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Tyhono� Produts of Two-Element Sets andSome Weakenings of the Boolean Prime Ideal TheorembyKyriakos KEREMEDISPresented by Czesªaw RYLL-NARDZEWSKI
Summary. Let X be an in�nite set, and P(X) the Boolean algebra of subsets of X. Weonsider the following statements:BPI(X): Every proper �lter of P(X) an be extended to an ultra�lter.UF(X): P(X) has a free ultra�lter.We will show in ZF (i.e., Zermelo�Fraenkel set theory without the Axiom of Choie) thatthe following four statements are equivalent:(i) BPI(ω).(ii) The Tyhono� produt 2R, where 2 is the disrete spae {0, 1}, is ompat.(iii) The Tyhono� produt [0, 1]R is ompat.(iv) In a Boolean algebra of size ≤ |R| every �lter an be extended to an ultra�lter.We will also show that in ZF, UF(R) does not imply BPI(R). Hene, BPI(R) is stritlystronger than UF(R). We do not know if UF(ω) implies BPI(ω) in ZF.Furthermore, we will prove that the axiom of hoie for sets of subsets of R does notimply BPI(R) and, in addition, the axiom of hoie for well orderable sets of non-emptysets does not imply BPI(ω).1. Notation and terminology. Let X be a non-empty set. We saythat a family H ⊂ P(X) \ {∅} has the �nite intersetion property, fip forabbreviation, i� ⋂

Q 6= ∅ for every �nite subset Q of H.It is well known that there are many haraterizations of the notionof �ompat�, all equivalent in ZFC set theory (i.e., ZF plus the Axiom ofChoie). However, in the absene of the Axiom of Choie these �types� ofompatness may fail to be equivalent. Consequently, the notion of a om-2000 Mathematis Subjet Classi�ation: 03G05, 03E25, 54B10, 54D30.Key words and phrases: Boolean algebra, prime ideal, �lter, ultra�lter, Axiom ofChoie, weak axioms of hoie, Tyhono� produts.[349℄



350 K. Keremedis
pat topologial spae does not have a lear meaning in ZF set theory. In thispaper we shall be using the Heine�Borel de�nition of ompatness, i.e., atopologial spae (X, T ) is ompat i� every open over of X has a �nite sub-over. Equivalently, X is ompat i� every family of losed subsets of X hav-ing the fip has a non-empty intersetion. For the interrelation between severalde�nitions of ompatness in ZF, the reader is referred to [1℄, [2℄, [6℄, [7℄.We will onsider the following statements:1. BPI: Every Boolean algebra has a prime ideal. {It is known that BPIis equivalent in ZF to the statement that every Boolean algebra hasan ultra�lter and also to the statement (for every X)BPI(X); see [8℄.}2. UF: For every in�nite set X, P(X) has a free ultra�lter (i.e., (for everyin�nite set X)UF(X)).3. AC(R): Every family of non-empty subsets of R has a hoie funtion.4. CAC(R): AC(R) restrited to ountable families.5. PW(R): The powerset P(R) of R is well orderable.6. IDI: Every in�nite set is Dedekind in�nite (i.e., it has a ountablyin�nite subset).7. WOAC: Every well orderable set of non-empty sets has a hoie fun-tion.8. TP(2R): The Tyhono� produt 2R, where 2 is the disrete spae

{0, 1}, is ompat.9. DC, the axiom of dependent hoies: If R is a non-empty relationon a non-empty set X suh that (∀x)(∃y)(xRy), then there exists afuntion f : ω → X suh that f(n)Rf(n + 1) for all n ∈ ω.The reader is referred to [5℄ for notions on Boolean algebras whih areused but not de�ned in this paper.
Note. Most of the propositions whih are listed above are disussed inthe book [8℄ on the onsequenes of the Axiom of Choie by P. Howardand J. E. Rubin as �Form x�, �x� being some numeral. For example, in[8℄, the Boolean Prime Ideal Theorem BPI is named �Form 14�. The au-thors [8℄ have developed software available at http://www.math.purdue.edu/~jer/Papers/onseq.html where one an insert Form numerals to retrieveall known provable or refutable impliations between these Forms. For thereader's onveniene we give the Form numerals of [8℄ for those propositionswhih an be found in the latter book:BPI (Form 14), BPI(ω) (Form 225), UF (Form 63), UF(ω) (Form 70),AC(R) (Form 79), CAC(R) (Form 94), PW(R) (Form 130), IDI (Form 9),WOAC (Form 40), TP(2R) (Form 139), DC (Form 43).2. Introdution and some preliminary results. The main purposeof this paper is to give six answers to questions in the table below (whih
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were not given in [8℄). In this table if the entry in row A and olumn B is:

• �?�, then nothing is known about the impliation A → B in ZF;
• �→�, then A → B in ZF;
• � 6→�, then A 6→ B in ZF.

BPI(ω) UF(ω) AC(R) CAC(R) WOAC TP(2R) DC

BPI(ω) → → 6→ 6→ 6→ → 6→

UF(ω) ? → 6→ 6→ 6→ ? 6→

AC(R) → → → → 6→ → 6→

CAC(R) 6→ 6→ 6→ → 6→ 6→ 6→

WOAC 6→ 6→ 6→ → → 6→ →

TP(2R) → → 6→ 6→ 6→ → 6→

DC 6→ 6→ 6→ → 6→ 6→ →

The entries of the table whih are established in this paper are the fol-lowing: BPI(ω) → TP(2R), AC(R) → BPI(ω) (this impliation is not listedin [8℄ but it is well known and added here for ompleteness), CAC(R) 6→TP(2R), WOAC 6→ TP(2R), TP(2R) → BPI(ω), TP(2R) → UF(ω), DC 6→TP(2R). For the positive and independene results for the rest of the entriesof the above table, the reader is referred to P. Howard and J. E. Rubin'sbook [8℄ and to its webpage.It was shown in [14℄ and independently in [18℄ that BPI is equivalent toTyhono�'s Produt Theorem for Hausdor� (T2) spaes:TPT2: The Tyhono� produt of ompat T2 spaes is ompat.J. Myielski [15℄ proved that BPI is equivalent to the statement:
S: For every set X the Tyhono� produt 2X , where 2 has the disretetopology, is ompat.It is part of the folklore (see [10℄) that for a well ordered ardinal m, thestatement �the Tyhono� produt 2m, where 2 has the disrete topology, isompat� is deduible in ZF. J. Truss in analogy with statement S (see [19℄)introdued the statement TP(2R) and in [8℄ it was asked whether TP(2R)is deduible in ZF0 (i.e., ZF without the axiom of regularity). In [10℄ itwas shown that TP(2R) fails in Cohen's Seond Model (see Model M7 in[8℄). However, the status of the impliations CAC(R) → TP(2R), WOAC →TP(2R), and DC → TP(2R) remained unknown.Clearly, BPI implies TP(2R) beause 2 with the disrete topology is aompat T2 spae. Sine BPI holds but CAC(R) fails in Cohen's basi model(see Model M1 in [8℄) it follows that TP(2R) does not imply CAC(R). InTheorem 8 we show that WOAC, hene DC and CAC(R), do not implyTP(2R). Hene CAC(R) and TP(2R) are independent of eah other.
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In [8℄, TP(2R) and BPI(ω) are treated as di�erent statements. However,the equivalene BPI ↔ S is an indiation that TP(2R) and BPI(ω) expressthe same truth. We show in Theorem 6 that this is indeed the ase.The propositions UF and UF(ω) were introdued in [9, Prob. 8.5, p. 172,and Prob. 5.24, p. 82, respetively℄, and BPI(ω) was introdued by Y. Rav(see [16℄).Clearly, BPI → BPI(ω) → UF(ω) and BPI → UF → UF(ω), and itis known (see the table of impliations at http://www.math.purdue.edu/~jer/Papers/onseq.html) that UF(ω) 9 UF and BPI(ω) 9 BPI.In ontrast with the status of UF(ω) → BPI(ω), we show in Theorem 10that UF(R) 9 BPI(R).Theorem 1. UF(ω) + IDI → UF. In partiular , UF(ω) → UF(R).Proof. Fix an in�nite set A and let, by IDI, X be a ountably in�nitesubset of A. Fix, by UF(ω), a free ultra�lter H of P(X) and let F = {Y ∈

P(A) : Y inludes a member of H}. We show that F is an ultra�lter of P(A).To this end, it su�es to show that F is maximal with respet to the fip. Fix
B ⊂ A suh that F ∪ {B} has the fip. Fix Y ∈ H. Then Z = B ∩ Y meetsnon-trivially eah member of H. Thus, Z ∈ H and onsequently B ∈ F and
F is maximal as required.The seond assertion follows trivially beause ω ⊂ R.Remark 2. It is known that in Cohen's basi model M1 in [8℄, UF holdsbut IDI fails. Thus, the �rst impliation in Theorem 1 is not reversible. Wedo not know whether the seond one is. We onjeture that it is not.Theorem 3.(i) PW(R) → BPI(R) → BPI(ω) → UF(ω) → UF (R).(ii) AC(R) implies BPI(ω).Proof. (i) PW(R) → BPI(R). Fix a �lter H of P(R) and let {Xi : i ∈ ℵ},where ℵ is a well-ordered ardinal, be a well-ordering of P(R). Via a straight-forward indution on ℵ, H an be extended to an ultra�lter F of P(R).

BPI(R) → BPI(ω) → UF(ω). These are straightforward.(ii) This an also be proved indutively.Theorem 4 ([20, Theorem 16.4()℄). In ZFC , a produt of Hausdor�spaes with at least two points eah is separable i� eah fator is separableand there are ≤ |R| fators. In partiular , if (X, T ) is a separable Hausdor�spae then, in ZF , the produt XR is separable.3. Positive results. In [13℄, Azriel Lévy proved that BPI, hene itsequivalent (see [15℄) statement:
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S: For every set X the Tyhono� produt 2X , where 2 has the disretetopology, is ompat,implies the axiom of hoie for families of non-empty �nite sets, hene itimplies the weaker statement:
C: Every family of two-element sets has a hoie funtion.We will show similar propositions in the next theorem.Theorem 5.(i) TP(2R) implies that every disjoint family of non-empty sets of realsis linearly orderable.(ii) TP(2R) implies that every family A = {Ai : i ∈ I} of non-empty�nite subsets of P(R) suh that ⋃

A is disjoint has a hoie funtion.(iii) TP(2R) implies that for all n ∈ ω \ 2, every family A = {Ai : i ∈ R}of ≤ n-element subsets of P(R) has a hoie funtion.Proof. (i) Let A be a disjoint family of non-empty sets of reals. Let L bea propositional language with propositional variables pxy, x, y ∈ R, whihhave intended meaning (x ∈ A ∈ A) ∧ (y ∈ B ∈ A). Let P be the set of allpropositions of the language L, and Σ be the subset of P onsisting of thefollowing four types of propositions:(1) pxy ∧ pyx for every A ∈ A and all x and y in A,(2) (¬pxy) ∨ (¬pyx) for all A, B ∈ A with A 6= B and all x ∈ A and
y ∈ B,(3) pxy ∧ pyz → pxz for all x, y, z ∈ R,(4) pxy ∨ pyx for all x, y ∈ R.Clearly, |P | = |2ℵ0 |. We seek for a valuation mapping σ ∈ 2P suh that

σ(φ) = 1 for all φ ∈ Σ. Then the required linear ordering on A will be
R = {(A, B) ∈ A2 : (∀x ∈ A)(∀y ∈ B)(σ(pxy) = 1)}.By TP(2R) the Tyhono� produt 2P is ompat. For eah �nite subset

X of Σ let CX = {f ∈ 2P : f is a valuation satisfying X}. It is easy toverify that C = {CX : X ∈ [Σ]<ω} is a family of non-empty losed subsetsof 2P with the �nite intersetion property. Hene, there exists a valuation
σ ∈

⋂

C. Clearly, σ satis�es Σ, �nishing the proof of (i).(ii) This follows immediately from (i).(iii) The proof is by indution on n ∈ ω \ 2.For n = 2, �x a family A = {Ai : i ∈ R} of two-element subsets of P(R).For every i ∈ R we may assume that the elements of Ai are inomparableunder the relation ⊂. (Otherwise, we may hoose the element ⋂

Ai of Ai.)It follows that if a, b are the elements of Ai, then a \ b 6= ∅ and b \ a 6= ∅.Thus, without loss of generality we may assume that for every i ∈ R the
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members of Ai are disjoint. For every i ∈ R, let hi : R → R × R be thefuntion given by hi(x) = (i, x) for all x ∈ R. Fix a 1 : 1 and onto funtion
f : R × R → R (in ZF, |R × R| = |R|) and let fi : R → R be the funtiongiven by fi = f ◦ hi. Clearly, B = {fi[Ai] : i ∈ R} is a family as in (i) ofthe present theorem and any hoie funtion of the family B yields a hoiefuntion of the family A.Assume that the result holds for n = k, k > 2. Fix a family A = {Ai :
i ∈ R} of (k+1)-element subsets of P(R). Without loss of generality we mayassume that for every i ∈ R and any A, B ∈ Ai, A \ B 6= ∅ and B \ A 6= ∅.(Otherwise replae Ai by A∗

i = {A ∈ Ai : A is maximal with respet toinlusion}.) Under the previous assumption we may also infer that ⋂

Ai = ∅for all i ∈ R. (Working with A∗
i instead of Ai we �nd that ⋂

{(
⋃

A∗
i ) \ A :

A ∈ A∗
i } = ∅.) Fix an i ∈ R. For every x ∈

⋃

Ai we de�ne the degreeof x by deg(x) = |{A ∈ Ai : x ∈ A}|. Let ni = min{deg(x) : x ∈
⋃

Ai}and Bi = {x ∈
⋃

Ai : deg(x) = ni}. De�ne a binary relation ∼i on Bi byrequiring for all x, y ∈ Bi,
x ∼i y iff (∀A ∈ Ai)(x ∈ A ↔ y ∈ A).It an be easily veri�ed that ∼i is an equivalene relation on Bi (the sym-metry follows from the fat that the elements of Bi have the same degree).Let Ci = {[x]∼i
: x ∈ Bi}. Clearly, Ci is a disjoint �nite subset of P(R).Put C = {Ci : i ∈ R}. As in the ase n = 2 we may assume that ⋃

Cis a disjoint set, hene we may view C as a family in (ii) of the presenttheorem. By TP(2R) let f be a hoie funtion for C. For every i ∈ R, let
A1

i = {A ∈ Ai : A ∩ f(Ci) 6= ∅}. Then A1
i is a proper subset of Ai for all

i ∈ R. (If f(Ci) = [x∗]∼i
, then sine ⋂

Ai = ∅, it follows that x∗ /∈ A forsome A ∈ Ai. By the de�nition of ∼i we have [x∗]∼i
⊂ (

⋃

Ai) \ A.) By theindution hypothesis, the family A1 = {A1
i : i ∈ R} has a hoie funtion.Thus, A has a hoie funtion and the indution terminates. This ompletesthe proof of (iii) and of the theorem.Theorem 6. The following statements are equivalent :(i) In a Boolean algebra B of size ≤ |R| every �lter an be extended toan ultra�lter.(ii) BPI(ω).(iii) For every separable ompat T2 spae (X, T ) the produt XR is om-pat.(iv) The produt [0, 1]R is ompat.(v) Tyhono� produts of �nite subspaes of R are ompat.(vi) TP(2R).(vii) For every propositional language L of size ≤ |R| and every onsistentsubset Σ of L there exists a valuation mapping whih satis�es Σ.
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Proof. (i)→(ii). This follows from the observation that (P(ω),△,∩) is aBoolean algebra.(ii)→(iii). Fix a separable ompat T2 spae (X, T ) and by Theorem 4,let D = {dn : n ∈ ω} be a ountable dense subset of XR. We show that theprodut XR is ompat. Assume by way of ontradition that U is an openover of XR suh that no �nite subfamily of U has dense union in X. (Sine

X is ompat and T2 it follows, in ZF, that X is T3. Furthermore, the proofof Theorem 14.4 of [20℄ uses no hoie. Hene, XR is T3. Moreover, it is easyto see that in ZF a regular spae (X, T ) is ompat i� every open over of Xhas a �nite subfamily whose union is dense in X.) Let F be an ultra�lter of
P(D) extending the �lter H generated by the family G = {U c ∩D : U ∈ U}.Clearly, for every i ∈ R, Fi = {πi[F ] : F ∈ F} is an ultra�lter of P(πi[D]).Sine X is ompat and T2, and Fi is an ultra�lter of P(πi[D]), it follows that
⋂

{πi[F ] : F ∈ F} is a singleton, say {xi}. It is straightforward to verify thatthe element x ∈ XR suh that for all i ∈ R, x(i) = xi, is in ⋂

{U c : U ∈ U}.Hene, U is not a over of XR and we have arrived at a ontradition.(iii)→(iv). This is straightforward.(iv)→(v). Fix a family {Xi : i ∈ I} of �nite subsets of R. Sine |[R]<ω| =
|R| in ZF, without loss of generality we may assume that |I| = |R|. Sine
|[0, 1]| = |R|, we may assume that Xi ⊂ [0, 1] for all i ∈ R. The onlusionnow follows from our hypothesis and the fat that the produt X =

∏

i∈R
Xiis a losed subspae of the ompat T2 spae [0, 1]R.(v)→(vi). This is straightforward.(vi)→(vii). Let L be a propositional language having a ontinuum-sizedset P of propositions, and let Σ be a onsistent subset of P (i.e. for every�nite subset Π of Σ there is a valuation whih satis�es Π). By TP(2R) theTyhono� produt 2P is ompat. For eah �nite subset X of Σ let CX =

{f ∈ 2P : f is a valuation satisfying X}. Clearly, C = {CX : X ∈ [Σ]<ω}is a family of non-empty losed subsets of 2P having the �nite intersetionproperty. Hene, there exists a valuation σ ∈
⋂

C. It follows that σ satis�es
Σ as required.(vii)→(i). Fix a Boolean algebra (B, +, ·, 1) of size ≤ |R| and let H bea �lter in B. Let L be a propositional language with propositional variables
pb, b ∈ B. Here, the propositional variable pb is intended to assert that b liesin the desired ultra�lter.Let P be the set of all propositions of the language L and let Σ be theset of propositions of the following types:(1) pb for all b ∈ H,(2) pb → pa for all a, b ∈ B suh that b ≤ a,(3) pa ∧ pb → pa·b for all a and b in B,(4) pb ∨ p1+b for all b ∈ B.
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Clearly, |P | = |2ℵ0 | and Σ is a onsistent set of propositions. By our hypoth-esis there exists a valuation σ ∈ 2P whih satis�es Σ. It is easy to see that
F = {b : σ(pb) = 1} is an ultra�lter of B inluding H as required.Remark 7. It is known (see [8℄) that in ZF:(A) BPI i� in every Boolean algebra every �lter an be extended to anultra�lter.However, with respet to Theorem 6, the analogy is not quite the same. Wedo not know whether the following impliation is provable in ZF:(B) Every Boolean algebra of size ≤ |R| has an ultra�lter implies inevery Boolean algebra of size ≤ |R| every �lter an be extended toan ultra�lter.We remark here that if we assume either of the statements:

• PR: Eah partition of R has size ≤ |R| (see [11℄),
• for every Boolean algebra B suh that |B| ≤ |R| and every ideal I of B,
|B/I| ≤ |R|,then the usual proof of (A) as given in [17, p. 101℄ an be used in order toestablish (B).3. Independene resultsTheorem 8. None of WOAC, DC and CAC(R) implies TP(2R).Proof. R. Solovay (see [4, p. 166℄) has shown that WOAC holds in Fe-ferman's model M2 in [8℄ (see also [3℄ and [9, Prob. 5.24℄). Sine WOACimplies DC (see [8℄) and learly CAC(R), it follows that DC and CAC(R)are also valid in M2. We shall prove that TP(2R) fails in M2.Let us give a brief desription of M2 (see, also [9, Prob. 5.24℄). Let Mbe a ountable transitive model of ZF + 2ℵ0 = ℵ1 and let P = Fn(ω × ω, 2)be the set of all �nite partial funtions p from ω×ω into 2 = {0, 1} partiallyordered by: p ≤ q i� p ⊇ q. Let G be a P-generi set over M and M[G] theorresponding generi extension of M. For every X ⊂ ω × ω the funtion

πX : (P,≤) → (P,≤),

(πXp)((n, m)) =

{

p(n, m) if (n, m) /∈ X,

1 − p(n, m) if (n, m) ∈ X,is an order automorphism of (P,≤), and G = {πX : X ∈ P(ω ×ω)} with theomposition operation ◦ is a group. Furthermore, E = {fix(E) : E ∈ [ω]<ω},where
fix(E) = {πX : (X ∈ P(ω × ω)) ∧ (X ∩ (E × ω) = ∅)},is a �lterbase. Let F be the normal �lter whih is generated by E . Then M2is the orresponding symmetri model of ZF.
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Clearly, in M[G], g =

⋃

G is a funtion from ω×ω → 2. For every n ∈ ωlet gn : ω → 2, gn(m) = g(n, m) and an = g−1
n (1). Clearly, both an and ac

nare in�nite subsets of ω.For a set a ⊂ ω we denote by [a] the set {x △ a : x ∈ [ω]<ω}.It is known (see [8℄) that for eah n ∈ ω, the sets an belong to M2.Hene, ac
n, [an], and [ac

n] belong to M2 too. It is also known (see [8℄ and [9,Prob. 5.24℄) that UF(ω) fails in M2 and we haveLemma 9 ([3℄). A = {{[X], [Xc]} : X ∈ P(ω)} has no hoie funtion.Sine ⋃

A is learly a partition of P(ω) and |P(ω)| = |R| we may onsidereah member of ⋃

A as a subset of R. Hene, we may view ⋃

A as a partitionof R. If TP(2R) were valid in M2, then by Theorem 5(ii), A would have toadmit a hoie funtion, ontraditing Lemma 9. Thus, TP(2R) fails in M2as laimed.Theorem 10.(i) AC(R) does not imply BPI(R).(ii) BPI(ω) does not imply BPI(R). In partiular , none of UF(ω), UF(R)implies BPI(R).Proof. We shall onstrut a symmetri model N in whih AC(R), heneUF(ω) and UF(R) are true but BPI(R) fails. This model N will be the nexthigher ardinal analogue of Feferman's model M2.Let M be a ountable transitive model of ZF + 2ℵ0 = ℵ1. Let P =
Fn(ω × ω1, 2, ω1) be the set of all ountable partial funtions p from ω × ω1into 2 partially ordered by reverse inlusion. Let G be a P-generi set over Mand M[G] the orresponding generi extension of M. As in the ase of M2any X ⊂ ω × ω1 yields an order automorphism πX : (P,≤) → (P,≤), (G, ◦),where G = {πX : X ∈ P(ω×ω1)}, is a group, and E = {fix(E) : E ∈ [ω]<ω},where

fix(E) = {πX : (X ∈ P(ω × ω1)) ∧ (X ∩ (E × ω1) = ∅)},is a �lterbase. Let N be the symmetri model of ZF produed by the normal�lter F whih is generated by E . As P is ountably losed (i.e., every ountablehain C of P has a lower bound) it is known (see [12, Theorem 6.14, p. 214℄)that no new subsets of ω are added to M. Thus, |R| = ℵ1 in N . Hene,AC(R), UF(ω), BPI(ω), and UF(R) are all true in N .Let g =
⋃

G and for every n ∈ ω, an = g−1
n (1), where gn : ω1 → 2,

gn(m) = g(n, m). Clearly an as well as ac
n are unountable subsets of ω1.For eah set a ⊂ ω1 we denote by [a] the set {x △ a : x ∈ [ω1]

≤ω}.
Claim 1. For eah n ∈ ω, the sets an, ac

n, [an], [ac
n], and {[an], [ac

n]}belong to N .
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Proof of Claim 1. It su�es to show that an ∈ N for every n ∈ ω. Let

an = {(m̌, p) : m ∈ ω1, p ∈ P and p((n, m)) = 1}, where m̌ = {(y̌, 1P) :
y ∈ m} (1P = ∅ is the maximal element of P) is the name of m given in [12,De�nition 2.10, p. 190℄. It an be readily veri�ed that any πX ∈ fix({n})�xes an as well as eah m̌ with m ∈ ω1. Thus, an is a hereditarily symmetriname for an and an ∈ N as required.
Claim 2. The family A = {{[X], [Xc]} : X ∈ P(ω1)} has no hoie set.Proof of Claim 2. Assume the ontrary and let c ∈ N be a hoie setof A. Let c,A be hereditarily symmetri names for c and A respetivelywith fix(E) ⊆ sym(c) ∩ sym(A), where for a name τ , sym(τ) = {π ∈ G :

π(τ) = τ}. Fix n ∈ Ec and assume that c ∩ {[an], [ac
n]} = [an]. Let g ∈ Gsatisfy

g  c is a hoie set of A and c ∩ {([an], 1P), ([ac
n], 1P)} = [an],where [an], [ac

n] are hereditarily symmetri names for [an] and [ac
n] respe-tively. Let X = ({n} × ω1) \ dom(g). Then πX ∈ fix(E), πX(c) = c,

πX({([an], 1P), ([ac
n], 1P)}) = {([an], 1P), ([ac

n], 1P)} and πX(g) = g. It followsthat
g  c is a hoie set of A and c ∩ {([an], 1P), ([ac

n], 1P)} = πX([an]).Sine g ∈ G, it follows that c∩{[an], [ac
n]} = val(πX([an])). It is not hardto verify that val(πX([an])) = [ac

n]. This is a ontradition �nishing the proofof Claim 2.We now prove that BPI(R) fails in N . Let H be the �lter of all oount-able subsets of ω1, i.e., H = [ω1]. We show that there is no ultra�lter F of
P(ω1) inluding H. Assume the ontrary and let F be suh an ultra�lter.We laim that for every X ∈ P(ω1) suh that X ∈ [ω1]

ω1 and Xc ∈ [ω1]
ω1 ,either [X] ⊂ F or [Xc] ⊂ F . Indeed, sine F is an ultra�lter it follows thateither X ∈ F or Xc ∈ F but not both. Assume that X ∈ F . Sine H ⊂ F itfollows that {X∩H : H ∈ H} ⊂ F . Therefore, X \A ∈ F for all A ∈ [ω1]
≤ω.Thus, X △A ∈ F for all A ∈ [ω1]

≤ω and onsequently [X] ⊂ F as required.Furthermore, no member of [Xc] belongs to F as otherwise we would easilyderive that ∅ ∈ F .Thus, the family A has a hoie set in N , whih is a ontradition.Hene, H annot be extended to an ultra�lter of P(ω1) and BPI(R) failsin N , �nishing the proof of the theorem.Aknowledgements. I would like to thank the anonymous referee forommuniating the result of Theorem 5(i) and its proof as well as the proof of(vi)→(i) in Theorem 6 via (vi)→(vii)→(i) whih simpli�ed my initial proof.I would also like to thank Professor P. Howard for many useful suggestionsand Dr. E. Tahtsis for some remarks onerning the �rst draft of this paper.
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