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CONVEX ANALYSIS

Appliations of the Rådström�HörmanderEmbedding Theorem to MultifuntionsbyAnna KUCIAPresented by Czesªaw OLECH
Summary. Using the Rådström�Hörmander theorem on embedding of the hyperspaeof losed onvex sets in a Banah spae, we prove multivalued versions of some resultsknown for real funtions.1. Notation and basi fats. Throughout the paper X will denote atopologial spae and Y a metri spae with a metri ̺ or a normed linearspae with ̺(x, y) = ‖x − y‖. The open (resp., losed) ε-ball in Y arounda nonempty set A ⊂ Y is denoted by B(A, ε) = {y ∈ Y : ̺(y,A) < ε}
=

⋃

{B(a, ε) : a ∈ A} (resp., B(A, ε) = {y ∈ Y : ̺(y,A) ≤ ε}), where
̺(y,A) = inf{̺(y, a) : a ∈ A}. Clearly clB(A, ε) ⊂ B(A, ε), where clF or
clY F denotes the losure of F in Y .We denote by 2Y the family of all nonempty losed subsets of Y . Weshall onsider the following subfamilies of 2Y :

F(Y ) = {A ∈ 2Y : A is bounded},

K(Y ) = {A ∈ F(Y ) : A is compact},and in the ase of a normed spae Y :
2Y
c = {A ∈ 2X : A is convex},

Fc(Y ) = {A ∈ F(Y ) : A is convex},

Kc(Y ) = {A ∈ K(Y ) : A is convex}.It is known that any subset A ⊂ 2Y an be regarded as a (generalized)metri spae with the Hausdor� distane dist(A,C) = inf{ε > 0 : A ⊂2000 Mathematis Subjet Classi�ation: 26E25, 54C60.Key words and phrases: Hausdor� ontinuous multifuntion, onvex values, extension,sandwih theorem, monotone approximation.[259℄
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B(C, ε) and C ⊂ B(A, ε)}. Balls in the Hausdor� metri will be denoted by
B(A, ε).If the spae Y is omplete, then (F(Y ), dist) is also omplete (a resultdue to H. Hahn, 1932) and K(Y ) is a losed subset of F(Y ). If Y is ompat,then so is K(Y ). It is easy to see that 2Y

c is a losed subset of 2Y whenever
Y is normed. Thus, if F is a omplete (resp., ompat) subset of a normedspae Y , then Fc(F ) is also a omplete (resp., ompat) subset of Fc(Y ).If Y is a Banah spae, then the spaes (Fc(Y ), dist) and (Kc(Y ), dist) areomplete. If Y is separable (resp., separable and normed), then K(Y ) (resp.,
Kc(Y )) is also separable (f. e.g. [7; 4.5.22℄ and [2; Ch. II℄).Let Y be normed and let A be 2Y

c , Fc(Y ) or Kc(Y ). For A,B ∈ A and
λ ∈ [0,∞) we de�ne: A + B = {a+ b : a ∈ A, b ∈ B}, A +̇ B = cl(A + B),and λA = {λa : a ∈ A}. Clearly, A +̇ B and λA belong to A. Moreover,
A +̇ B = A + B whenever A,B ∈ Kc(Y ). As usual, a set C ⊂ A is alledonvex if αA +̇βB ∈ C for every A,B ∈ C, α+β = 1, α, β ≥ 0. For example,
{A ∈ A : A ⊂ F} is losed (resp., ompat) and onvex in A if F ⊂ Y islosed (resp., ompat) and onvex.By a multifuntion we mean any set-valued funtion. Let X be a to-pologial spae, Y a (generalized) metri spae, and ϕ : X → 2Y a mul-tifuntion. By ϕ(X) we denote ⋃

{ϕ(x) : x ∈ X}. We say that ϕ is lower(resp., upper) semiontinuous if for eah open (resp., losed) A ⊂ Y thepreimage ϕ−(A) = {x ∈ X : ϕ(x) ∩ A 6= ∅} is open (resp., losed) in X.We shall use the abbreviations l.s.. and u.s.. A multifuntion ϕ is saidto be Hausdor� lower semiontinuous (resp., Hausdor� upper semionti-nuous), for short H.l.s.. (resp., H.u.s.), if for eah x0 ∈ X and ε > 0there exists a neighbourhood U of x0 suh that ϕ(x0) ⊂ B(ϕ(x), ε) (resp.,
ϕ(x) ⊂ B(ϕ(x0), ε)) whenever x ∈ U . Reall that any H.l.s.. multifuntionis l.s.. and any u.s.. multifuntion is H.u.s.. In the ase of ompat-valuedmultifuntions the orresponding notions oinide. If ϕ is H.l.s.. and H.u.s..(resp., l.s.. and u.s..), then it is alled H-ontinuous (resp., V-ontinuous).Observe that a multifuntion ϕ : X → A with A ⊂ 2Y is H-ontinuous(resp., V-ontinuous) if and only if ϕ onsidered as a funtion from X to thespae A with the Hausdor� distane (the Vietoris topology) is ontinuous.It is known that generally H-ontinuity is not preserved under �nite in-tersetions. Usually, to obtain suh a result, we assume that the interior ofthe intersetion is nonempty at every point. The following proposition, per-haps known, is similar (f. [5; Lemma 2.2 and Prop. 2.3℄, [10; Lemma 2.1℄and [12℄).
Proposition. Let ϕ0 : X → Fc(Y ) and ϕi : X → 2Y

c , i = 1, . . . , n,be H-ontinuous (resp., loally H-Lipshitzean) multifuntions, where Y isnormed (and X metri, resp.). If ri > 0, i = 1, . . . , n, and ⋂

n

i=0
ϕi(x) 6= ∅
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for every x ∈ X, then ψ : X → Fc(Y ) de�ned by

ψ(x) = ϕ0(x) ∩
n
⋂

i=1

B(ϕi(x), ri)is H-ontinuous (resp., loally H-Lipshitzean).Proof. First we laim the following: If F ⊂ Y and Gλ ⊂ Y , λ ∈ Λ,are onvex, F is bounded with diam(F ) ≤ M , and B(y0, r) ⊂ Gλ for some
y0 ∈ F , r > 0 and every λ ∈ Λ, then for eah δ > 0 the following inlusionholds:

B(F, δ) ∩
⋂

λ∈Λ

B(Gλ, δ) ⊂ B

(

F ∩
⋂

λ∈Λ

Gλ, δ

(

1 +
2M

r

))

.

Indeed, for y ∈ B(F, δ) ∩
⋂

λ∈Λ
B(Gλ, δ) we take y′ ∈ F and yλ ∈ Gλsuh that ‖y − y′‖ < δ and ‖y − yλ‖ < δ. Then

zλ = y0 +
r

2δ
(y′ − yλ) ∈ B(y0, r) ⊂ Gλ.We put

z =
2δ

r + 2δ
y0 +

r

r + 2δ
y′ =

2δ

r + 2δ
zλ +

r

r + 2δ
yλ.Hene z ∈ F ∩

⋂

λ∈Λ
Gλ, F and Gλ being onvex and y0, y

′ ∈ F , zλ, yλ ∈ Gλ.Moreover,
‖y − z‖ ≤ ‖y − y′‖ + ‖y′ − z‖ ≤ δ +

∥

∥

∥

∥

2δ

r + 2δ
(y0 − y′)

∥

∥

∥

∥

< δ

(

1 +
2M

r

)

.This proves our laim.Let x0 ∈ X. Sine ϕ0(x0) is bounded and ϕ0 is H.u.s.. at x0, thereexist M > 0 and a neighbourhood V of x0 suh that diam(ϕ0(x)) ≤ M for
x ∈ V . If ϕ0, . . . , ϕn are H-ontinuous at x0, then for given ε > 0 we take aneighbourhood U ⊂ V of x0 suh that dist(ϕi(x), ϕi(x0)) < δ′ for x ∈ U and
i = 0, . . . , n, where δ = ε/(1 + 2M/r), r = min{r1, . . . , rn} and 0 < δ′ < δ.So for every x ∈ U , by the �rst part of the proof, we obtain

ψ(x0) ⊂ B(ϕ0(x), δ
′) ∩

n
⋂

i=1

B(B(ϕi(x), ri), δ
′)

⊂ B(ψ(x), δ(1 + 2M/r)) = B(ψ(x), ε),and analogously, ψ(x) ⊂ B(ψ(x0), ε). This proves the H-ontinuity of ψat x0.If we onsider H-loally Lipshitzean multifuntions, we take U ⊂ Vsuh that ϕi|U is H-Lipshitzean with onstant ki, i = 0, . . . , n. Then for
k > k′ > max{k0, . . . , kn} and any x, y ∈ U , x 6= y, we have
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ψ(y) ⊂ B(ϕ0(x), k

′̺(x, y)) ∩
n
⋂

i=1

B(B(ϕi(x), ri), k
′̺(x, y))

⊂ B(ψ(x), k(1 + 2M/r)̺(x, y)).This shows that ψ|U is H-Lipshitzean.Note that in the following lemma all multifuntions Φ are of the type
Φ : X → 2A, i.e., the values Φ(x) are losed subsets of the spae A endowedwith the Hausdor� distane.
Lemma. Assume that X is a topologial spae, Y a metri (resp., nor-med) spae, A one of the spaes 2Y , F(Y ) or K(Y ) (resp., 2Y

c , Fc(Y )or Kc(Y )) and x0 ∈ X. Then for any multifuntions ϕ : X → A and
ψ : X → 2Y (resp., ψ : X → 2Y

c ), the following hold :(a) If Φ(x) = {A ∈ A : A ⊂ ψ(x)} for x ∈ X, then Φ : X → 2A (resp.,
Φ : X → 2Ac ) and(1) ψ is H.l.s.. at x0 if and only if Φ is H.l.s.. at x0,(2) ψ is H.u.s.. at x0 if and only if Φ is H.u.s.. at x0.(b) If Φ(x) = {A ∈ A : ϕ(x) ⊂ A} for x ∈ X, then Φ : X → 2A (resp.,
Φ : X → 2Ac ) and(3) ϕ is H.l.s.. at x0 if and only if Φ is H.u.s.. at x0,(4) ϕ is H.u.s.. at x0 if and only if Φ is H.l.s.. at x0.() If ϕ(x) ⊂ ψ(x) and Φ(x) = {A ∈ A : ϕ(x) ⊂ A ⊂ ψ(x)} for all
x ∈ X, then Φ : X → 2A (resp., Φ : X → 2Ac ) and(5) ϕ is H.u.s.. at x0 and ψ is H.l.s.. at x0 if and only if Φ is H.l.s..at x0,(6) ϕ is H.l.s.. at x0 and ψ is H.u.s.. at x0 if and only if Φ isH.u.s.. at x0.Proof. Obviously, (b) is a onsequene of () with ψ(x) = Y for x ∈ X.Sine ϕ(x) 6= ∅, (a) is not a speial ase of (), but the proof of () givenbelow works also under the assumption ϕ(x) = ∅ for eah x ∈ X.Observe that ϕ(x) ∈ Φ(x) under (b) or (), and {y} ∈ Φ(x) for y ∈ ψ(x)under (a), hene Φ(x) 6= ∅. Sine ϕ(x) and ψ(x) are losed (resp., losed andonvex) subsets of Y , Φ(x) is a nonempty losed (resp., losed and onvex)subset of A, i.e., Φ(x) ∈ 2A (resp., Φ(x) ∈ 2Ac ).In order to prove (5), assume �rst that ϕ is H.u.s.. at x0 and ψ is H.l.s..at x0. We have to �nd for eah ε > 0 a neighbourhood U of x0 suh that

Φ(x0) ⊂ B(Φ(x), ε) for every x ∈ U , i.e., suh that if A0 ∈ A, x ∈ U and
ϕ(x0) ⊂ A0 ⊂ ψ(x0), then

dist(Ax, A0) < ε for some Ax ∈ A with ϕ(x) ⊂ Ax ⊂ ψ(x).
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Let U be a neighbourhood of x0 suh that ϕ(x) ⊂ B(ϕ(x0), ε/2) and ψ(x0) ⊂
B(ψ(x), ε/2) for x ∈ U . Fix x ∈ U and A0 ∈ Φ(x0).If A = 2Y or A = F(Y ) (A = 2Y

c or A = Fc(Y )) we take Ax =
ψ(x)∩B(A0, ε/2). Clearly, Ax is losed (resp., losed and onvex) and ϕ(x) ⊂
Ax ⊂ ψ(x), beause ϕ(x) ⊂ B(ϕ(x0), ε/2) ⊂ B(A0, ε/2). For eah y0 ∈ A0 ⊂
ψ(x0) ⊂ B(ψ(x), ε/2) there exists y ∈ ψ(x) suh that ̺(y, y0) < ε/2, i.e.,
y ∈ Ax and onsequently A0 ⊂ B(Ax, ε/2). (This shows that Ax 6=∅ also for
ϕ≡∅, i.e., in the proof of (1)). Hene, dist(Ax, A0)≤ε/2<ε and Ax∈Φ(x).In the ase of A = K(Y ) (resp., A = Kc(Y )), we proeed in the follo-wing way. Sine A0 ⊂ ψ(x0) ⊂ B(ψ(x), ε/2) is ompat, there exist k ∈ N,
ai ∈ A0 and bi ∈ ψ(x), i = 1, . . . , k, suh that ̺(y0, {a1, . . . , ak}) < ε/2for every y0 ∈ A0 and ̺(bi, ai) < ε/2. We put Ax = ϕ(x) ∪ {b1, . . . , bk}(resp., Ax = conv(ϕ(x) ∪ {b1, . . . , bk})). Then Ax ∈ A (ϕ(x) being on-vex and ompat), ϕ(x) ⊂ Ax ⊂ ψ(x) (ψ(x) being onvex) and A0 ⊂
B({b1, . . . , bk}, ε) ⊂ B(Ax, ε). On the other hand, {b1, . . . , bk} ⊂ B(A0, ε/2)and ϕ(x) ⊂ B(ϕ(x0), ε/2) ⊂ B(A0, ε/2), so Ax ⊂ B(A0, ε/2) (A0 beingonvex). This shows that dist(A0, Ax) < ε.To prove the onverse impliation in (5) we take a neighbourhood U of
x0 suh that Φ(x0) ⊂ B(Φ(x), ε) for x ∈ U . If x ∈ U , then A0 = {y0}∪ϕ(x0)(resp., A0 = cl conv(ϕ(x0) ∪ {y0})) belongs to Φ(x0) for any y0 ∈ ψ(x0).Hene, dist(A0, Ax) < ε for some Ax ∈ Φ(x) and y0 ∈ A0 ⊂ B(Ax, ε) ⊂
B(ψ(x), ε). Consequently, ψ(x0) ⊂ B(ψ(x), ε) for x ∈ U , i.e., ψ is H.l.s..at x0. Sine ϕ(x0) ∈ Φ(x0), for every x ∈ U there exists Ax ∈ Φ(x) suh that
dist(Ax, ϕ(x0)) < ε. Hene, ϕ(x) ⊂ Ax ⊂ B(ϕ(x0), ε) for x ∈ U , i.e., ϕ isH.u.s.. at x0.The proof of (6) is the same as that of (5) with A0 replaing Ax and vieversa.2. Appliations of the Rådström�Hörmander Theorem. Reallthe following version of the Rådström�Hörmander Theorem:
Theorem. Let Y be a normed spae and A = Fc(Y ) or A = Kc(Y ).Then the spae (A, dist) with the operations (A,B) 7→ A +̇ B and (λ,A) 7→

λA, A,B ∈ A, λ ∈ [0,∞), an be isometrially and algebraially embeddedas a onvex one K in a Banah spae E.In 1952 the above theorem was proved by Rådström [14℄ for some A ⊂
Fc(Y ) with the operation + (e.g. for Kc(Y ) and for {A ∈ Kc(Y ) : A is �nite-dimensional}). However, due to the anellation law for the operation +̇ (seee.g. [17; Prop. 2.1℄), his proof also works in the ase of (Fc(Y ), +̇). The prooffor (Fc(Y ), +̇) using support funtions was given by Hörmander [11℄ in 1954.In what follows, for the sake of simpliity, we identify A with the onvexone K ⊂ E. Observe that if F ⊂ Y is omplete and A = Fc(Y ), then Fc(F )
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is also a omplete subset of E, sine the embedding is an isometry. Similarly,if F ⊂ Y is ompat and A = Fc(Y ) or A = Kc(Y ), then Kc(F ) is aompat subset of E. In partiular, if in the Rådström�Hörmander Theorem
Y is assumed to be a Banah spae, then the one K is a losed subsetof E, sine the spaes (Fc(Y ), dist) and (Kc(Y ), dist) are omplete. If Y isseparable and A = Kc(Y ), then one an assume that E is also separable.From the Rådström�Hörmander Theorem one an obtain some intere-sting results for multifuntions, as orollaries to known theorems. By theDugundji Extension Theorem (e.g. [6; Th. 10.4℄) we immediately obtain thefollowing result:
Corollary 1 (Extension Theorem). Let Y be a normed spae and A =

Fc(Y ) (A = Kc(Y ) or A = {A ∈ Kc(Y ) : A is �nite-dimensional}). Thenany H-ontinuous multifuntion ϕ : F → A de�ned on a losed subset F ofa metrizable spae X has an H-ontinuous extension ϕ : X → A suh that
ϕ(X) ⊂ clconvϕ(F ) (resp., ϕ(X) ⊂ convϕ(F )).Proof. We treat ϕ as a ontinuous funtion ϕ : F → K ⊂ E. Hene, thereexists a ontinuous extension ϕ : X → E suh that ϕ(x) ∈ convE{ϕ(x) :
x ∈ F} ⊂ K for x ∈ X, i.e., if ϕ is regarded as a multifuntion, then it isH-ontinuous, ϕ(x) ∈ A and ϕ(x) ⊂ clconvϕ(F ) (resp., ϕ(x) ⊂ convϕ(F ),sine for ompat sets the operations + and +̇ oinide).
Remark. In the same way one an also obtain the following results:Let A be Fc(Y ) or Kc(Y ). A T1-spae X is olletionwise normal i� forevery Banah spae Y and every losed F ⊂ X any H-ontinuous ϕ : F →

A an be extended to an H-ontinuous ϕ : X → A suh that ϕ(X) ⊂
clconvϕ(F ). If we restrit ourselves to separable Banah spaes and A =
Kc(Y ), then we obtain a orresponding haraterization of normal spaes. Itfollows, respetively, from theorems due to Dowker and Hanner (f. also [13;Th. 3.2 and Th. 3.1℄), and from the observation that the set {A ∈ A : A ⊂
clconvϕ(F )} is a retrat of E, being a losed and onvex subset of E.It is known that some extension theorems an be dedued from seletiontheorems (f. [13; Cor. 1.5℄). For example, the Mihael Seletion Theorem[13; Th. 3.2′′℄ yields the following result:
Corollary 2 (Extension Theorem). Let Y be a Banah spae and A =

Fc(Y ) or A = Kc(Y ). Then any H-ontinuous multifuntion ϕ : F → Ade�ned on a losed subset F of a paraompat spae X has an H-ontinuousextension ϕ : X → A suh that ϕ(X) ⊂ clconvϕ(F ). Moreover, if ψ : X →
2Y
c is H.l.s.. and ϕ(x) ⊂ ψ(x) for x ∈ F , then there exists an H-ontinuousextension ϕ : X → A suh that ϕ(x) ⊂ ψ(x) for eah x ∈ X.Proof. If ψ is not given, then we put ψ(x) = clconvϕ(F ) for x ∈ X.By (1) of the Lemma, the multifuntion Φ : X → 2Ac , Φ(x) = {A ∈ A :
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A ⊂ ψ(x)}, an be regarded as an H.l.s.. multifuntion from X to a Banahspae E with losed and onvex values. Hene Ψ de�ned by Ψ(x) = {ϕ(x)}for x ∈ F and Ψ(x) = Φ(x) for x ∈ X \ F is l.s.., F being losed and ϕH-ontinuous. Every ontinuous seletion of Ψ , the existene of whih followsby the Mihael Theorem, is the desired extension.
Remarks. 1. Instead of the ompleteness of Y , in the above orollaryone an assume that ψ has omplete values.2. If ψ : X → Kc(Y ) and Y is normed, it is enough to assume that X isolletionwise normal; if additionally Y is separable, then X an be normal.This follows in the same way from seletion theorems for ompat-onvex-valued multifuntions (f. [13; Th. 3.2′ and Th. 3.1′℄). The existene of suhextensions for every ϕ and ψ haraterizes, respetively, the olletionwisenormality and the normality of X (X is assumed to be a T1-spae).3. A result orresponding to Corollary 2 in the ase of a metri spae Xand H-ontinuous ψ : X → Kc(Y ) was given in [16℄. Its proof is based onsupport funtions.
Corollary 3 (Sandwih Theorem). Let X be paraompat , Y a Banahspae and A = Fc(Y ) or A = Kc(Y ). Then for any H.u.s.. multifuntion

ϕ :X→A and any H.l.s.. ψ :X→ 2Y
c suh that ϕ(x)⊂ψ(x) for all x∈X,there exists an H-ontinuous multifuntion χ : X → A suh that ϕ(x) ⊂

χ(x) ⊂ ψ(x) for eah x ∈ X. In partiular , any H.u.s.. multifuntion ϕ :
X → A is bounded by an H-ontinuous χ : X → A.Proof. Let Φ(x) = {A ∈ A : ϕ(x) ⊂ A ⊂ ψ(x)}. By (5) of the Lemma, Φis a H.l.s.. multifuntion with losed and onvex values from X to a Banahspae E. Hene it has a ontinuous seletion χ.
Remark. The above result in the ase of a metri spae X and ϕ, ψ :

X → Kc(R
n) was proved in [1; Th. 4℄. A related result for a metri spae Xand ϕ, ψ : X → Fc(Y ) suh that B(ϕ(x), r(x)) ⊂ ψ(x) for some r(x) > 0,

x ∈ X, was proved in [4; Th. 5.1℄. Similar results (alled interposition the-orems) were announed in [8℄ and [9℄, but without proofs. A version of theSandwih Theorem with ϕ and ψ onvex-ompat-valued is given in the book[15; Th. 5.75℄, and the authors suggest another method of proof.The following two orollaries are generalizations of known harateriza-tions of some topologial spaes by semiontinuous real funtions (see e.g.[7; 1.7.15(b) and ()℄).
Corollary 4. A T1-spae X is normal if and only if for every separablenormed spae Y and ϕ, ψ : X → Kc(Y ), where ϕ is H.u.s.., ψ is H.l.s..and ϕ(x) ⊂ ψ(x) for eah x ∈ X, there exists an H-ontinuous multifuntion

χ : X → Kc(Y ) suh that ϕ(x) ⊂ χ(x) ⊂ ψ(x) for eah x ∈ X.
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Proof. Now Φ de�ned as in the previous orollary has ompat onvexvalues in a separable Banah spae E. Hene the existene of χ follows by[13; Th. 3.1′℄. For the onverse we onsider, for a pair of sets F,U , where Fis losed, U open and F ⊂ U , multifuntions ϕ, ψ : X → Kc(R) de�ned by

ϕ(x) =

{

{0} if x 6∈ F ,
[0, 1] if x ∈ F , ψ(x) =

{

{0} if x 6∈ U ,
[0, 1] if x ∈ U .Then χ(x) = [f(x), g(x)], where f and g are ontinuous and g(x) = 0 if

x 6∈ U and g(x) = 1 if x ∈ F .
Corollary 5. A T1-spae X is perfetly normal if and only if for everyseparable Banah spae Y and every H.u.s.. multifuntion ϕ : X → Kc(Y )there exists a sequene of H-ontinuous multifuntions ϕn : X → Kc(Y ) suhthat dist(ϕn(x), ϕ(x)) → 0 and ϕ(x) ⊂ ϕn+1(x) ⊂ ϕn(x) for every x ∈ X.Proof. By (4) of the Lemma the multifuntion Φ de�ned by Φ(x) =

{A ∈ Kc(Y ) : ϕ(x) ⊂ A} an be regarded as a H.l.s.. and losed-onvex-valued multifuntion to a separable Banah spae E. By [13; L. 5.2℄, Φ hasa Mihael representation, i.e., there exists a ountable family {ψn : n ∈ N}of ontinuous seletions of Φ (i.e., ψn : X → Kc(Y ) is H-ontinuous) suhthat {ψn(x) : n ∈ N} is dense in Φ(x) for every x ∈ X. In partiular,
dist(ψkn

(x), ϕ(x)) → 0 for some subsequene and ϕ(x) =
⋂

{ψn(x) : n ∈ N}.We put ϕ1 = ψ1 and
ϕn(x) = ϕn−1(x) ∩B(ψn(x), 1/n), n ≥ 2.Clearly, ϕ(x) ⊂ ϕn+1(x) ⊂ ϕn(x) and dist(ϕn(x), ϕ(x)) ≤ dist(ψn(x), ϕ(x))

+ 1/n. Hene, dist(ϕn(x), ϕ(x)) → 0 as a dereasing sequene having asubsequene whih onverges to 0. By the Proposition, ϕn : X → Kc(Y ) isH-ontinuous.For the onverse, let F ⊂ X be losed and let ϕ : X → Kc(R) be de�nedby
ϕ(x) =

{

{0} if x 6∈ F ,
[0, 1] if x ∈ F .Consider the orresponding sequene (ϕn). Sine ϕn(x) = [fn(x), gn(x)] and

ϕn is H-ontinuous, it follows that gn is ontinuous and (gn) is a dereasingsequene onverging pointwise to the harateristi funtion of F .
Remarks. 1. Reall that it is quite easy to obtain a result orrespon-ding to the above orollary for H.l.s.. multifuntions. Namely, for a givenH.l.s.. ϕ : X → Kc(Y ) and a separable normed Y we take a Mihael re-presentation {fn : n ∈ N} and put ϕn(x) = conv{f1(x), . . . , fn(x)}. Clearly,the ompatness of ϕ(x) is essential, sine the ϕn(x) are ompat. A rela-ted haraterization of perfetly normal domains by approximation of lowersemiontinuous multifuntions was given in [3℄.
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2. It is easy to see that for any X and ϕ : X → 2Y

c with a Mihaelrepresentation, the sequene (ϕn) de�ned as in the above remark onvergespointwise to ϕ in the Vietoris topology.3. Aseev [1; Th. 2℄ proved a orresponding result on approximation of aH.u.s.. ϕ : X → Kc(R
n), whereX is metri, with the additional requirement

ϕ(x) ⊂ intϕn(x). To obtain suh inlusions it is enough to take ϕ′
n(x) =

B(ϕn(x), 1/n), Y = R
n in our proof of Corollary 5.There are also some results on approximation of H.u.s.. multifuntionsde�ned on a metri spae with values in Fc(Y ). Usually every approximatingmultifuntion is de�ned by a partition of unity from onstant multifuntions.Observe that, using the Rådström�Hörmander embedding, any multifuntionde�ned in suh a way is H-ontinuous. More preisely, let A be Fc(Y ) or

Kc(Y ), Ai ∈ A and pi ≥ 0 for i = 1, . . . , n, and
A = clY

n
∑

i=1

piAi = p1A1 +̇ · · · +̇ pnAn ∈ A.

If we identify A with a subset of E, the set A is of the form A =
∑

n

i=1
piAi,where ∑ denotes algebrai sum in E. Therefore, if we de�ne a new multifun-tion ϕ by ϕ(x) = clY

∑

λ∈Λ
pλ(x)ϕλ(x), where {pλ : λ ∈ Λ} is a loally �nitepartition of unity and ϕλ : X → A, then ϕ(x) =

∑

λ∈Λ
pλ(x)ϕλ(x) and weobtain exatly the same theorems on the H-ontinuity of ϕ as for ontinuousfuntions. In partiular, if {pλ : λ ∈ Λ} is a loally Lipshitzean partition ofunity (i.e., it is loally �nite and pλ is loally Lipshitzean for every λ ∈ Λ)and Aλ ∈ A then ϕ = clY

∑

λ∈Λ
pλ(·)Aλ is loally H-Lipshitzean.For ompleteness we give two results whih are obtained in this way.

Corollary 6 (f. [4; Th. 4.5℄). For every H.u.s.. multifuntion ϕ :
X → Fc(Y ), where X is metri and Y normed , there exists a sequeneof loally H-Lipshitzean multifuntions ϕn : X → Fc(Y ) suh that
dist(ϕn(x), ϕ(x)) → 0 and ϕ(x) ⊂ ϕn+1(x) ⊂ ϕn(x) for every x ∈ X.Proof. For every x ∈ X and n ∈ N we take δ(x, n) suh that δ(x, n) <
1/n and ϕ(y) ⊂ B(ϕ(x), 1/n) if ̺(x, y) < δ(x, n). Let {pn

λ
: λ ∈ Λn} be aloally Lipshitzean partition of unity subordinate to {B(x, δ(x, n)) : x ∈ X}and let xn

λ
be suh that (pn

λ
)−1(0, 1] ⊂ B(xn

λ
, δ(xn

λ
, n)). We put

ψn(x) = cl
∑

λ∈Λn

pn

λ(x)ϕ(xn

λ).If pn

λ
(x) > 0 then ϕ(x) ⊂ B(ϕ(xn

λ
), 1/n), hene ϕ(x) ⊂ B(ψn(x), 1/n) for

x ∈ X and n ∈ N. On the other hand, for �xed x and ε > 0 we take δ > 0suh that ϕ(y) ⊂ B(ϕ(x), ε) if ̺(x, y) < δ. If n > 1/δ and pn

λ
(x) > 0,then ̺(x, xn

λ
) < δ(xn

λ
, n) < 1/n < δ and ϕ(xn

λ
) ⊂ B(ϕ(x), ε). So ψn(x) ⊂
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B(ϕ(x), ε) whenever n > 1/δ. This shows that dist(ψn(x), ϕ(x)) → 0 forevery x ∈ X. Note that eah multifuntion x 7→ B(ψn(x), 1/n) is loallyH-Lipshitzean. We put

ϕn(x) =
n
⋂

i=1

B(ψi(x), 2/i).By the Proposition, ϕn is loally H-Lipshitzean. Obviously, ϕ(x) ⊂ ϕn+1(x)
⊂ ϕn(x) ⊂ B(ψn(x), 2/n) and dist(ϕ(x), ϕn(x)) ≤ dist(ϕ(x), ψn(x)) + 2/n.So dist(ϕn(x), ϕ(x)) tends to 0 as n→ ∞.
Remarks. 1. If in the above orollary ϕ : X → Kc(Y ) and ϕ(x) ⊂

ψ(x) for some H-ontinuous ψ : X → Kc(Y ) (by Corollary 3 suh a ψexists if Y is Banah), then putting ϕn(x) = ψ(x) ∩
⋂

n

i=1
B(ψi(x), 2/i), weobtain a dereasing sequene of H-ontinuous ompat-valued multifuntionspointwise onverging to ϕ.2. Repeating the �rst part of the previous proof for a H.l.s.. multifun-tion ψ : X → A, where A is Fc(Y ) or Kc(Y ), it is easy to obtain a sequene ofH-ontinuous (or loally H-Lipshitzean) multifuntions ϕn : X → A whihonverges pointwise to ψ and ϕn(x) ⊂ B(ψ(x), 1/n) for all x ∈ X.3. Note that the existene of an approximation by a sequene of H-semiontinuous multifuntions haraterizes H-semiontinuity. More preise-ly, if a sequene of H.u.s.. (H.l.s..) multifuntions ϕn : X → 2Y onvergespointwise to ϕ : X → 2Y and for every ε > 0 there exists n0 suh that

ϕ(x) ⊂ B(ϕn(x), ε) (resp., ϕn(x) ⊂ B(ϕ(x), ε)) for n ≥ n0 and x ∈ X, then
ϕ is H.u.s.. (resp., H.l.s..). In fat, for given x0 and ε > 0 we �x n so largethat ϕn(x0) ⊂ B(ϕ(x0), ε/3) and ϕ(x) ⊂ B(ϕn(x), ε/3) for every x. We takea neighbourhood U of x0 suh that ϕn(x) ⊂ B(ϕn(x0), ε/3) for x ∈ U . It iseasy to see that ϕ(x) ⊂ B(ϕ(x0), ε).
Corollary 7. LetX bemetri,Y normed andA = Fc(Y ) orA = Kc(Y ).Then for every H.l.s.. multifuntion ψ : X → A with omplete values thereexists a sequene of H-ontinuous multifuntions ψn : X → A onvergingpointwise to ψ and suh that ψn(x) ⊂ ψn+1(x) ⊂ ψ(x) for eah x ∈ X.Proof. First observe that if ϕ : X → A is H-ontinuous and ϕ(x) ⊂

B(ψ(x), r) for some r > 0 and every x ∈ X, then for every ε > 0 thereexists an H-ontinuous multifuntion χ : X → A suh that χ(x) ⊂ ψ(x) and
dist(χ(x), ϕ(x)) ≤ r + ε. In fat, by (1) of the Lemma, the multifuntion
Ψ given by Ψ(x) = {A ∈ A : A ⊂ ψ(x)} is H.l.s.. It is easy to see that
Ψ(x)∩B(ϕ(x), r+ε) is never empty; for example, ψ(x)∩B(ϕ(x), r+ε/2) 6= ∅belongs to it. De�ne Φ(x) = clE(Ψ(x)∩B(ϕ(x), r+ ε)). By [13; Prop. 2.5℄, Φis lower semiontinuous. Sine ψ(x) is omplete (or ompat), Ψ(x) is losedin E and Φ(x) ⊂ clE Ψ(x) ⊂ A. Hene, Φ has a ontinuous seletion χ, i.e.,
χ : X → A is H-ontinuous, χ(x) ⊂ ψ(x) and dist(ϕ(x), χ(x)) ≤ r + ε.



Rådström�Hörmander Embedding Theorem 269
Let ϕn : X → A be as in Remark 2. Let χn : X → A be H-ontinuoussuh that χn(x) ⊂ ψ(x) and dist(ϕn(x), χn(x)) ≤ 2/n, for every x ∈ X. Sine

dist(χn(x), ψ(x)) ≤ dist(ϕn(x), ψ(x))+2/n, the sequene (χn(x)) onvergesto ψ(x). We put ψn(x) = clconv(χ1(x)∪· · ·∪χn(x)). It is easy to hek that
(ψn) has the desired properties.
Remark. For ψ : X → Fc(Y ) with intψ(x) 6= ∅ the above result wasproved in [4; Th. 3.6℄.3. Some examples. The Rådström�Hörmander Theorem, whih is themain tool in the previous setion, is formulated for lasses of bounded sets.The �rst example below shows that, generally, our orollaries are not truefor multifuntions with unbounded values.In the following examples I denotes the interval [0,1℄.
Example 1. It is easy to see that no multifuntion χ : I → 2R

c suhthat χ(0) = [0,∞) and χ(1) = [a, b], a ≤ b, is H-ontinuous. In fat, let
f(x) ∈ R ∪ {∞} denote the right end point of χ(x), so f : I → R ∪ {∞}.If χ is H.l.s.. at 0, then f(x) = ∞ whenever 0 ≤ x < δ for some δ > 0.Let x0 = sup{x ∈ I : f(y) = ∞ for every y ∈ [0, x]}. If f(x0) = ∞, then
x0 < 1 and χ is not H.l.s.. at x0. If f(x0) ∈ R, then χ is not H.u.s.. at x0.Note that this example is based on the fat that the generalized metri spae
(2R

c , dist) is not onneted.This example shows that the spae (2R
c , dist) does not have the extensionproperty for ontinuous funtions, i.e., the restrition to bounded sets in Co-rollaries 1 and 2 is essential (for example, F = {0, 1} ⊂ I, ϕ(0) = [0,∞),

ϕ(1) = {0}). Similarly, the Sandwih Theorem and the Approximation The-orem, i.e., Corollaries 3, 6 and 7, do not hold for unbounded sets. In fat,let ϕ and ψ be de�ned on I by ϕ(0) = [0,∞), ϕ(x) = {0} if x ∈ (0, 1],
ψ(x) = [0,∞) if x ∈ [0, 1) and ψ(1) = {0}. Then ϕ is H.u.s.., ψ is H.l.s..and ϕ(x) ⊂ ψ(x) for every x ∈ I, but there is no H-ontinuous χ between
ϕ and ψ, and ϕ and ψ have no approximation by sequenes of H-ontinuousmultifuntions.The next examples show that if we onsider the problems of the previoussetion in the ase of u.s.. or l.s.. multifuntions, i.e., when Fc(Y ) is en-dowed with the Vietoris topology, then the situation is quite di�erent (f.also Remark 2 to Cor. 5).
Example 2. Let X be a normed spae. The multifuntion ϕ : X →

Fc(X) de�ned by ϕ(x) = B(x, 1) is H-Lipshitzean, beause we have
dist(B(x, r), B(y, r)) = ‖x − y‖, r ≥ 0. Obviously, ϕ is also l.s.. Observethat ϕ is u.s.. i�X is �nite-dimensional. Indeed, if X is in�nite-dimensional,then by the Riesz Theorem there exist points bn ∈ B(0, 1) suh that ‖bn‖ = 1
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and ‖bn − bm‖ ≥ 1/2 for n 6= m. Let an = (1 + 1/n)bn and xn = (1/n)bn.Then

1

2
≤ ‖bn − bm‖ =

∥

∥

∥

∥

an − am −
1

n
bn +

1

m
bm

∥

∥

∥

∥

≤ ‖an − am‖ +
1

n
+

1

m
.Hene, 1/4 ≤ ‖an − am‖ for m > n ≥ 8 and F = {an : n ∈ N} is losed, and

B(0, 1) ⊂ X \ F = U . Clearly, limxn = 0, an ∈ ϕ(xn) and ϕ(V ) ⊂ U for noneighbourhood V of 0, i.e., ϕ is not u.s..
Example 3. No multifuntion χ : I → Fc(l

1) suh that χ(0) = B(0, 1),
χ(1) = B(0, 2) and B(0, 1) ⊂ χ(x) for every x ∈ I, is V-ontinuous. Infat, if χ is l.s.., then the set {x ∈ I : χ(x) ⊂ B(0, 1)} is losed. Hene,
x0 = sup{x ∈ I : χ(x) ⊂ B(0, 1)} ∈ [0, 1) and χ(x0) = B(0, 1). We takea dereasing sequene (xn) onverging to x0 and yn ∈ χ(xn) suh that 1 <
‖yn‖ ≤ 2. Put αn = 1 if yn(n) ≥ 0 and αn = −1 if yn(n) < 0. Let

an =
1

n
yn +

(

1 −
1

n

)

αnen,where en ∈ l1 is de�ned by en(k) = δk
n. Clearly, an ∈ χ(xn). It is easyto hek that ‖an‖ = (1/n)‖yn‖ + 1 − 1/n > 1; thus an 6∈ χ(x0). It islear that the sequene ((1 − 1/n)αnen) has no aumulation point. Sine

(1 − 1/n)αnen = an − (1/n)yn and (yn) is bounded, the sequene (an) hasno aumulation point either. Hene, U = l1 \ {an : n ∈ N} is open and
χ(x0) ⊂ U . There is no neighbourhood V of x0 suh that χ(x) ⊂ U for
x ∈ V , sine (xn) onverges to x0. So χ is not u.s.. at x0.Let F denote the topologial spae Fc(l

1) with the Vietoris topology.Example 2 shows that the algebrai sum (F,G) 7→ F +̇G is not a ontinuousfuntion from F×F to F , sine (B(0, 1), {x}) 7→ B(0, 1)+x = B(x, 1) is notontinuous. Similarly, Example 3 shows that multipliation by nonnegativereals (x, F ) 7→ xF is not a ontinuous funtion from [0,∞) × F to F , sine
(x,B(0, 1)) 7→ xB(0, 1) = B(0, x) is not ontinuous. Hene, in the ase ofthe Vietoris topology, a result orresponding to the Rådström�HörmanderTheorem does not hold.Observe that the Sandwih Theorem does not hold for semiontinuousmultifuntions. Indeed, let ψ : I → Fc(l

1) be de�ned by ψ(x) = B(0, 1 + x).Sine dist(ψ(x), ψ(y)) = |x−y|, ψ is H-Lipshitzean. So ψ is also l.s.. and, byExample 3, it is not u.s.. Let ϕ : I → Fc(l
1) be de�ned as ϕ(x) = B(0, 1)if x ∈ [0, 1) and ϕ(1) = B(0, 2). Of ourse, ϕ is u.s.. and ϕ(x) ⊂ ψ(x)for every x ∈ I. But, by Example 3, there is no V-ontinuous χ suh that

ϕ(x) ⊂ χ(x) ⊂ ψ(x) for x ∈ I.Aknowledgements. This researh was supported by the Silesian Uni-versity Mathematis Department (Continuity and Measurability Propertiesof Multifuntions program).
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