p, λ0 =

ε0

1 + ε0
, λ1 = −

ε1

1 − ε1
satisfy (5).
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For p = ε1/(ε0 + ε1) we have

Mp = conv{µp × δ{0}, µp × δ{1}, µp × Λ}.
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