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Existene Theorems for the Dirihlet Ellipti InlusionInvolving Exponential-Growth-TypeMultivalued Right-Hand SidebyH��ng Thái NGUYÊÑ and Dariusz P�CZKAPresented by Czesªaw OLECH
Summary. We present two existene results for the Dirihlet ellipti inlusion with anupper semiontinuous multivalued right-hand side in exponential-type Orliz spaes in-volving a vetor Laplaian, subjet to Dirihlet boundary onditions on a domain Ω ⊂ R

2.The �rst result is obtained via the multivalued version of the Leray�Shauder prinipletogether with the Nakano�Dieudonné sequential weak ompatness riterion. The se-ond result is obtained by using the nonsmooth variational tehnique together with aformula for Clarke's subgradient for Lipshitz integral funtionals on �nonregular� Orlizspaes.1. Introdution. Let Ω ⊂ R
2 be an open bounded domain. We estab-lish two results (see Theorems 3.1 and 5.1) for the Dirihlet ellipti inlu-sion on Ω involving an upper semiontinuous multivalued right-hand sidewith exponential-growth-type onditions (in onnetion with Pokhozhaev�Trudinger's theorem on the exat embedding of the Sobolev spae H1

0 (Ω)into the Orliz spae LΦ0
(Ω) with Φ0(t) = exp(t2) − 1). The proof of Theo-rem 3.1 is based on the multivalued version of the Leray�Shauder priniple(see, e.g., [2, 3℄) and on the Nakano�Dieudonné sequential σ(Y, Z)-weakompatness and ompleteness riteria [14, 8, 31℄ together with [28, The-orem 2.1℄. Note that Theorem 2.1 of [28℄ an be regarded as a generalization2000 Mathematis Subjet Classi�ation: Primary 35R70, 49J52, 46E30; Seondary47H04, 47H30, 54C60, 49J53.Key words and phrases: Dirihlet ellipti inlusion, exponential-growth-type multival-ued right-hand side, weak solutions in Orliz spaes, topologial and non-smooth varia-tional tehniques, generalized gradient, subgradient in Clarke's sense, Lipshitz integralfuntional. [361℄
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of the strong-weak losedness theorem from the work of C. Oleh, A. Lasota,L. Cesari, C. Castaing and others (for referenes, see e.g., [21℄). The proof ofTheorem 5.1 relies on a generalization of the non-smooth variational teh-nique [11℄ (see also [19, 25℄) but via using a formula (see Theorem 4.3) forLipshitz integral funtionals de�ned on a �nonregular� Orliz spae LΦ(Ω).Observe that the formula of this type in [32, Theorem 2℄ annot be appliedto the above problem, sine it holds only for integral funtionals de�ned onregular Orliz spaes LΨ (i.e., with Ψ satisfying the ∆2-ondition).Many results for the Dirihlet ellipti inlusion were obtained via di�er-ent tehniques (see [2, 3, 6, 7, 9, 11, 18, 19, 21, 24, 25, 29, 30, 33℄). In fat,Theorem 3.1 gives a new su�ient solvability ondition for the appliationof [2, Theorem 2℄. Existene results in exponential-type Orliz spaes for theDirihlet inlusion involving a lower semiontinuous multivalued right-handside were obtained in [29℄. Theorem 5.1 is an LΦ-generalization of the shemeof [11℄ (see also [25℄) where the Dirihlet ellipti inlusion had a multivaluedright-hand side with polynomial-growth-type onditions and Clarke's for-mula in the Lebesgue spaes Lp(Ω) was used [12, 13℄ (f. [11℄).Other non-smooth variational tehniques (see [19, 25℄ and the referenestherein) an also be generalized (by using arguments analogous to thosein the proof of Theorem 5.1) and applied to the Dirihlet ellipti inlusionwith multivalued right-hand side satisfying exponential-growth-type ondi-tions. We shall present these generalizations in our subsequent paper whihuses the formula of Theorem 4.3. Observe that Theorem 4.3 an also begeneralized to funtionals de�ned on Banah latties, non-solid generalizedOrliz spaes, and Banah M -spaes (for the de�nitions, see respetively [5℄,[22, 23, 26℄, and [27℄).2. Some terminology and notation. Our terminology and notationfrom set-valued analysis follows [3, 4, 10, 18℄, from funtion spae theoryfollows [5, 26, 34℄, and from nonsmooth analysis follows [13, 24℄. Through-out this paper E denotes a separable Banah spae, and E∗

w∗ its dual spaeendowed with the weak topology w∗ = σ(E∗, E). Put BE(u, r) := {ω ∈ E :
‖ω − u‖E ≤ r} for r ∈ (0,∞) and let IntBE(u, r) denote the orrespondingopen ball. Given a Suslin loally onvex spae F (e.g. F = E or F = E∗

w∗)[10℄, we denote by B(F ) the σ-algebra of Borel subsets of F , and by Cp(F )(resp., CvCp(F )) the family of all nonempty ompat (resp., onvex om-pat) subsets of F . A multifuntion Γ : Ω → 2F is alled Sel-measurable if
Sel Γ 6= ∅ where Sel Γ denotes the set of all measurable seletions of Γ . Givena funtion α : Ω → E and a multifuntion H : Ω ×E → Cp(E∗

ω∗), de�ne themultivalued superposition
NH(α) := Sel H(·, α(·)).
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Let X, Y be metri spaes and let Γ : X → 2Y \ {∅} be a multifuntion.Then Γ is alled losed if its graph GrΓ = {[x, y] ∈ X × Y : y ∈ Γ (x)} is alosed subset of X ×Y ; loally ompat (resp., loally bounded) if eah point

x ∈ X has a neighborhood U suh that Γ (U) is ompat (resp., bounded);upper semiontinuous (or u.s..) at x ∈ X if, for any open set V ⊂ Ywith Γ (x) ⊆ V , one may �nd an open neighborhood U ⊆ X of x suhthat Γ (u) ⊆ V for all u ∈ U . Now let Z be a vetor metri spae. Then
Γ : X → 2Z is alled sequentially strong-weakly losed if GrΓ is sequentiallylosed in X × Zw where Zw is endowed with the weak topology σ(Z, Z∗).Further, L0(Ω, E) denotes the spae of all (equivalene lasses of) mea-surable funtions x : Ω → E. Given Z ⊂ L0(Ω, Rm), de�ne Z ′ := {η ∈
L0(Ω, Rm) : 〈η, ϕ〉∗ ∈ R (∀ϕ ∈ Z} where

〈η, ϕ〉∗ :=
\
Ω

(η(x), ϕ(x)) dx,and (·, ·) is the usual salar produt in the m-dimensional Eulidean spae
R

m equipped the norm | · |.Let Φ : R → [0,∞) be some N -funtion (see, e.g., [26, 34℄). The Orlizspae is de�ned by
LΦ = LΦ(Ω, R) =

{
u ∈ L0(Ω, R) :

\
Ω

Φ(α|u(x)|) dx < ∞ for some α > 0
}

equipped with the Luxemburg norm
‖u‖LΦ

= inf
{
λ > 0 :

\
Ω

Φ(|u(x)|/λ) dx ≤ 1
}
.De�ne

EΦ = EΦ(Ω, R) =
{
u ∈ L0(Ω, R) :

\
Ω

Φ(α|u(x)|) dx < ∞ for all α > 0
}
.It is known that EΦ = LΦ if and only if Φ satis�es the so-alled ∆2-ondition [26℄. Further (see, e.g., [26, 34℄), (EΦ)∗ ∼= (EΦ)′ = (LΦ)′ and

(EΦ)′ = LΦ∗ with equivalent norms where Φ∗ is the N -funtion dual to
Φ and any funtional u∗ ∈ (EΦ)∗ is identi�ed with some η ∈ L0(Ω, R) suhthat u∗(ϕ) = 〈η, ϕ〉∗ (∀ϕ ∈ EΦ). We denote by M [E] the Orliz�Bohnerspae of u ∈ L0(Ω, E) equipped with the norm ‖u‖M [E] := ‖‖u(·)‖E‖M < ∞where(2.1) M := LΦ(Ω, R) or M := EΦ(Ω, R).Let U be an open subset of a Banah spae E. If f : U → R is Lipshitzontinuous on U , then f has Clarke's generalized derivative f◦(x; ·):(2.2) f◦(x; v) = lim sup

y→x
λ↓0

f(y + λv) − f(y)

λ
(v ∈ E).



364 H��ng Thái Nguyêñ and Dariusz P¡zka
The set

∂Cf(x) = {ζ ∈ E∗ : 〈ζ, v〉 ≤ f◦(x; v) (∀v ∈ E)}is alled the generalized gradient (Clarke's subgradient) of f at x (then
∂Cf(x) ∈ CvCp(E∗

w∗) [13, 24℄).The symbol 1D denotes the harateristi funtion of a measurable set Dand X1 →֒ X2 means that the embedding X1 ⊂ X2 is ontinuous.3. Existene theorem via the multivalued version of the Leray�Shauder priniple. Let Ω be a bounded domain in R
2, and f : Ω×R

m →
2R

m be a multifuntion of two variables (x, u) ∈ Ω × R
m. We shall onsiderthe weak solvability of the Dirihlet problem(3.1) {

−∆mu(x) ∈ f(x, u(x)) for a.e. x ∈ Ω,

u|∂Ω = 0,where ∆m = (∆, . . . , ∆) is the m-vetor Laplaian.In what follows, we denote the norm in the Lebesgue spae L2 =
L2(Ω, Rm) by ‖ · ‖L2

. As usual, H1(Ω, Rm) is the Sobolev spae de�ned bythe norm ‖u‖H1 = ‖u‖L2
+ ‖∇mu‖L2

, while H1
0 = H1

0 (Ω, Rm) is the losureof C∞
0 (Ω, Rm) with respet to this norm. Denote by H−1 = H−1(Ω, Rm) thedual spae to H1

0 . It is known (see, e.g., [20, Setion 8.2, Theorem 5.8℄) thatthere exists an invertible ontinuous linear operator L : H1
0 → H−1 with(3.2) 〈Lu, u〉 ≥ α‖u‖2

H1
0for some α > 0 suh that Lu = u∗ if and only if 〈∇mu,∇mϕ〉∗ = u∗(ϕ) forall ϕ ∈ H1

0 (Ω, Rm). Reall that the weak solvability of (3.1) in H1
0 meansthe existene of u ∈ H1

0 and η ∈ Nf (u) suh that η ∈ H−1 and Lu = η.From now on, we denote by X, Y and Z the Orliz spaes(3.3) X = EΦε [R
m], Y = LΦ∗

ε
[Rm], Z = LΦε [R

m],

Φε(t) = exp(|t|2−ε) − 1, 0 < ε < 1.Theorem 3.1. Let Ω ⊂ R
2 and let f : Ω × R

m → CvCp(Rm) be amultivalued nonlinearity with the following properties:(E1) f(·, u) is Sel-measurable for eah u and f(x, ·) is loally bounded andlosed a.e.;(E2) Nf : X → 2Y maps any ball BX(0, r) into the set N = Nf (BX(0, r))whih is bounded and σ(Y, Z)-weakly equiontinuous, i.e.
lim

meas(D)→0
sup
y∈N

\
Ω

|(1D(x)y(x), z(x))| dx = 0 (z ∈ Z);

(E3) sup{(u, v) : v ∈ f(x, u)} ≤ a|u|2 + b(x) (∀u ∈ R
m) a.e. where 0 ≤

a < µ∆, b ∈ L1(Ω, [0,∞)) and µ∆ is the �rst Dirihlet eigenvalue ofthe Laplaian −∆m on Ω.
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Then the Dirihlet problem (3.1) has a weak solution u∗ ∈ H1

0 (Ω, Rm) ⊂
EΦ0

[Rm] where Φ0(t) = exp(t2) − 1.Proof. We shall apply [2, Theorem 2℄ (the proof of that theorem wasbased on the multivalued version of the Leray�Shauder priniple) togetherwith the sheme of [2, pp. 118�119℄. Then it remains to hek that KNf :
X → CvCp(X) is u.s.. and ompat where K := L−1. We divide this proofinto Steps 3.1�3.5. First, we reall some notions [14, 8, 31℄. A set M ⊂ Y isalled sequentially σ(Y, Z)-weakly pre-ompat (or onditionally sequentially
σ(Y, Z)-ompat) if eah sequene yj ∈ M has some σ(Y, Z)-weak Cauhysubsequene yj(k), that is, z ∈ Z ⇒ limk,l→∞〈yj(k) − yj(l), z〉∗ = 0.Step 3.1. Sine the embedding I : H1

0 →֒ X is ompat (by the Pokho-zhaev�Trudinger theorem [20, Theorem 7.15, Setion 7.8℄) and X∗ ∼= Ywith equivalent norms [5, 26℄, J : Y →֒ H−1 is ompat. Then the operator
K|Y = I ◦ K ◦ J : Y → X is ompat.Step 3.2. By (E2), A := Nf (BX(u0, r)) is bounded in Y for any r ∈
(0,∞). By [28, Proposition 2.1℄, (E1)�(E2) imply A 6= ∅. By Step 3.1, K|Y Ais pre-ompat in X. Hene, the multivalued operator KNf : X → 2X \ {∅}is ompat.Step 3.3. We laim that B := KNf (u) ∈ Cp(X) for any u ∈ X. Let
{wn}n∈N ⊂ B. Then wn = K(vn) for some vn ∈ Nf (u). By (E2), thesequene vn is σ(Y, Z)-weak equiontinuous, and so sequentially σ(Y, Z)-weakly pre-ompat, due to the Nakano�Dieudonné σ(Y, Z)-weak pre-om-patness theorem [14, 8, 31℄ for Y = Y ′′ with Z = Y ′. By the Nakano�Dieudonné σ(Y, Z)-weak ompleteness theorem [14, 8, 31℄, eah σ(Y, Z)-weakly Cauhy sequene is σ(Y, Z)-weakly onvergent in Y and so thereexist a subsequene nj and v0 ∈ Y suh that(3.4) vnj

⇀ v0 in σ(Y, Z).Sine Φ∗
ε satis�es the ∆2-ondition [34℄, we have Y ∗ ∼= Z with equivalentnorms [5, 26℄. By [28, Theorem 2.1℄ we dedue that the graph Gr Nf issequentially losed with respet to ‖ · ‖Y × σ(Y, Z). Hene, v0 ∈ Nf (u)follows.By Step 3.1, K∗

1 : X∗ → Y ∗, K1 := K|Y : Y → X, and so 〈K1vnj
, m∗〉 =

〈vnj
, K∗

1m∗〉 for m∗ ∈ X∗. Given m′ ∈ X ′ ∼= X∗ ∼= Y [5, 26℄, we dedue that
K∗

1m′ ∈ Y ∗ ∼= Z and
〈K1vnj

, m′〉∗ = 〈K1vnj
, m′〉 = 〈vnj

, K∗
1m′〉 = 〈vnj

, K∗
1m′〉∗.By (3.4), 〈vnj

, K∗
1m′〉∗ → 〈v0, K

∗
1m′〉∗ for all m′ ∈ X ′. Sine

〈v0, K
∗
1m′〉 = 〈K1v0, m

′〉 = 〈v0, K
∗
1m′〉∗ = 〈K1v0, m

′〉∗,
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we get 〈K1vnj

, m′〉∗ → 〈K1v0, m
′〉∗ for all m′ ∈ X ′ = Y , and so(3.5) wnj

= K1(vnj
) ⇀ K1(v0) =: w0 in σ(X, X ′) = σ(X, Y ).By Step 3.2, there exist a subsequene n(j) of nj and w̃0 ∈ X suh that

wn(j) → w̃0 in X-norm. Hene, wn(j) → w̃0 in measure. By (3.5) and theHahn�Saks�Vitali theorem [16℄, we get w̃0 =w0 =K1(v0). Therefore, w̃0∈B.Hene, B is ompat in X.Step 3.4. We laim that KNf is losed. Let [un, wn] ∈ Gr KNf with
un → u0, wn → w̃0. Then wn = K(vn) for some vn ∈ Nf (un). By (E2), thesequene Nf (un) is σ(Y, Z)-weakly equiontinuous, and then by the Nakano�Dieudonné σ(Y, Z)-weak pre-ompatness theorem, {vn}n∈N is sequentially
σ(Y, Z)-weakly pre-ompat. By the Nakano�Dieudonné σ(Y, Z)-weak om-pleteness theorem (Y = Y ′′, Z = Y ′), there exist a subsequene nj and
v0 ∈ Y suh that vnj

⇀ v0 in σ(Y, Z). By [28, Theorem 2.1℄ for the ase
Y ∗ = Z, the graph GrNf is sequentially losed with respet to ‖·‖Y ×σ(Y, Z).So, v0 ∈ Nf (u0). By the same argument suh as in Step 3.3, we deduethat wnj

= K(vnj
) ⇀ K(v0) =: w0 in σ(X, X ′) = σ(X, Y ). Observe that

wnj
→ w̃0 in measure. By the Hahn�Saks�Vitali theorem, w̃0 = w0 = K(v0).Hene, w̃0 ∈ KNf (u0), and so KNf is losed.Step 3.5. By Steps 3.1�3.4, KNf : X → CvCp(X) is losed and loallyompat. Then (see e.g. [3, Lemma 2.9℄) KNf is u.s..
4. The alulation of Clarke's subgradient for Lipshitz integralfuntionals on open balls of Orliz spaes. If g : Ω×E → R is Lipshitzontinuous with respet to the seond variable, then g◦(x, u0; v) denotes theClarke derivative at u0 in diretion v of the funtion u 7→ g(x, u). By [13,24℄ the funtion g◦(x, u; v) is ontinuous in v. For simpliity, let ∂Cg(x, u0)denote the generalized gradient of g(x, ·) at u0. The proof of Lemma 4.1 isstandard via the known measurable seletion theorems [18℄.Lemma 4.1. Let g : Ω × E → R be a funtion suh that g(·, u) is mea-surable for any u ∈ E and g(x, ·) is Lipshitz ontinuous an eah ball of Efor almost all x ∈ Ω. Then, given any measurable funtions u, v : Ω → E,the funtion x ∈ Ω 7→ g◦(x, u(x); v(x)) is measurable.We shall use the Lebourg theorem [13, Theorem 2.3.7℄: Let f : U → R beLipshitz ontinuous on an open subset U of E. Assume that U ontains theonvex interval [v, z]. Then there exists a point u ∈ (v, z) suh that

f(v) − f(z) ∈ 〈∂Cf(u), v − z〉.Let A be the σ-algebra of measurable subsets of Ω. A funtion f : Ω×F →
R =: R∪{±∞} is alled a normal integrand if f(x, ·) is lower semiontinuousfor almost all (a.a.) x ∈ Ω and there exists Ω0 with meas(Ω \ Ω0) = 0 suh
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that f is (A×B(F ),B(R))-measurable on Ω0×F . If F is a Lusin spae (e.g.
F = E or F = E∗

w∗) then by [10, Lemma 1.2.3℄ every Carathéodory funtionon Ω×F is a normal integrand. If f is a normal integrand on Ω×E then thedual onvex normal integrand f∗ : Ω × E∗
w∗ → R is de�ned by f∗(x, u∗) =

sup{〈u, u∗〉 − f(x, u) : u ∈ E}. Denote by (M [E])∗s the spae of singularlinear funtionals on M [E] (see [22, 23℄). Lemma 4.2 below is taken fromV. Levin [23, Corollary 1 of Theorem 6.7, p. 216℄ in the general ase, and fromA. Kozek [22℄ in the ase of E∗ separable (in this ase, M ′[E∗
w∗ ] = M ′[E∗]).Lemma 4.2. Let f be a normal onvex integrand on Ω × E and on-sider the funtional If , If (u) :=

T
Ω

f(x, u(x))dx, on M [E]. Suppose that
dom If := {u ∈ M [E] : If (u) < ∞} 6= ∅. Then for every u0 ∈ dom If thesubdi�erential ∂If (u0) onsists of all linear funtionals λ ∈ (M [E])∗ of theform λ(u) = 〈u, y〉+ λs(u) (u ∈ M [E]) where y ∈ M ′[E∗

ω∗ ] ∩ Sel ∂f(·, u0(·)),
λs ∈ (M [E])∗s , λs ∈ K(dom If , u0) := {l ∈ (M [E])∗ : l(z − u0) ≤ 0
(∀z ∈ dom If )}, and ∂f(x, u0) denotes the subdi�erential at u0 of the onvexfuntion u 7→ f(x, u).Given R ∈ (0,∞), we shall use the following onditions (Φ1) and (Φ2):(Φ1) There exists Ω0 ∈ A with meas(Ω \Ω0) = 0 and there exist bR, dR ∈

(0,∞) and aR ∈ L1(Ω, [0,∞)) suh that
u∗ ∈ ∂Cg(x, u) ⇒ Φ∗

(
‖u∗‖E∗

dR

)
≤ aR(x) + bRΦ

(
‖u‖E

R

)

for all x ∈ Ω0 and u ∈ E.(Φ2) There exists Ω0 ∈ A with meas(Ω \Ω0) = 0 and there exist bR, dR ∈

(0,∞), aR ∈ L1(Ω, [0,∞)), and h̃R : Ω × [0,∞) → [0,∞) suh that
|g(x, u) − g(x, v)| ≤ h̃R(x, |u| + |v|)|u − v|for all x ∈ Ω0 and for all u, v ∈ E, and

Φ∗

(
h̃(x, α)

dR

)
≤ aR(x) + bRΦ

(
α

R

)

for all x ∈ Ω0 and α ∈ [0,∞).Given a funtion g : Ω × E → R, de�ne the integral funtional(4.1) G(u) :=
\
Ω

g(x, u(x)) dx.

Theorem 4.3. Let g : Ω ×E → R be a Carathéodory funtion suh that
g(x, ·) is Lipshitz ontinuous on eah ball of E for almost all x ∈ Ω. Supposethat either ∂Cg satis�es (Φ1) or g satis�es (Φ2) for some R ∈ (0,∞) where
M = LΦ or M = EΦ.
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If G is �nite at least for one u ∈ BM [E](0, R/2), then G is Lipshitz on

BM [E](0, R/2) and(4.2) u ∈ IntBM [E](0, R/2) ⇒ ∂CG(u) ⊂ N∂Cg(u),i.e. γ ∈ ∂CG(u) ⇒ γ(·) = 〈ζ, ·〉∗ for some ζ ∈ LΦ∗ [E∗
w∗ ] with ζ(x) ∈

∂Cg(x, u(x)) a.e. If additionally the funtion g(x, ·) is regular (in Clarke'ssense) at u(x) for almost all x ∈ Ω, then the funtional G is regular at uand ∂CG(u) = N∂Cg(u).Proof. We shall mimi Clarke's proof of his Theorem 2.7.5/(B) in [13℄but new elements in our proof will be emphasized and given in detail. Wedivide the proof into Steps 4.1�4.7. Observe that (Φ2) implies (Φ1) . Lateron, we suppose (Φ1) .Step 4.1. Let (Φ∗)−1(x, ·) be the right pre-image of Φ∗(x, ·). De�ne
hR : Ω × [0,∞) → [0,∞),

hR(x, α) := dR(Φ∗)−1(x, aR(s) + bRΦ(x, α/R)).There exists Ω1 ⊂ Ω0 with meas(Ω \ Ω1) = 0 suh that hR(x, ·) is nonde-reasing for x ∈ Ω1. Hene,
sup{‖u∗‖E∗ : u∗ ∈ ∂Cg(x, u), ‖u‖E ≤ a(x)} ≤ hR(x, a(x)) a.e.for eah a ∈ BM+

(0, R) where
M+ := {u ∈ M : u(x) ≥ 0 a.e.}.Sine M ′ = LΦ∗(Ω, R) with equivalent norms, it is easy to hek (see, e.g.,[5℄) that the superposition operator NhR

: BM+
(0, R) → M ′, NhR

(a)(x) :=
hR(x, a(x)), is bounded.Step 4.2. We laim that the operator NhR

: IntBM+
(0, R) → M ′ has the

U -property , i.e., given any a ∈ IntBM+
(0, R), for eah sequene {ak} ⊂ M+with

r1 := ‖a‖M +

∞∑

k=1

‖ak − a‖M < Rthere exists d ∈ M ′ suh that
|NhR

(ak)(x)| ≤ d(x) a.e. on Ω for every k ∈ N.To prove this, �x a sequene {ak} ⊂ M+ suh that r1 < R. Then by theRiesz�Fisher property for the Banah lattie M (see, e.g., [5℄; this propertyfor the Orliz spae an be diretly dedued from the Lebesgue dominatedonvergene theorem), there exists Ω2 ⊂ Ω1 with meas(Ω \ Ω2) = 0 suhthat the series a∞(x) :=
∑∞

k=1 |ak(x)−a(x)| onverges for x ∈ Ω2; moreoverputting a∞(x) := 0 for x ∈ Ω \ Ω2, we get a∞ ∈ M+ with ‖a∞‖M ≤∑∞
k=1 ‖ak − a‖M < ∞. Note that ak(x) ≤ a∞(x) + a(x) a.e. and ‖ak‖M ≤
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r1 < R, and then by Step 4.1 we have
NhR

(ak)(x) = hR(x, ak(x)) ≤ hR(x, a∞(x)+a(x)) = NhR
(a∞+a)(x) =: d(x)a.e. Sine NhR

maps BM+
(0, R) into M ′, we have NhR

(a∞ +a) = d(·) ∈ M ′.Step 4.3. We laim that the funtional G is Lipshitz ontinuous on
BM [E](0, R/2). In fat, let y, z ∈ BM [E](0, R/2). By Lebourg's theorem [13,Theorem 2.3.7℄ for g(x, ·) on some open ball ontaining the onvex interval
[z(x), y(x)], we an �nd ξ0(x) ∈ E∗

ω∗ , u0(x) ∈ E and θ0(x) ∈ [0, 1] suh that
u0(x) = θ0(x)z(x) + (1 − θ0(x))y(x) and ξ0(x) ∈ ∂Cg(x, u0(x))with

g(x, z(x)) − g(x, y(x)) = 〈ξ0(x), z(x) − y(x)〉 a.e.We point out that the funtions ξ0, u0, θ0 are not , in general, measurable.Note that
‖u0(x)‖E ≤ ‖θ0(x)z(x)‖E + ‖(1 − θ0(x))y(x)‖E ≤ ‖z(x)‖E + ‖y(x)‖E a.e.Therefore,

‖ ‖z(·)‖E + ‖y(·)‖E‖M ≤ ‖‖z(·)‖E‖M + ‖ ‖y(·)‖E‖M

= ‖z‖M [E] + ‖y‖M [E] ≤ R.By Step 4.1, γ0 de�ned by γ0(x) := NhR
(x, ‖z(x)‖E + ‖y(x)‖E) satis�es

‖γ0‖M ′ ≤ C̃(R) where C̃(R) := sup{‖NhR
(α̃)‖M ′ : ‖α̃‖M ≤ R} < ∞.Observe that ‖ξ0(x)‖E∗ ≤ γ0(x) a.e. Sine

|g(x, z(x))− g(x, y(x))| ≤ ‖ξ0(x)‖E∗‖z(x) − y(x)‖E a.e.,by the generalized Hölder inequality [26, 34℄, we have
|G(z) − G(y)| ≤

\
Ω

|g(x, z(x))− g(x, y(x))| dx

≤
\
Ω

γ0(x)‖z(x) − y(x)‖E dx ≤ ‖γ0‖M ′‖‖z(·) − y(·)‖E‖M

≤ C̃(R)‖z − y‖M [E] for z, y ∈ BM [E](0, R/2).Sine u ∈ BM [E](0, R/2) with G(u) ∈ R, the laim of Step 4.3 follows.Step 4.4. We shall prove that G◦(x; v) ≤
T
Ω

g◦(x, u(x); v(x)) dx for u ∈
IntBM [E](0, R/2) and v ∈ M [E]. Observe that both sides of this inequalityare positively homogeneous in v, so it su�es to prove this inequality for vfrom BM [E](0, 1). From the de�nition (2.2) and (4.1) we have(4.3) G◦(u; v) = lim sup

y→u
λ↓0

\
Ω

g(x, y(x) + λv(x)) − g(x, y(x))

λ
dx.
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Choose arbitrary sequenes λk in R and yk in IntBM [E](0, R/2) suh that
λk ↓ 0, ‖yk − u‖M [E] → 0 and the limit(4.4) b := lim

k→∞

\
Ω

Fk(x) dxexists, where
Fk(x) :=

g(x, yk(x) + λkv(x)) − g(x, yk(x))

λk

.By [5℄ together with Riesz's theorem, we an hoose a subsequene kj and
D0 with meas(Ω \ D0) = 0 suh that ykj

(x) → u(x) as j → ∞ (∀x ∈ D0),
‖ykj

− u‖M [E] ≤ R/2j+2 and λkj
≤ R/2j+2.We laim that there exist β ∈ L1(Ω, R) and D1 ⊂ D0 with meas(Ω \D1)

= 0 suh that |Fkj
(x)| ≤ β(x) on D1 for all j ∈ N. To prove this, byLebourg's theorem for g(x, ·) on some open ball ontaining the onvex in-terval [yk(x), yk(x) + λkv(x)], there exist ξk(x) ∈ E∗

w∗ , uk(x) ∈ E and
αk(x) ∈ [0, 1] suh that

uk(x) = αk(x)[yk(x) + λkv(x)] + (1 − αk(x))yk(x),

g(x, yk(x) + λkv(x)) − g(x, yk(x)) = 〈ξk(x), λkv(x)〉,

ξk(x) ∈ ∂Cg(x, uk(x)) a.e.So Fk(x) = 〈ξk(x), v(x)〉. We point out that the funtions ξk, uk and αk arenot , in general, measurable. We have
‖ukj

(x)‖E

≤ ‖u(x)‖E + ‖αkj
(x)[ykj

(x) + λkj
v(x)] + (1 − αkj

(x))ykj
(x) − u(x)‖E

≤ ‖u(x)‖E + ‖ykj
(x) − u(x)‖E + λkj

‖v(x)‖E =: aj(x) a.e.Observe that for the sequene aj and a, a(x) := ‖u(x)‖E with ‖a‖M < R/2,we get
‖aj − a‖M = ‖ ‖ykj

(·) − u(·)‖E + |λkj
| ‖v(·)‖E‖M

≤ ‖‖ykj
(·) − u(·)‖E‖M + |λkj

| ‖ ‖v(·)‖E‖M

= ‖ykj
− u‖M [E] + |λkj

| ‖v‖M [E] ≤ R/2j+2 + R/2j+2‖v‖M [E],so that
r1 = ‖a‖M +

∞∑

j=1

‖aj − a‖M < R/2 + R/2 = R.By Steps 4.1�4.2, ‖ξkj
(x)‖E∗ ≤ h(x, aj(x)) = NR(aj)(x) a.e. and thereexists d ∈ M ′ suh that |NhR

(aj)(x)| ≤ d(x) a.e. Hene, as |Fkj
(x)| ≤

‖ξkj
(x)‖E∗‖v(x)‖E, we dedue the existene of D1 ⊂ D0 with meas(Ω \D1)

= 0 suh that |Fkj
(x)| ≤ d(x)‖v(x)‖E =: β(x) (∀x∈D1). Sine ‖v(·)‖E ∈M ,we obtain β ∈ L1(Ω, R).
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Using the above laim together with the measurability of the funtion

x 7→ g◦(x, u(x); v(x)) (see Lemma 4.1), we an apply the Fatou lemma to thefuntions x 7→ β(x) − Fkj
(x) ∈ [0,∞) and dedue that

b = lim sup
j→∞

\
Ω

Fkj
(x) dx ≤

\
Ω

lim sup
j→∞

Fkj
(x) dx =

\
D1

lim sup
j→∞

Fkj
(x) dx

≤
\

D1

lim sup
ϑ→u(x)

λ↓0

g(x, ϑ + λv(s)) − g(x, ϑ)

λ
dx =

\
Ω

g◦(x, u(x); v(x)) dx.

Therefore, by (4.3) and (4.4), we get
G◦(u; v) = sup

{
b = lim

k→∞

\
Ω

Fk(x) dx : ‖yk − u‖M [E] → 0, λk ↓ 0
}

≤
\
Ω

g◦(x, u(x); v(x)) dx.Step 4.5. We laim that the funtion x ∈ Ω 7→ g◦(x, u(x); v(x)) belongsto L1(Ω, R) for any u ∈ IntBM [E](0, R/2) and v ∈ M [E]. Again, it su�esto prove this for v ∈ BM [E](0, R/4). Sine M is a Banah lattie, by [5℄ thereexists α ∈ M suh that ‖α‖M ≤ R/4 with α(x) > 0 for x ∈ suppM = Ω.Then, by Lebourg's theorem, Step 4.1 implies that
|g◦(x, u(x); v(x))|

≤ sup

{
|c| : c =

g(x, u + λv(x)) − g(x, u)

λ
, λ ∈ (0, 1], ‖u − u(x)‖E ≤ α(x)

}

≤ sup{|〈v(x), u∗〉| : u∗ ∈ ∂Cg(x, u), u ∈ [u, u + λv(x)], λ ∈ (0, 1],

‖u − u(x)‖E ≤ α(x)}

≤ sup{|〈v(x), u∗〉| : u∗ ∈ ∂Cg(x, u), ‖u‖E ≤ p(x)}

≤ ‖v(x)‖EhR(x, p(x)) a.e.where p(x) := ‖u(x)‖E + α(x) + ‖v(x)‖E satis�es p ∈ M+ with
‖p‖M ≤ r2 := ‖‖u(·)‖E‖M + ‖α‖M + ‖‖v(·)‖E‖M < R/2 + R/4 + R/4 = R.Hene, by Step 4.1, the above laim follows.Step 4.6. Fix u ∈ IntBM [E](0, R/2). We mimi Clarke's argument in theproof of [13, Theorem 2.7.2℄. We know (see Lemma 4.1) that the funtion
(x, ṽ) ∈ Ω × E 7→ g◦(x, u(x); ṽ) is a Carathéodory onvex integrand, and
v ∈ M [E] 7→ G̃(v) :=

T
Ω

g◦(x, u(x); v(x)) dx is a onvex funtional on M [E]suh that G̃(0) = 0. If γ ∈ ∂CG(u), then by Step 4.4 for every v ∈ M [E] wehave
γ(v) ≤ G◦(u; v) ≤

\
Ω

g◦(x, u(x); v(x)) dx = G̃(v) − G̃(0),
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and so γ is an element of the subdi�erential ∂G̃(0). By Lemma 4.2 togetherwith dom I

G̃
= M [E] (see Step 4.5), we an dedue that ∂G̃(0) onsistsof linear funtionals γ ∈ (M [E])∗ of the form 〈γ, v〉 =

T
Ω
〈ζ(x), v(x)〉 dx

(v ∈ M [E]) with ζ ∈ M ′[E∗
w∗ ] and ζ(x) ∈ ∂Cg(x, u(x)) a.e. on Ω. Hene, theinlusion (4.2) follows.Step 4.7. Fix u ∈ IntBM [E](0, R/2). Suppose that g(x, ·) is regular (inClarke's sense [13, Setion 2.3℄) at u(x) for a.a. x ∈ Ω. Fix v ∈ M [E]. By ananalogous argument to the one in Step 4.4, we an apply the Fatou lemmato the funtions x 7→ β(x) + Fkj

(x) ∈ [0,∞) and dedue that
lim inf

λ↓0

G(u + λv) − G(u)

λ
≥
\
Ω

lim inf
λ↓0

g(x, u(x) + λv(x)) − g(x, u(x))

λ
dx

=
\
Ω

g′(x, u(x); v(x)) dx =
\
Ω

g◦(x, u(x); v(x)) dx ≥ G◦(u; v).

Now by Clarke's argument in the proof of [13, Theorem 2.7.3, p. 87℄ weonlude that G is regular at u and N∂Cg(u) ⊂ ∂CG(u).
5. Existene theorem via the nonsmooth variational tehnique.By the Poinaré inequality [20℄, ‖u‖∗

H1
0

= ‖∇u‖L2
de�nes an equivalent normin H1

0 (Ω, Rm), and so by the Pokhozhaev�Trudinger embedding theorem [20,Theorem 7.15, Setion 7.8℄ there exists c(ε) ∈ (0,∞) suh that(5.1) ‖u‖LΦε [Rm] ≤ c(ε)‖∇u‖L2
(∀u ∈ H1

0 (Ω, Rm)).Theorem 5.1. Let Ω ⊂ R
2 and let g : Ω × R

m → R be a Carathéodoryfuntion suh that g(x, ·) is Lipshitz ontinuous on eah ball of R
m foralmost all x ∈ Ω. Assume the Hammerstein ondition:(E4) g(x, u) ≤ 1

2γ|u|2 + δ(x) (∀u ∈ R
m) a.e. where 0 < γ < µ∆, δ ∈

L1(Ω, [0,∞)), and µ∆ is the �rst Dirihlet eigenvalue of the Lapla-ian −∆m on Ω.Moreover , let ε ∈ (0,∞) and either (Φ1) or (Φ2) be valid for Φ(t) = Φε(t) =
exp(|t|2−ε) − 1 with R := 2c(ε)̺∗ where ̺∗ ∈ (0,∞) satis�es(E5) ̺2

∗ >
2µ∆

µ∆ − γ

\
Ω

(δ(x) − g(x, 0)) dx ∈ [0,∞).

Then the problem (3.1) with f(x, u) = ∂Cg(x, u) ⊂ R
m has at least one weaksolution u∗ ∈ H1

0 (Ω, Rm) ⊂ EΦ0
[Rm] where Φ0(t) = exp(t2) − 1.Proof. We divide this proof into Steps 5.1�5.5.
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Step 5.1. De�ne the energy funtional(5.2) J(u) :=

1

2

\
Ω

|∇u|2 dx −
\
Ω

g(x, u(x)) dx (u ∈ H1
0 (Ω, Rm)).We laim that J : BH1

0
(0, ̺∗) → R is sequentially weakly l.s.. Fix u with

‖u‖∗
H1

0

≤ ̺∗. By (5.1), ‖u‖LΦε [Rm] ≤ c(ε)̺∗ = R/2. By Theorem 4.3 for
Φ = Φε under (Φ1) or (Φ2) for R = 2c(ε)̺∗, G : BX(0, R/2) → R is Lipshitzontinuous. By the Alaoglu�Bourbaki theorem for the re�exive separablespae H1

0 (Ω, Rm), BH1
0
(0, ̺∗) is sequentially weakly ompat. Fix un ⇀ u0in BH1

0
(0, ̺∗). Sine H1

0 →֒ X ompatly by the Pokhozhaev�Trudinger the-orem [20, Theorem 7.15, Setion 7.8℄, the sequene un is pre-ompat in X.Hene, there exists a subsequene nj suh that unj
→ u0 in X-norm. It isknown (see, e.g., [17℄) that lim infj→∞

T
Ω
|∇unj

|2 dx ≥
T
Ω
|∇u0|2 dx. Hene,

lim infn→∞ J(un) ≥ J(u0), i.e. J is sequentially weakly l.s.. on BH1
0
(0, ̺∗).Step 5.2. We laim that J(0) < J(u) for u ∈ ∂BH1

0
(0, ̺∗). Fix u with

‖u‖∗
H1

0

= ̺∗. Then, by (E4) and (E5), we get
J(u) ≥

1

2

\
Ω

|∇u|2 dx −
1

2
γ
\
Ω

|u(x)|2 dx −
\
Ω

δ(x) dx

≥
1

2

(
1 −

γ

µ∆

) \
Ω

|∇u|2 dx −
\
Ω

δ(x) dx

=
1

2

(µ∆ − γ)̺2
∗

µ∆

−
\
Ω

δ(x) dx > J(0).Step 5.3. From Step 5.1, by [17, Theorem 1.1℄, J attains its minimumon BH1
0
(0, ̺∗) at some u∗ ∈ BH1

0
(0, ̺∗). By Step 5.2, u∗ ∈ IntBH1

0
(0, ̺∗),and by (5.1), u∗ ∈ IntBX(0, R/2). By [13, Proposition 2.4.11℄, we infer that

0 ∈ ∂CJ(u∗) ⊂ H−1
0 (Ω, Rm) = (H1

0 (Ω, Rm))∗.Step 5.4. By (4.1) and (5.2), we have J(u) = J1(u) − J2(u) where
J1(u) := 1

2

T
Ω
|∇u|2 dx, J2(u) := G|H1

0
(u)=(G◦P )(u), and P : IntBH1

0
(0, ̺∗)

→֒ X. The funtional J1 is ontinuously Fréhet di�erentiable, i.e. J1 ∈ C1and J ′
1(u)(·) = 〈Lu, ·〉 (see [17℄). By [15, Lemma 2.1℄, the set C∞

0 (Ω, Rm) ⊂
H1

0 (Ω, Rm) is dense in X. By [12℄, [13, Proof of Part 3 of Theorem 2.3.10,p. 46℄, [13, Corollary in p. 47℄ or [11, Theorem 2.2℄ for u∗ ∈ IntBH1
0
(0, ̺∗)(see Step 5.3), we have ∂C(G ◦ P )(u∗) = ∂CG(u∗). Hene, by [13, Propo-sition 2.3.3, Proposition 2.3.1, Corollary 1, Proposition 2.2.4℄ together withTheorem 4.3 for u∗ ∈ IntBX(0, R/2) (see Step 5.3), we get

∂CJ(u∗) = ∂CJ1(u∗) + ∂C(−J2(u∗)) = J ′
1(u∗) − ∂CJ2(u∗)

= J ′
1(u∗) − ∂CG(u∗) ⊂ J ′

1(u∗) − N∂Cg(u∗) = Lu∗ − N∂Cg(u∗).



374 H��ng Thái Nguyêñ and Dariusz P¡zka
Step 5.5. By Steps 5.3�5.4, 0 ∈ Lu∗ −N∂Cg(u∗), whih is equivalent to

Lu∗ ∈ N∂Cg(u∗). By the assumption f(x, ·) = ∂Cg(x, ·), u∗ is a weak solutionof (3.1).Remark 5.2. By the proof of Theorem 5.1, the statement of Theorem 5.1remains valid if we assume instead of (E4) any veri�able ondition thatimplies the oeriveness of J (i.e. J(u) → ∞ as ‖u‖H1
0
→ ∞). Many suhonditions an be found in [1℄. Further, Theorems 3.1 and 5.1 have analogsfor the Dirihlet inlusion involving a general uniformly ellipti operator.Aknowledgements. The authors are grateful for the onstrutive re-mark of the reviewer whih in�uened the shape of the revised version.
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