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COMPLEX ANALYSIS

A Determinantal Proof of the Produt Formulafor the Multivariate Trans�nite DiameterbyJean-Paul CALVI and PHUNG VAN MANHPresented by Józef SICIAK
Summary. We give an elementary proof of the produt formula for the multivariatetrans�nite diameter using multivariate Leja sequenes and an identity on vandermondians.1. Introdution and statement of the result. Let N

n
d denote the setof n-indies of length at most d endowed with the graded lexiographi order(≺). The ardinality of N

n
d , denoted by Nn

d , is equal to (n+d
d

). A vandermon-dian (of order d) is the determinant of an Nn
d ×Nn

d matrix of the form (zβ
α)where zα ∈ C

n, [·]β is the usual monomial and the rows and olumns areordered aording to ≺. Suh a determinant is denoted by vdm(z) where
z := (zα : α ∈ N

n
d ). It is a polynomial of degree

ℓn
d := n

(

n + d

n + 1

)

in the (Nn
d )n oordinates of the zα's. The dth diameter Dd(K) of a ompatsubset K of C

n is de�ned by(1) Dd(K) = sup{|vdm(z)|1/ℓn
d : z ∈ KNn

d },and a olletion z for whih the supremum is ahieved in (1) is alled a Feketesystem (of order d) for K. Now, the trans�nite diameter D(K) is the limitof Dd(K) as d goes to ∞. That suh a limit exists is by no means obvious(when n > 1). It is a beautiful result of V. Zaharjuta [9℄ who not only provedthe onvergene of (Dd(K)) but also related its limit to omplex polynomialapproximation.2000 Mathematis Subjet Classi�ation: Primary 32U20.Key words and phrases: multivariate trans�nite diameter, Vandermonde determinants,Leja sequenes. [291℄
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Here, for the sake of brevity, we shall ontent ourselves with realling oneuseful relation. Given α ∈ N

n we de�ne
T (α, K) := inf{‖τ‖K : τ ∈ UPα}where UPα is the set of polynomials with ≺-leading monomial zα, i.e., τ(z) =

zα+
∑

β≺α cβzβ and ‖·‖K is the sup-norm on K. A polynomial for whih thein�mum is ahieved is alled an α-Chebyshev polynomial. Zaharjuta showedthat(2) D(K) = lim
d→∞

(

∏

|α|=d

T (α, K)
)1/(dhn

d
)
,

where
hn

d :=

(

n + d − 1

d

)

= |Nn
d \ N

n
d−1|.Just like its (better known) univariate analogue, the multivariate trans�nitediameter is intimately onneted with (pluri)potential theory. Most of whatis known so far about these relations an be found in [4, 5, 2℄ and in thereferenes of those papers. Our note rather deals with the elementary prop-erties of the trans�nite diameter and gives a (mainly) algebrai proof of thefollowing formula.Theorem 1. For i = 1, 2, let Ki be a ompat subset of C

ni , n = n1 +n2and K := K1 × K2 ⊂ C
n. Then(3) D(K) = (D(K1))

n1/n · (D(K2))
n2/n.This result was �rst proved in [4, pp. 286�292℄ by omputing trans�nitediameters with the help of orthogonal polynomials with respet to a positivemeasure satisfying the Bernstein�Markov inequality. That proof requires twonon-immediate fats. First, that the map K 7→ D(K) is ontinuous undernon-inreasing sequenes (of ompat sets) and, seond, that, for every K,there exists a measure satisfying the Bernstein�Markov inequality with sup-port as lose as we like to K.However, seeing the relatively simple formula (3), we may suspet theredoes exist a proof that works with the determinants involved in the de�nition(1) of the dth diameters. Atually suh a proof was found a long time agoby Shi�er and Siiak [8℄ but it worked only in the ase ni = 1. The proofpresented here is muh in the same spirit as theirs. The idea is to takea Fekete system for K1, another for K2 and to �ombine� them to formsomething like a Fekete system for K1×K2. We shall amend this very roughidea and elaborate on it in the next setion, and our proof of (a slightly moreinformative version of) Theorem 1 will easily follow in the last setion.
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2. Tools. (a) We shall not be able to work with Fekete systems butrather with similar extremal olletions of points, alled (blok) Leja se-quenes. If E is a ompat subset of C

m, points of suh a sequene are in-dexed by m-indies and are indutively onstruted as follows. We hoose any
a0 ∈ E and if Ld := (aα : |α| ≤ d) then we de�ne Ld+1 = (aα : |α| ≤ d + 1)by requiring(4) vdm(Ld+1) = sup{|vdm(z)| : z ∈ ENm

d+1 , zα = aα for |α| ≤ d}.Note that it is not exluded that vdm(Ld) = 0 for every d. A very similarsequene, all it a (point) Leja sequene, was introdued independently byJ�drzejowski [7℄ and Bloom et al. [3℄. In both ases, the authors onstruted itby adding one point at eah step (so that they needed Nm
d steps to onstrut

Nm
d points) whereas we add a whole blok of hm

d points at step d (so thatwe need d + 1 steps to onstrut Nm
d points). We ould work as well withtheir (point) Leja sequenes, but sine the notion of blok is essential inour disussion, as will soon be apparent, we prefer to stik to the morenatural setting. The point is that, as long as we are onerned with trans�nitediameters, (blok) Leja sequenes behave like sequenes of Fekete systems.Theorem 2. We have

D(E) = lim
d→∞

|vdm(Ld)|
1/ℓm

d .Proof. We only sketh it for it is a mere adaptation of the proof givenin [7℄ or in [3, pp. 461�462℄ for a (point) Leja sequene. First, sine, byde�nition, the Fekete system is the best possible hoie, we have
D(E) ≥ lim sup

d→∞
|vdm(Ld)|

1/ℓm
d .Hene we just need to prove that the lim inf satis�es the reverse inequality.We may also assume that E is unisolvent for P(Cm) (that is, no non-zeropolynomial vanishes identially on E) for otherwise the onlusion is easy(see the argument in [7, p. 69℄). We shall prove by indution that(5) |vdm(Ld)| ≥

∏

|α|≤d

T (α, E) (d ≥ 0),

and a (areful) use of (2) will then yield the required lim inf inequality (see[7, 3℄ for details regarding this last step).The inequality (5) is obvious for d = 0. We assume it holds true for d andproeed to prove it for d + 1. Let z = (zα) as in (4). For every β of length
d + 1, we put

Mβ := det(zv
u : u � β, v � β).Sine, the ≺-�rst Nm

d entries of z are �xed (equal to the aα's), Mβ is a(ontinuous) funtion of the variables zu for d < |u|, u � β. Let γ be the
≺-smallest m-index of length d + 1. Expanding Mγ with respet to the last
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olumn, we see that Mγ = vdm(Ld)τγ(zγ) where τγ ∈ UPγ and the oe�-ients of τγ depend only on the aα's. Suh a formula is valid however onlybeause vdm(Ld) 6= 0 and this follows from the indution hypothesis. In-deed, sine E is unisolvent, T (α, E) > 0 for every α, whih, by (5), ensuresvdm(Ld) 6= 0. Now, using again the unisolvene of E, we may hoose (and�x) zγ ∈ E so that |τγ(zγ)| = ‖τγ‖E > 0 (whih implies Mγ 6= 0). Let now
θ be the ≺-suessor of γ. Expanding Mθ with respet to its last olumnwe �nd Mθ = Mγτθ(zθ) where τθ ∈ UPθ and the oe�ients of τθ dependonly on the aα's and on the already �xed zγ . Again, this is possible beause
Mγ 6= 0. Using the unisolvene of E, we may next �nd (and �x) zθ ∈ Esuh that |τθ(zθ)| = ‖τθ‖E > 0 (whih implies Mθ 6= 0). At this point, wehave

|Mθ| = |vdm(Ld)| ‖τγ‖E‖τθ‖E ≥ |vdm(Ld)|T (γ, E)T (θ, E).Continuing in this way, after hm
d+1 indutive steps, for every α of length d+1,we onstrut a polynomial τα ∈ UPα and zα ∈ E with ‖τα‖E = |τα(zα)| > 0suh that, for the orresponding system z, we havevdm(z) = vdm(Ld)

∏

|α|=d+1

τα(zα),

hene |vdm(z)| ≥ |vdm(Ld)|
∏

|α|=d+1 T (α, E). By onstrution of Ld+1,we therefore have |vdm(Ld+1)| ≥ |vdm(Ld)|
∏

|α|=d+1 T (α, E). Now, usingagain the indution hypothesis we arrive at vdm(Ld+1) ≥
∏

|α|≤d+1 T (α, E),whih is (5) for d + 1.The interested reader should onsult the paper [1℄ for an appliationof (point) Leja sequenes to the reonstrution of the pluriomplex Greenfuntion.(b) Following our idea, we want to ombine Leja sequenes for K1 and
K2 to get something like a Leja sequene for K1 ×K2. We �rst say what wemean by ombining sequenes. We shall use a (natural) proess introduedin [6℄ whih generalizes an old idea of Biermann. Given, for i = 1, 2, aolletion Xi = (xi,α : |α| ≤ d) of Nni

d points in C
ni , the intertwining of X1and X2 is the olletion of Nn1+n2

d points in C
n1+n2 de�ned by X1 ⊕ X2 :=

((x1,α, x2,β) : |α| + |β| ≤ d). The following theorem is proved in [6, Se. 5℄by using multivariate Lagrange interpolation theory. It is this result whihenables us to show that the intertwining of Leja sequenes for the fatorsets Ki behaves like a Leja sequene for the produt set K = K1 × K2.It was found and used by Shi�er and Siiak in the ase ni = 1 for whihthe intertwining of the Xi redues to the aforementioned onstrution ofBiermann.
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Theorem 3. Let Xi, i = 1, 2, and X1 ⊕ X2 as above. Then(6) vdm(X1 ⊕ X2) =

d
∏

j=1

(vdm(Xj
1))

h
n2
d−j

d
∏

j=1

(vdm(Xj
2))

h
n1
d−j ,

where Xj
i is the jth blok of Xi, that is, Xj

i := (xi,α : |α| ≤ j).It is very important for us that for every j, 1 ≤ j ≤ d, the jth blok ofthe dth term Li,d of the Leja sequene for Ki is just the jth term of this samesequene, i.e., Lj
i,d = Li,j . It has been onstruted preisely in order that thisproperty be satis�ed. The same would no longer be true with Fekete systemsand this is the very reason why we need to use Leja sequenes here. Thisbeing said, we immediately dedue the following orollary to Theorem 3.Corollary 4. For i = 1, 2, let (Li,d) be a Leja sequene for Ki. Then(7) vdm(L1,d ⊕ L2,d) =

d
∏

j=1

(vdm(L1,j))
h

n2
d−j

d
∏

j=1

(vdm(L2,j))
h

n1
d−j .

() We �nally need some information to be able to alulate with thefairly ompliated exponents involved in the various formulae.Lemma 5. Let d, ni, i = 1, 2, be positive integers and n = n1 +n2. Then
d

∑

k=1

khn1

k hn2

d−k = (n1/n)dhn
d .Proof. This is Lemma 3 in [4℄. It is proved using a standard generatingpower series tehnique.Lemma 6. Let d, ni, i = 1, 2, be positive integers and n = n1 +n2. Then

d
∑

k=1

ℓn1

k hn2

d−k = (n1/n)ℓn
d .Proof. Lemma 5 (applied with n1 + 1) yields

d
∑

k=1

khn1+1
k hn2

d−k =
n1 + 1

n + 1
dhn+1

dand the laim follows by observing that, for every m > 0,
mhn1+1

m =
n1 + 1

n1
ℓn1

m .

3. Abridged proof of Theorem 1. As a by-produt of our proof, weshall see that the intertwining of Leja sequenes for K1 and K2 permits oneto reover the trans�nite diameter of K = K1 × K2. Note that it is very
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unlikely that this intertwining sequene itself is a Leja sequene for K. Weontinue to denote by Li,d a (blok) Leja sequene for Ki.
Step 1. We prove (D(K))n ≥ (D(K1))

n1 · (D(K2))
n2. Sine Dd(K) ≥

|vdm(L1,d ⊕ L2,d)|
1/ℓn

d , the inequality follows from the next lemma.Lemma 7. We have
lim

d→∞
|vdm(L1,d ⊕ L2,d)|

1/ℓn
d = (D(K1))

n1/n · (D(K2))
n2/n.Proof. The details are a bit tedious but standard. We shall assume D(Ki)

> 0. The proof is even simpler if one of the D(Ki) is 0. Fix ε > 0. In viewof Theorem 2 for d large enough, say d ≥ d0, we have(8) e−εD(Ki) ≤ |vdm(Li,d)|
1/ℓ

ni
d ≤ eεD(Ki).Choose positive r < R (depending on ε) suh that(9) rD(Ki) ≤ |vdm(Li,d)|

1/ℓ
ni
d ≤ RD(Ki) for d < d0.(Here we need vdm(Li,d) 6= 0. This follows from (5) whih holds true sine

D(Ki) > 0 implies that Ki is unisolvent for Pd(C
n).) Working with i = 1and writing

(

d
∏

j=1

(vdm(L1,j))
h

n2
d−j

)1/ℓn
d

=
d

∏

j=1

(

|vdm(L1,j)|
1/ℓ

n1
j

)ℓ
n1
j h

n2
d−j

/ℓn
d
,

we readily infer, on distinguishing the ases d ≥ d0 and d < d0 and using(8), (9) and Lemma 6, that
rsde−εn1/n−sd(D(K1))

n1/n ≤
(

d
∏

j=1

(vdm(L1,j))
h

n2
d−j

)1/ℓn
d(10)

≤ Rsdeεn1/n−sd(D(K1))
n1/nwhere sd := (1/ℓn

d)
∑d0−1

j=1 ℓn1

j hn2

d−j tends to 0 as d → ∞. We �nish the proofby using the same estimate for K2 together with Corollary 4 and letting dtend to ∞ and then ε to 0.
Step 2. We now prove (D(K))n ≤ (D(K1))

n1 · (D(K2))
n2. Here, theLeja sequenes are of no use but, thanks to (2), elementary onsiderations onthe Chebyshev polynomials will lead to the inequality. Sine the graded lexi-ographi order is ompatible with addition, the produt of an α1-Chebyshevpolynomial for K1 and an α2-Chebyshev polynomial for K2 belongs to

UP(α1,α2) so that T ((α1, α2)), K) ≤ T (α1, K1) · T (α2, K2). Hene, writingevery α ∈ N
n
d as α = (α1, α2) with α1 (resp. α2) formed by the �rst n1 (resp.
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last n2) oordinates of α, we have
(11)

∏

|α|=d

T (α, K)

≤
(

d
∏

j=0

∏

|α1|=j

(T (α1, K1))
h

n2
d−j

)

·
(

d
∏

j=0

∏

|α2|=j

(T (α2, K2))
h

n1
d−j

)

.

Let Ci > D(Ki) for i = 1, 2. In view of (2),
∏

|αi|=d

T (αi, Ki) ≤ C
dh

ni
d

i for d large enough, say d ≥ d0,and, for some R > 0 (depending on the Ci's),
∏

|αi|=d

T (αi, Ki) ≤ (RCi)
dh

ni
d for d < d0(both estimates for i = 1, 2). Inserting these estimates in (11) (distinguishingthe ases d ≥ d0 and d ≤ d0) and using Lemma 5, we �nd(12) (

∏

|α|=d

T (α, K)
)1/(dhn

d
)
≤ Rs1,d+s2,d · C

n1/n
1 · C

n2/n
2 ,

where
si,d =

1

dhn
d

d0−1
∑

j=0

jhni

j hn−ni

d−j → 0 as d → ∞.
Now, letting d → ∞ and using one more (2), we arrive at D(K) ≤ C

n1/n
1 ·

C
n2/n
2 . The required inequality follows sine Ci an be taken arbitrarily loseto D(Ki). This ompletes the proof of Theorem 1.Aknowledgements. We would like to thank the referee for a arefulreading of the manusript. The researh for this note was done in September2005 when Jean-Paul Calvi was visiting the Department of Mathematisof the Hanoi University of Eduation. He would like to thank the HanoiUniversity of Eduation and the Formath Vietnam program for their support.
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