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PROBABILITY THEORY AND STOCHASTIC PROCESSES

Central Limit Theorem for Di�usion Proessesin an Anisotropi Random EnvironmentbyErnest NIEZNAJPresented by Stanisªaw KWAPIE�
Summary. We prove the entral limit theorem for symmetri di�usion proesses withnon-zero drift in a random environment. The ase of zero drift has been investigated ine.g. [18], [7]. In addition we show that the ovariane matrix of the limiting Gaussianrandom vetor orresponding to the di�usion with drift onverges, as the drift vanishes,to the ovariane of the homogenized di�usion with zero drift.1. Introdution. We onsider the symmetri di�usion proess with adrift in a random environment. Let xω(t) = (x1

ω(t), . . . , xd
ω(t)), t ≥ 0, be thesolution of the It� stohasti di�erential equation

(1.1)




dx(p)
ω (t) =

d∑

q=1

(
1

2
∂xqapq(xω(t);ω) + vq

)
dt

+
d∑

q=1

σpq(xω(t);ω)dwq(t),

x
(p)
ω (s) = x,for p = 1, . . . , d, where w(t) = (w1(t), . . . , wd(t)) is a d-dimensional standardBrownian motion over a probability spae T := (Σ,A, Q), σ = [σij] :=

[aij ]
1/2 and v = (v1, . . . , vd) 6= 0. Here [aij(x;ω)], x ∈ R

d, ω ∈ Ω, is asymmetri matrix valued stationary random �eld de�ned over a probabilityspae T0 := (Ω,B(Ω),P). We assume that Ω is a Polish metri spae, B(Ω)is the Borel σ-�eld and P is a probability measure. Sine the �eld is assumedto be stationary we may and will assume that it is given by aij(x;ω) :=2000 Mathematis Subjet Classi�ation: Primary 60K37; Seondary 82D30.Key words and phrases: di�usions, random �elds, e�etive di�usivity.[187℄
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aij(Txω), where {Tx}x∈Rd is a measure preserving group of transformationson T0 that satis�es: Tx : Ω → Ω, T0 = I, TxTy = Tx+y, Tx(A) ∈ B(Ω),
P[Tx(A)] = P[A] for all x,y ∈ R

d and A ∈ B(Ω). We assume that therandom matrix [aij(ω)]di,j=1 satis�es the following assumptions:(A1) aij(ω) = aji(ω) for i, j = 1, . . . , d,(A2) there exists γ > 0 suh that for P-a.s. ω ∈ Ω and ξ = (ξ1, . . . , ξd)
∈ R

d,

γ‖ξ‖2 ≤
d∑

i,j=1

aij(ω)ξiξj

where ‖ξ‖2 = ξ21 + · · · + ξ2d,(A3) there exists a deterministi onstant C > 0 suh that
sup
ω∈Ω

|aij(ω)| ≤ C

P-a.s. for every i, j = 1, . . . , d,(A4) the mapping x 7→ aij(Txω) is ontinuous together with the deriva-tives up to the seond order, and the �rst derivative is loally Lip-shitz for i, j = 1, . . . , d, for P-a.s. ω.For a �xed ω the proess given by (1.1) is a di�usion with the generator
Lωf(x) =

1

2

d∑

i,j=1

∂xi
(aij(Txω)∂xj

f(x)) + v · ∇xf(x),

where f ∈ C2
0 (Rd). The di�usion in a random environment is a proess x(t),

t ≥ 0, de�ned over the produt probability spae T ⊗ T0 := (Ω ×Σ,B(Ω)⊗
A,P ⊗ Q) given by x(t;ω, σ) := xω(t;σ) for any (ω, σ) ∈ Ω × Σ. It shouldbe stressed that although for a frozen ω, the proess xω(t;σ) is Markovian,the proess x(t) need not have the Markov property when onsidered overthe produt spae.We are interested in investigating the asymptoti behavior of trajetoriesof x(t). It is fairly standard to show, via the ergodi theorem, that x(t)/t→ va.s., as t → ∞. The next step is therefore to establish whether the entrallimit theorem (CLT) holds, i.e. whether the laws of the random vetor (x(t)−
vt)/

√
t onverge to a normal law as t→ ∞.For v = 0 the problem has already been investigated: see e.g. the paperby Papaniolaou and Varadhan [18], or Kozlov�Zhikov�Ole��nik [10]. It hasbeen shown that the CLT holds in that ase. In this paper we are interestedin the e�et of the anisotropy of the medium, re�eted by the assumptionthat v 6= 0, on the asymptoti behavior of the partile. Our main result isthat the CLT persists in this ase (see Theorem 2 below).
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We should stress that although we have di�usive behavior of the partilein both ases of v = 0 and v 6= 0 there are important di�erenes in theproofs aused by the presene of a non-zero drift. The prinipal objet usedin the proof of CLT, the so-alled orretor �eld E(x;ω) (see the de�nition

(2.6) below), behaves di�erently in the two ases. In the isotropi ase, i.e.when v = 0, we have sublinear growth of the seond moment of the orretor�eld, i.e. for every K > 0 and p = 1, . . . , d,

lim
a→∞

sup
|x|≤Ka

‖E(p)(x)‖L2

a
= 0(see e.g. [18, p. 848℄). On the other hand, when the drift in the diretion of

v is present then the growth is muh slower in the diretion parallel to thedrift. Namely (see Theorem 1 below), we have(1.2) lim
a→∞

sup
x∈C(v,a)

‖E(p)(x)‖L2

a
= 0

where C(v, a) := {x ∈ R
d : |x ·v| ≤ a2K, |Pv(x)| ≤ aK} and Pv(x) denotesthe omplement of the orthogonal projetion along the diretion of v.To prove (1.2) we use the Harnak inequality and methods of partialdi�erential equations. In Setion 4 we show that (1.2) implies CLT (Theo-rem 2). Additionally in Theorem 3 we prove that the ovariane matrix ofthe limiting normal random vetor orresponding to the di�usion with v 6= 0onverges, as v → 0, to the ovariane of the homogenized di�usion with

v = 0.
2. Preliminaries and the statement of the main theorems. Let

L2(Ω) denote the Hilbert spae of all square integrable random variablesover the probability spae T0. For F,G ∈ L2(Ω) we denote by (F,G)L2 thestandard salar produt, i.e.
(F,G)L2 :=

\
FGdP.The norm is then given by ‖F‖L2 :=

√
(F, F ), F ∈ L2(Ω). We de�ne theunitary group by UxF = F (Txω), x ∈ R
d. Its generators are given by

DkF (ω) =
∂

∂xk
F (Txω)

∣∣∣∣
x=0

, k = 1, . . . , d,for F ∈ D(Dk), where the di�erentiation is understood in the L2(Ω) sense.By Corollary 1.1.6 of [2℄ the in�nitesimal generators are losed and denselyde�ned in L2(Ω). Let Cm
b (Ω) denote the spae of all F ∈ L2(Ω) whihhave m deterministially bounded derivatives. Sine {Tx}x∈Rd is measure
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preserving, for F,G ∈ D(Dk) and for any k = 1, . . . , d we have\

Ω

DkFGdP = −
\
Ω

FDkGdP.Substituting G = 1 we obtain(2.1) \
Ω

DkF dP = 0(see also [14, p. 16℄ for more details).Using xω(t) we introdue (for �xed ω ∈ Ω) the environment proess ξtde�ned by(2.2) ξt = Txω(t)(ω)for t ≥ 0 with state spae Ω. For t ≥ 0 let P tF (ω) =
T
F (Txω)pω(t, 0,x) dxwhere pω(t, x, y) is a transition of probability density orresponding to di�u-sion (1.1), F ∈ B(Ω). Sine Tpω(t,x,y) dx =

T
pω(t,x,y) dy it follows thatT

P tF dP =
T
F dP for F ∈ B(Ω) and (P t) an be extended to a C0 semi-group on L2(Ω). It turns out that ξt is a Markov proess with (P t) as itstransition of probability semigroup (see [6, p. 104℄), and its generator equals
LF (ω) =

1

2

d∑

i,j=1

Di(aij(ω)DjF (ω)) + v · ∇F (ω)

where ∇ = (D1, . . . , Dd) and F ∈ C2(Ω), whih is a ore of L.Next we solve the resolvent equation in L2(Ω):(2.3) λE
(p)
λ − LE(p)

λ = ṽ(p)with λ > 0, where
ṽ(p)(ω) =

1

2

d∑

i=1

Diaip(ω)

for p = 1, . . . , d. Multiplying (2.3) by E(p)
λ and integrating over Ω we get

(2.4) λ
\
Ω

[E
(p)
λ ]2 P(dω) − 1

2

d∑

i,j=1

\
Ω

Di(aij(ω)DjE
(p)
λ )E

(p)
λ P(dω)

−
\
Ω

v · ∇E(p)
λ E

(p)
λ P(dω) =

1

2

d∑

i=1

\
Ω

Diaip(ω)E
(p)
λ P(dω).Sine \

Ω

DiE
(p)
λ E

(p)
λ P(dω) = −

\
Ω

E
(p)
λ DiE

(p)
λ P(dω), i = 1, . . . , d,
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this term equals zero. Thus we an rewrite (2.4) in the form of the so-alledenergy inequality
(2.5) lim

λ→0+
λ‖E(p)

λ ‖2
L2 +

1

2

d∑

i,j=1

\
Ω

aij(ω)DjE
(p)
λ DiE

(p)
λ P(dω)

≤ −1

2

d∑

i=1

\
Ω

aip(ω)DiE
(p)
λ P(dω).From (2.5) we onlude that

sup
0<λ<1

‖DiE
(p)
λ ‖L2 ≤ C for i = 1, . . . , d,where C is a onstant independent of λ and v. Hene there exists a sequene

λn → 0 as n→ ∞ suh that
e
(p)
k = lim

n→∞
DkE

(p)
λn

for k = 1, . . . , din the weak L2 sense. Next we de�ne the following random �eld, alled theorretor �eld :
E(x;ω) = (E(1)(x;ω), . . . , E(d)(x;ω)), (x;ω) ∈ R

d ×Ω,where(2.6) E(p)(x;ω) :=
d∑

k=1

1\
0

e
(p)
k (Ttxω)xk dt, p = 1, . . . , d,

and E(p)(0;ω) = 0.Proposition 1. The following onditions are satis�ed :(i) E(p)(x; ·) ∈ L2,(ii) ∂xj
E(p)(x;ω) = e

(p)
j (Txω) for j = 1, . . . , d,(iii) for any ontinuously di�erentiable funtion φ : R

d × Ω → R suhthat φ(·, ω) is ompatly supported for every ω ∈ Ω and φ(x, ·) ∈ L2for any x ∈ R
d we have

(2.7)
1

2

d∑

i,j=1

\
Rd

\
Ω

aij(Txω)∂xj
E(p)(x;ω)∂xi

φ(x, ω) dxP(dω)

+
d∑

i=1

\
Rd

\
Ω

viE
(p)(x;ω)∂xi

φ(x, ω) dxP(dω)

= − 1

2

d∑

i=1

\
Rd

\
Ω

aip(Txω)∂xi
φ(x, ω) dxP(dω).
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Proof. From (2.6) it follows that ∂xi

E(p)(x;ω) = e
(p)
i (Txω) so (i) and (ii)hold. For (iii) see e.g. [18, proof of Theorem 2℄.In the present paper we use the following version of the ergodi theorem(see [11, Theorem 2.13, p. 210℄ and [9, Proposition 6, p. 103℄).Proposition 2. Suppose f ∈ L1(Ω) and φ ∈ C0(R

d). Then(2.8) lim
a→∞

1

ad+1

\
Rd

f(Txω)φ

(
x1

a2
,
x2

a
, . . . ,

xd

a

)
dx = E[f ]

\
Rd

φ(x) dx

P-a.s. and in the L1 norm.Now we an formulate the main results.Theorem 1. The random �eld E(x;ω) satis�es(2.9) lim
a→∞

sup
x∈C(v,a)

‖E(p)(x)‖L2

a
= 0.

We show in Setion 4 the following orollary of Theorem 1.Theorem 2. Suppose that the random matrix-valued �eld [aij ] satis�esthe assumptions (A1)�(A4). Then the sequene of the laws orresponding tothe random vetors (x(t) − vt)/
√
t onverges weakly , as t → ∞, to the lawof a normal random vetor of mean 0 with ovariane matrix D∗.Remark 1. A more detailed desription of D∗ will be given in Setion 4(see Remark 2).Multiplying both sides of (2.3) by φ ∈ C1

b (Ω), integrating over Ω andletting λ→ 0 we obtain
(2.10) 1

2

d∑

i,j=1

\
Ω

aije
(p)
i DjφdP −

d∑

i=1

\
Ω

vie
(p)
i φdP = −1

2

d∑

i=1

\
Ω

aipDiφdP.

Theorem 3. (i) There is a unique solution e(p)
i , i = 1, . . . , d, of (2.10)suh that Te(p)

i DjφdP =
T
e
(p)
j DiφdP. We denote this solution by

e
(p)
i (v).(ii) We have

lim
v→0

(e
(p)
1 (v), . . . , e

(p)
d (v)) = (e

(p)
1 (0), . . . , e

(p)
d (0))in the L2 sense.
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3. Proof of Theorem 1. From the de�nition of E(x;ω) it follows thatit satis�es, in the weak p.d.e. sense, the following equation:

(3.1)
1

2

d∑

i,j=1

∂xj
(aij(Txω)∂xj

E(p)(x)) +

d∑

i=1

vi∂xi
E(p)(x)

= −1

2

d∑

i=1

∂xi
aip(Txω)

P-a.s. Let χ(p)(t,x) := E(p)(x + vt). It has the following properties:
∂tχ

(p)(t,x) = v · ∇xE
(p)(x + vt), ∂xj

χ(p)(t,x) = ∂xj
E(p)(x + vt),hene

(3.2) ∂tχ
(p)(t,x)

= −1

2

d∑

i,j=1

∂xi
(aij(Txω)∂xj

E(p)(x + vt)) − 1

2

d∑

i=1

∂xi
aip(Txω).

Let y(p)(t,x) := xp+χ(p)(t,x). Notie that ∂xqy
(p)(t,x) = δpq +∂xqχ

(p)(t,x),hene y(p)(t,x) is a weak solution of the following inverse time parabolip.d.e.:
∂ty

(p)(t,x) +
1

2

d∑

i,j=1

∂xi
(aij(Txω)∂xj

y(p)(t,x)) = 0.It is now easy to see that (2.9) is equivalent to the ondition(3.3) lim
a→∞

sup
|t|≤Ka2, |x|≤Ka

‖χ(p)(t,x)‖L2

a
= 0.We de�ne the saled funtions

χ(p)
a (t,x) = a−1χ(p)(a2t, ax), y(p)

a (t,x) = a−1y(p)(a2t, ax),for a > 0. Hene the funtion y
(p)
a (t,x) satis�es the inverse time parabolip.d.e.(3.4) ∂ty

(p)
a (t,x) = −1

2

d∑

i,j=1

∂xi
(aij(a

2vt+ ax)∂xj
y(p)

a (t,x)).The ondition (3.3) (and in onsequene (2.9)) will be proven if we an showthat(3.5) lim
a→∞

sup
|t|≤K, |x|≤K

‖χ(p)
a (t,x)‖L2 = 0for any K > 0.We prove (3.5) in several steps. We use the following elementary lemma(see e.g. [19, pp. 114�116℄.



194 E. Nieznaj
Lemma 1. Assume that on a probability spae (Ω,F ,P) we have twosequenes of random variables, {Xn} and {Zn}, n ≥ 1. If the followingonditions hold :(i) limn→∞Xn = 0, P-a.s.,(ii) 0 ≤ Xn ≤ Zn, n ≥ 1,(iii) Zn → Z in the L1-norm,then

lim
n→∞

‖Xn‖L1 = 0.The �rst step is to show that(3.6) sup
(t,x)∈ΩT,R

|y(p)
a (t,x) − xp| → 0, P-a.s.,where ΩT,R := [0 ≤ t ≤ T ] × BR(0). This fat is a onsequene of theHarnak inequality (see (3.9)) and(3.7) lim

a→∞

\\
ΩT,R

[y(p)
a (t,x) − xp]φ(t,x) dt dx = 0, P-a.s.,

where φ ∈ C0(ΩT,R). The equality (3.7) will be proven at the end of thesetion.The seond step is to show that(3.8) E[ sup
(t,x)∈ΩT,R

|y(p)
a (t,x) − xp|2] = 0as a → ∞. This will be a onsequene of the �rst step and Lemma 1. Withthe help of this fat we an easily estimate the expression

E[|y(p)
a (t,x) − xp|2] ≤ E[ sup

(s,z)∈ΩT,R

|y(p)
a (s, z) − xp|2], ∀(t,x) ∈ ΩT,R,and take the limit as a→ ∞.We will show that

lim
a→∞

\\
ΩT,R

|∇xy
(p)
a (t,x)|2 dt dx <∞

(f. (3.12) below). Reall that ∇xy
(p)
a (t,x) = ep + ∇xχ

(p)(a2t, ax).We will also prove that
lim

a→∞

\\
ΩT,R

|y(p)
a (t,x)| dt dx ≤ C1and

sup
(t,x)∈ΩT ′,R′

|y(p)
a (t,x)| ≤ C2

\\
ΩT,R

|y(p)
a (t,x)| dt dx, P-a.s.

Now we begin the proof of (3.6). We use the Harnak inequality forsubsolutions of paraboli p.d.e. proved by Moser in [13]. Sine ϕ(x) =
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√

x2 + 1 is a twie di�erentiable onvex funtion, the funtion u
(p)
a (t,x) =√

y
(p)
a (t,x)2+1 is a subsolution of (3.4) (see [13, p. 117 for de�nition℄). Usingthe triangle inequality and Theorem 3, p. 113 of [13] applied for (3.4) andthe subsolution u(p)

a we have(3.9) sup
(t,x)∈ΩT ′,R′

|y(p)
a (t,x) − xp| ≤ C

( \\
ΩT,R

[u(p)
a (t,x)]2 dt dx

)1/2

where ΩT ′,R′ ⊂ ΩT,R and C is an absolute onstant that only dependson T ′, T, R′, R but not on ω. We use (3.9) in order to show that the termon the left hand side of this inequality is bounded (see (3.10) below). Aonsequene of the Harnak inequality is the following result (see also [13,p. 109℄): the family {y(p)
a }a>0 is equiontinuous on ΩT,R. The fat that thefamily {y(p)

a }a>0 is also bounded allows us to use the Arzelà�Asoli theoremon ΩT,R. The last two statements and the ompatness of {y(p)
a }a>0 imply

(3.6).We show the following fats:(3.10) lim
a→∞

\\
ΩT,R

[u(p)
a (t,x)]2 dt dx <∞, P-a.s.

and(3.11) lim
a→∞

E

\\
ΩT,R

[u(p)
a (t,x)]2 dt dx <∞.

Now we start the proof of (3.10). Using the Fubini's theorem, the Poinaréinequality (for �xed t) and the de�nition of u(p)
a we get the estimate (f. [3,p. 768℄)

(3.12)
\\

Ω2T,2R

[u(p)
a (t,x)]2 dt dx =

\\
Ω2T,2R

([y(p)
a (t,x)]2 + 1) dt dx

≤ C
\\

Ω2T,2R

|∇xy
(p)
a (t,x)|2 dt dx + C

2T\
0

dt
( \

B2R

y(p)
a (t,x) dx

)2
+ C

where C is an absolute onstant. The right hand side of the above inequalitywill be used as the upper estimate in part (ii) of Lemma 1. Denote by M(R)the �rst and by N(R) the seond term on the right hand side of (3.12). Sine
∂xk

y
(p)
a (t,x) = (∂xk

y(p))(a2t, ax) we have\\
Ω2T,2R

[∂xk
y(p)

a (t,x)]2 dt dx =
\\

Ω2T,2R

[(∂xk
y(p))(a2t, ax)]2 dt dx.

Reall that e(p)
k = ∂xk

y(p) and use the ergodi theorem in the form of Propo-
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sition 2 for M(R) to obtain

lim
a→∞

\\
Ω2T,2R

[∂xk
y(p)(a2t, ax)]2 dt dx = |Ω2T,2R|E(e

(p)
k )2

P-a.s. and in the L1-norm. The seond term N(R) an be written as
(3.13) \

B2R

y(p)
a (t,x) dx =

\
B2R

y(p)
a (0,x) dx +

t\
0

(
d

ds

\
B2R

y(p)
a (s,x) dx

)
ds.

As in the previous expression, denote by I the �rst and by II the seondterm on the right hand side of (3.13). Then
I = a−1

\
B2R

E(p)(ax) dx.

Thanks to (3.4) we have
II =

t\
0

ds
\

B2R

∂sy
(p)
a (s,x) dx

= −
d∑

i,j=1

t\
0

ds
\

B2R

∂xi
[aij(a

2s+ ax)∂xj
y(p)

a (s,x)] dx

= −
d∑

i,j=1

t\
0

ds
\

S2R

aij(a
2s+ ax)∂xj

y(p)
a (s,x)

xi

|x| dS.We an estimate N(R) by
2T\
0

dt
( \

B2R

y(p)
a (t,x) dx

)2
≤ 2

( 2T\
0

I2 dt+

2T\
0

II2 dt
)
.

Let us rewrite I in the following form:
I = a−1

\
B2R

(\d
du
E(p)(axu) du

)
dx =

d∑

j=1

\
B2R

xj dx

1\
0

e
(p)
j (axu) du.

Now we an use the estimate
I2 ≤ CR2

1\
0

du
\

B2R

[e
(p)
j (axu)]2 dx.

Set
E(au) :=

\
B2R

[e
(p)
j ]2(axu) dx.
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From the ergodi theorem it follows that(3.14) \

B2R

[e
(p)
j ]2(bx) dx → E[e

(p)
j ]2|B2R|

P-a.s., as b→ ∞. Denote the right hand side of (3.14) by E(b;ω) and the lefthand side by E(∞). From this equation it follows that there exists b0 suhthat for b ≥ b0(ω) we have
E(b) ≤ E(∞) + 1.Next note that

I2 ≤ CR2
1\
0

E(au) du = CR2
\

1≥au≥b0(ω)

E(au) du+ CR2
\

0≤au≤b0(ω)

E(au) du

≤ CR2
\
(E(∞) + 1) + CR2

\
0≤au≤b0(ω)

\
B2R

[e
(p)
j ]2(aux) dx

≤ CR2(E(∞) + 1) + CR2
\

0≤ay≤b0(ω)

1

(ay)d

\
B2auR

[e
(p)
j ]2(y) dy

≤ CR2(E(∞) + 1) + CR2 sup
B2b0R

|e(p)
j |2|2BR|.From the ergodi theorem we onlude that the above estimate holds P-a.s.Now we prove that we also have L1-onvergene (f. (3.11)), i.e.

(3.15) lim
a→∞

E

∣∣∣
1\
0

du
\

B2R

[e
(p)
j (aux)]2 dx− E[e

(p)
j ]2|B2R|

∣∣∣ = 0.

From the mean ergodi theorem it follows that(3.16) lim
b→∞

E

∣∣∣
\

B2R

[e
(p)
j (bx)]2 dx− E(∞)

∣∣∣ = 0.

Denote the left hand side of (3.15) by S(a) and the left hand side of (3.16)by R(b). For any ε > 0 there exists b0 suh that for every b ≥ b0 we have
R(b) < ε. Hene
S(b) ≤

\
b0≤ua≤1

R(ua) du+ E

∣∣∣
\

0≤au≤b0

du
( \

B2R

[e
(p)
j (aux)]2 dx− E(∞)

)∣∣∣

≤ ε+ 2|B2R|E(e
(p)
j )2

b0
a
,whih vanishes as a→ ∞.
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Now we estimate the term II:

(3.17)

2T\
0

II2 dt

≤ C
d∑

i,j=1

2T\
0

dt
( 2T\

0

ds
\

S2R

|aij(a
2s+ ax)| |e(p)

j (a2s+ ax)|S(dx)
)2

≤ C

d∑

i,j=1

2T\
0

ds
\

S2R

|aij(a
2s+ ax)|2|e(p)

j (a2s+ ax)|2 S(dx) =: ĨI(R).All the above alulations have led us to the following estimate:(3.18) \\
Ω2T,2R

[u(p)
a (t,x)]2 dt dx ≤ C ′(A(R) +B(R))

where C ′ is a onstant, and A(R) and B(R) denote the two terms on theright hand side of (3.12). Let R0 > 0 be �xed; then
(3.19) R0

\\
Ω2T,2R0

[u(p)
a (t,x)]2 dt dx ≤

2R0\
R0

dR
\\

Ω2T,2R

[u(p)
a (t,x)]2 dt dx

≤ C ′
2R0\
R0

(A(R) + I2(R) + ĨI(R)) dR

≤ C ′R0A(2R0) + C ′C2R0
R0 + C ′

2R0\
R0

ĨI(R) dR.

Set fij(a
2s + ax) := aij(a

2s + ax)ej(a
2 + ax) and note that fij is also atime-spae stationary random �eld. The right hand side of (3.19) an bewritten as

C ′R0A(2R0) + C ′C2R0
R0 + C ′

d∑

i,j=1

2T\
0

ds
\

B4R0
\B2R0

fij(a
2s+ ax) dx.

A onsequene of these estimates is the upper bound\\
Ω2T,2R

[u(p)
a (t,x)]2 dt dx ≤ C ′A(2R0) + C ′C2R0

+
C ′

R0

d∑

i,j=1

2T\
0

ds
\

B4R0
\B2R0

fij(a
2s+ ax) dx.

By the ergodi theorem the third term on the right hand side of this in-equality onverges both in the L1-norm and P-a.s. So we have proved (3.10)and (3.11).
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What remains to show is (3.7). We prove that for φ(t,x) ∈ C0(ΩT,R),

lim
a→∞

T\
0

\
Rd

y(p)
a (t,x)φ(t,x) dt dx =

T\
0

\
Rd

xpφ(t,x) dt dx

both P-a.s. and in the L1-norm. For φ(x) ∈ C0(R
d) we have

(3.20)
\

Rd

y(p)
a (t,x)φ(x) dx

=
\

Rd

y(p)
a (0,x)φ(x) dx +

d∑

i,j=1

t\
0

ds
\

Rd

aije
(p)
j ∂xj

φdx.

Using the ergodi theorem [3, p. 765℄, we have
lim

a→∞

\
Rd

y(p)
a (0,x)φ(x) dx =

\
Rd

xpφ(x) dx,

both P-a.s. and in the L1-norm. For �xed t > 0 the seond term on the righthand side of (3.20) tends (P-a.s. and in L1) to
d∑

i,j=1

(aij , e
(p)
j )L2

t\
0

ds
\

Rd

∂xi
φ(x) dx,

whih equals zero, for any φ ∈ C0(R
d). Now hoose any ompatly supported

ψ ∈ C0(R); then
lim

a→∞

\
ψ(t) dt

[\
y(p)

a (t,x)φ(x) dx
]

= lim
a→∞

\
ψ(t) dt

\
y(p)

a (0,x)φ(x) dx

+ lim
a→∞

d∑

i,j=1

R\
−R

ψ(t) dt
\
aij(a

2s+ ax)e
(p)
j (a2s+ ax) dxfor some R > 0. As in the previous ase, the last limit is zero.4. Proof of Theorem 2. It has been shown (see [15, Chapter 1℄) thatfor the validity of the entral limit theorem one needs to verify(4.1) lim

λ→0+
λ‖E(p)

λ ‖2
L2 = 0for any p = 1, . . . , d. It follows then, aording to [15℄, that(4.2) lim

λ→0+
‖DiE

(p)
λ − e

(p)
i ‖L2 = 0, i = 1, . . . , d.Let us brie�y outline why (4.1) implies CLT. We rewrite the proess xω(t)in the form (using (2.3))

x(p)
ω (t) − vpt = λ

t\
0

E
(p)
λ (ξs) ds−

t\
0

LE(p)
λ (ξs) ds+

d∑

q=1

t\
0

σpq(ξs) dwq(s).
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Now using the It� formula we have(4.3) x(p)

ω (t) − vpt = λ

t\
0

E
(p)
λ (ξs)ds+ E

(p)
λ (ξ0) − E

(p)
λ (ξt) +M

(p)
λ,twhere(4.4) M

(p)
λ,t =

d∑

q,r=1

t\
0

(DrE
(p)
λ (ξs) + δp

r )σrq(ξs) dwq(s)

and δp
r denotes the Kroneker symbol. Dividing both sides of (4.3) by √

tand taking λ = 1/
√
t we an use (4.1) to argue that the terms orrespondingto the �rst three terms on the right hand side of (4.3) vanish as t→ ∞. Theweak onvergene of (1/

√
t)M

(p)

1/
√

t,t
follows from the CLT for martingales.We use the martingale CLT in the version of Helland (see [4, Theorem 5.4℄)adapted to our situation. It deals with the martingales admitting jumps sothe onvergene laimed there is in the sense of the Stone topology on theSkorokhod spae D([0,∞); Rd). The statement of the theorem, modi�ed forthe ase of martingales with ontinuous trajetories onsidered here, an beread as follows.Theorem 4. Let (M

(1)
λ (t), . . . ,M

(d)
λ (t)), t ≥ 0, be a family of squareintegrable, ontinuous trajetory , R

d-valued martingales indexed by a param-eter λ > 0. Denote by (Fλ(t))t≥0, λ > 0, the �ltration that orresponds to agiven martingale. Suppose further that the quadrati ovariations of martin-gales satisfy(i) 〈M (j)
λ ,M

(j)
λ 〉(t) →

Tt
0 f

2
j (s)ds as λ → 0+ in P probability for all

t > 0, where fj is a measurable, non-negative funtion suh thatTt
0 f

2
j (s) ds <∞ for all t > 0.(ii) 〈M (i)
λ ,M

(j)
λ 〉(t) → 0 for all t > 0 and i 6= j.Then

(M
(1)
λ (t), . . . ,M

(d)
λ (t)) ⇒ (Y (1)(t), . . . , Y (d)(t))as λ → 0+, where Y (j)(t) =
Tt
0 fj(s) dwj(s) and w1, . . . , wd are indepen-dent standard Brownian motions. The onvergene here is the onvergeneof stohasti proesses with ontinuous trajetories.We apply the above theorem in the following way. Let us de�neM (p)

λ (t) :=

λM
(p)
λ,t/λ2 , p = 1, . . . , d, and

N
(p)
λ (t) :=

d∑

q=1

cpqM
(q)
λ (t), p = 1, . . . , d,
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where C := [cpq] = [D∗]−1/2 (from Remark 3 it is lear that C exists). Using
(4.2) and the mean ergodi theorem we onlude immediately that

〈N (i)
λ , N

(j)
λ 〉(t) → δi,jt as λ→ 0.Applying Theorem 4 we infer that the laws of the martingales (N

(1)
λ (t), . . .

. . . , N
(d)
λ (t)), t ≥ 0, onverge weakly, as λ → 0+, to the law of a standard

d-dimensional Brownian motion. Hene, the laws of (M
(1)
λ (t), . . . ,M

(d)
λ (t))onverge to the law of a Brownian motion with zero mean and ovarianematrix D∗. In the partiular ase when t = 1 and λ = 1/

√
t we obtain theweak onvergene of the laws of (1/

√
t)(M

(1)

1/
√

t,t
, . . . ,M

(d)

1/
√

t,t
) as t → ∞ tothe law of a normal vetor with mean zero and ovariane D∗.From (2.5) it follows that (4.1) holds if we show the energy identity

(4.5) d∑

i,j=1

(aije
(p)
j , e

(p)
i )L2 = −

d∑

i=1

(aip, e
(p)
i )L2 .

Now we prove that (4.5) is a onsequene of (2.7) and (2.9). Without anyloss of generality we may assume that v = (1, 0, . . . , 0). Our goal is to usean appropriate test funtion in equation (2.7).Let h(x) be ompatly supported C∞ funtion suh that T
Rd h(x) dx = 1.We also assume that the support of h is ontained in [0, 1]d. In order to use

(2.9) we make a suitable saling. De�ne
ha(x) :=

1

ad+1
h

(
x1

a2
,
x2

a
, . . . ,

xd

a

)
, x ∈ R

d,for any a>0. Heneforth we will use the vetor-like notation ã := (a2, a, . . . , a)where ã has d-oordinates, and x/ã := (x1/a
2, x2/a, . . . , xd/a). Now we de-�ne the funtion φa(x;ω) := E(p)(x;ω)ha(x) to be used in (2.7). The �rstterm on the left hand side of (2.7) then equals

(4.6)
1

2ad+1

d∑

i,j=1

\
Rd

\
Ω

aij(Txω)∂xj
E(p)(x;ω)∂xi

E(p)(x;ω)h

(
x

ã

)
dxP(dω)

+
1

2ad+1

d∑

i,j=1

\
Rd

\
Ω

aij(Txω)∂xj
E(p)(x;ω)E(p)(x;ω)∂xi

[
h

(
x

ã

)]
dxP(dω).

Taking the limit as a → ∞ in the �rst term of (4.6) and using (ii) andthe ergodi theorem, we get the term on the left hand side of (4.5). Forthe seond term of (4.6), note that ∂x1
[ha(x/ã)] = a−2(∂x1

ha)(x/ã) and
∂xi

[ha(x/ã)] = a−1(∂xi
ha)(x/ã) for i = 2, . . . , d. Therefore this term an be
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estimated, with the help of the Cauhy�Shwarz inequality, by

d

ad+1
max

i,j
(‖aij‖∞‖e(p)

j ‖L2)

d∑

i=1

sup
x∈C(v,a)

‖E(p)(x, ·)‖L2

a

\
Rd

∣∣∣∣(∂xi
h)

(
x

ã

)∣∣∣∣ dx,whih vanishes as a→ ∞. The term on the right hand side of (2.7) equals
− 1

2ad+1

d∑

i=1

\
Rd

\
Ω

aip(Txω)∂xi
E(p)(x;ω)h

(
x

ã

)
dxP(dω)

− 1

2ad+1

d∑

i=1

\
Rd

\
Ω

aip(Txω)E(p)(x;ω)∂xi

[
h

(
x

ã

)]
dxP(dω)

and by an analogous argument (as in (4.6)) applied to these terms we obtainthe expression on the right hand side of (4.5). What remains yet to be provedis the fat that the seond term on the left hand side of (2.7) vanishes as
a→ ∞. Reall that v = (1, 0, . . . , 0) so we an rewrite this term in the form

1

ad+1

\
Rd

\
Ω

E(p)(x;ω)∂x1
E(p)(x;ω)h

(
x

ã

)
dxP(dω)

+
1

ad+1

\
Rd

\
Ω

E(p)(x;ω)E(p)(x;ω)∂x1

[
h

(
x

ã

)]
dxP(dω).

Integration by parts in the �rst term of the above expression gives
1

ad+1

\
Rd

\
Ω

E(p)(x;ω)∂x1
E(p)(x, ω)h

(
x

ã

)
dxP(dω)

= − 1

ad+1

\
Rd

\
Ω

∂x1

[
E(p)(x;ω)h

(
x

ã

)]
E(p)(x;ω) dxP(dω)

= − 1

ad+1

\
Rd

\
Ω

∂x1
E(p)(x;ω)h

(
x

ã

)
E(p)(x;ω) dxP(dω)

− 1

ad+1

\
Rd

\
Ω

E(p)(x;ω)∂x1

[
h

(
x

ã

)]
E(p)(x;ω) dxP(dω).

From the above equality we onlude that
2

ad+1

\
Rd

\
Ω

∂x1

[
E(p)(x;ω)h

(
x

ã

)]
E(p)(x;ω) dxP(dω)

= − 1

ad+1

\
Rd

\
Ω

[E(p)(x;ω)]2(∂x1
h)

(
x

ã

)
dxP(dω).
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In order to establish (4.5) we need to show that

1

ad+3

\
Rd

\
Ω

[E(p)(x;ω)]2(∂x1
h)

(
x

ã

)
dxP(dω)tends to zero as a→ ∞. Indeed, this expression an be estimated by

1

ad+1
sup

x∈C(v,a)

(‖E(p)(x, ·)‖L2

a

)2 \
Rd

∣∣∣∣(∇xh)

(
x

ã

)∣∣∣∣ dx,whih vanishes as a→ ∞ by virtue of (2.9).Remark 2. By the de�nition of D∗ = [Dpp′ ]
d
p,p′=1 we have

Dpp′ = lim
t→∞

E(M
(p)

1/
√

t,t
,M

(p′)

1/
√

t,t
)

t
.By (4.4), the fat that dwq(s)dwr(s) = δqrds and the ergodi theorem wehave

Dpp′ = E

[ d∑

r,r′,q=1

(e(p)
r + δp

r )σrq(e
(p′)
r′ + δp′

r′ )σr′q

]
.

Hene, sine σ2 = A, we have(4.7) D∗ = E[(E + I)A(E + I)T ]where E = [e
(i)
j (ω)], A = [aij(ω)], I = [δij ], i, j = 1, . . . , d.Remark 3. From (4.7) it is lear that D∗ ≥ γI.5. Proof of Theorem 3. (i) Assume that there are two solutions of(2.10); denote them by e(p)

i,1 , e(p)
i,2 . De�ne e(p)

i,3 = 1
2(e

(p)
i,1 + e

(p)
i,2 ). Then by (4.5),

1

2

d∑

i,j=1

(aije
(p)
j,1 , e

(p)
i,1 )L2 +

1

2

d∑

i,j=1

(aije
(p)
j,2 , e

(p)
i,2 )L2 = −

d∑

i=1

(aip, e
(p)
i,3 )L2

=
d∑

i,j=1

(aije
(p)
j,3 , e

(p)
i,3 )L2 .

Hene e(p)
i,1 = e

(p)
i,2 P-a.s.(ii) By (2.10), e(p)

i (v) → e
(p)
i (0) in the weak L2 sense, sine the left handside of (2.10) does not depend on e(p)

i . By the energy identity (4.5) we have
lim
v→0

d∑

i,j=1

(aije
(p)
j (v), e

(p)
i (v))L2 =

d∑

i,j=1

(aije
(p)
j (0), e

(p)
i (0))L2.
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Sine
γ‖e(p)

j (v) − e
(p)
j (0)‖2

L2 ≤
d∑

i,j=1

(aij(e
(p)
j (v) − e

(p)
j (0)), e

(p)
i (v) − e

(p)
i (0))L2

by (A2), we onlude that limv→0 ‖e(p)
j (v) − e

(p)
j (0)‖2

L2 = 0, j = 1, . . . , d.Aknowledgments. I would like to thank Professor T. Komorowski forinspiration and many disussions on the subjet of the artile.
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