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Two Inequalities for the First Moments of aMartingale, its Square Funtionand its Maximal FuntionbyAdam OS�KOWSKIPresented by Stanisªaw KWAPIE�
Summary. Given a Hilbert spae valued martingale (Mn), let (M∗

n
) and (Sn(M)) denoteits maximal funtion and square funtion, respetively. We prove that

E|Mn| ≤ 2ESn(M), n = 0, 1, 2, . . . ,

EM∗

n
≤ E|Mn| + 2ESn(M), n = 0, 1, 2, . . . .The �rst inequality is sharp, and it is strit in all nontrivial ases.1. Introdution. In [1℄ Burkholder proposed a method for showing mar-tingale maximal inequalities and in [2℄ he introdued a new approah to studythe behaviour of the maximal funtion and square funtion simultaneously.In the present paper we use this method to obtain a sharp inequality betweenthe �rst moments of a martingale and its square funtion, as well as someother inequalities involving the maximal funtion.Let us �x the notation. In the following, (Ω,F , (Fn), P) will be a proba-bility spae equipped with some disrete �ltration. Let H be a Hilbert spaewith norm | · | and salar produt (· , ·). Let (Mn) be an (Fn)-martingaletaking values in some separable subspae of H. The di�erene sequene (dn)of the martingale (Mn) is de�ned by d0 = M0 a.s., dn = Mn − Mn−1 a.s.,

n = 1, 2, . . . . Let (Sn(M)) be the square funtion and (M∗
n) the maximal

2000 Mathematis Subjet Classi�ation: Primary 60G42; Seondary 60G46.Key words and phrases: martingale, square funtion, maximal funtion, moment in-equality.Researh supported by KBN Grant 2 PO3A 027 22, MEN Grant 1 PO3A 012 29.[441℄



442 A. Os�kowski
funtion of the martingale (Mn), whih are proesses de�ned by

Sn(M) =
[ n∑

k=0

|dk|2
]1/2

, M∗
n = sup

0≤k≤n
|Mk|, n = 0, 1, 2, . . . .Inequalities between moments of a martingale, its square funtion andmaximal funtion have been deeply studied in the literature. Suh inequali-ties are of fundamental importane to martingale theory and harmoni anal-ysis. We just mention two basi results:(Doob's inequality) For 1 < p < ∞,

E|M∗
n|p ≤

(
p

p − 1

)p

E|Mn|p, n = 0, 1, 2, . . . ,and the onstant (p/(p − 1))p is best possible.(Burkholder�Davis�Gundy inequalities) For 1 < p < ∞,
cpE(Sn(M))p ≤ E|Mn|p ≤ CpE(Sn(M))p, n = 0, 1, 2, . . . ,where Cp = c−1

p = (p∗ − 1)p, p∗ = max{p, p/(p − 1)}. The onstant Cp isbest possible for p ≥ 2 and the onstant cp is best possible for p ≤ 2. In theremaining ases the best onstants are not known.In this paper we ontinue the study on the omparison of moments of amartingale, its square funtion and its maximal funtion. We will be parti-ularly interested in �rst moments. The inequality
cEM∗

n ≤ ESn(M) ≤ CEM∗
nfor general martingales was �rst proved by Davis [3℄. Later, Garsia [4℄, [5℄proved that the left inequality holds with c =

√
10 and the right one with

C = 2+
√

5. Both these onstants are not optimal. Quite reently, Burkholder[2℄ proved that the best onstant in the right inequality is √3. We will exploithis methods to investigate some other inequalities of this type.Preisely, we will prove the following two results.Theorem 1. The following inequality holds:(1.1) E|Mn| ≤ 2ESn(M), n = 0, 1, 2, . . .and the onstant 2 is best possible. Moreover , the inequality is strit in allnontrivial ases.Theorem 2. We have(1.2) EM∗
n ≤ E|Mn| + 2ESn(M), n = 0, 1, 2, . . . .As an immediate onsequene of the theorems above we obtain an in-equality between the �rst moments of the maximal funtion and the squarefuntion of a martingale, however, with a worse onstant.
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Corollary 1. We have

EM∗
n ≤ 4ESn(M), n = 0, 1, 2, . . . .The paper is organized as follows. In the next setion we present the maintools for proving martingale inequalities, whih enable us to redue the proofof a ertain inequality to �nding a speial funtion with some onvex-typeproperties. Setion 3 is devoted to the proof of Theorem 1 and in the lastsetion we deal with the proof of Theorem 2.2. Burkholder's method. In this setion we state two theorems ofBurkholder. They hold for any Banah spae valued martingales (Mn).The �rst of them (a slight modi�ation of Theorem 2.1 of [2℄) providesthe key tool to prove maximal inequalities.Theorem 3. Let B be a Banah spae and suppose U , V are funtionsfrom B × [0,∞)2 to R satisfying
U(x, y, z) ≤ V (x, y, z),(2.1)
U(x, t, z) = U(x, t, |x| ∨ z),(2.2)and the further ondition that if |x| ≤ z and d is any mean-zero F-measurablerandom variable, then(2.3) EU(x + d,
√

y2 + |d|2, |x + d| ∨ z) ≥ U(x, y, z).Then for any nonnegative integer n and any martingale (Mn), we have(2.4) EV (Mn, Sn(M), M∗
n) ≥ U(M0, S0(M), |M0|).Proof. We have, by (2.1),

EV (Mn, Sn(M), M∗
n) ≥ EU(Mn, Sn(M), M∗

n)

= E[EU(Mn, Sn(M), M∗
n) | Fn−1].Therefore, it su�es to prove that the proess (U(Mn, Sn(M), M∗

n)) is asubmartingale. Applying (2.3) onditionally with respet to Fn−1, we obtainthe inequality
E[U(Mn, Sn(M), M∗

n) | Fn−1]

= E[U(Mn−1 + dn,
√

S2
n−1

(M) + d2
n, |Mn−1 + dn| ∨ M∗

n−1) | Fn−1]

≥ U(Mn−1, Sn−1(M), M∗
n−1)and the inequality (2.4) follows immediately.The seond theorem (Lemma 4.1 in [2℄) enables us to obtain lower boundsfor the onstants in martingale inequalities.
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Theorem 4. Let B be a Banah spae. For a funtion V :B×[0,∞)2→Rde�ne U : B × [0,∞)2 → [−∞,∞) by(2.5) U(x, y, z) = inf{EV (Mn,

√
y2 − |x|2 + S2

n(M), M∗
n ∨ z)},where the in�mum is taken over all martingales (Mn) starting from x andover all nonnegative integers n. Then the pair (U, V ) satis�es (2.1)�(2.3).We refer the reader to [2℄ for the proof of this result. Let us note that theabove theorems may as well be used to prove inequalities whih only involvea martingale and its square funtion, by omitting the variable z (and theondition (2.2)).3. The proof of Theorem 1. First we prove some auxiliary inequali-ties, whih we will need later.Lemma 1. Let x, d ∈ H and y ∈ R+, y < |x|. Then(3.1) √

y2 + |d|2 − y ≥
√
|x|2 + |d|2 − |x|.If , moreover , √

y2 + |d|2 ≥ |x + d|, then(3.2) √
2y2 + 2|d|2 − |x + d|2 − 2y ≥

√
2|x|2 + 2|d|2 − |x + d|2 − 2|x|.Proof. The inequality (3.1) is equivalent to

|x| − y ≥
√

|x|2 + |d|2 −
√

y2 + |d|2 =
|x|2 − y2

√
|x|2 + |d|2 +

√
y2 + |d|2

,or √
|x|2 + |d|2 +

√
y2 + |d|2 ≥ |x| + y,whih is obvious.Now we turn to (3.2). We may write it as follows:

2|x| − 2y ≥
√

2|x|2 + 2|d|2 − |x + d|2 −
√

2y2 + 2|d|2 − |x + d|2

=
2|x|2 − 2y2

√
2|x|2 + 2|d|2 − |x + d|2 +

√
2y2 + 2|d|2 − |x + d|2

,whih an be written as
√

2|x|2 + 2|d|2 − |x + d|2 +
√

2y2 + 2|d|2 − |x + d|2 ≥ |x| + y.The left hand side above is equal to
|x − d| +

√
|x + d|2 + 2(y2 + |d|2 − |x + d|2)and, due to the assumption √

y2 + |d|2 ≥ |x+d|, it an be bound from belowby
|x − d| + |x + d| ≥ 2|x| > |x| + y.
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We are now ready to use Theorem 3 of Burkholder. Let us introduefuntions Û , V̂ : H× [0,∞)2 → R de�ned by

Û(x, y, z) = u(x, y) =

{ √
2y2 − |x|2 if y ≥ |x|,

2y − |x| if y < |x|,(3.3)
V̂ (x, y, z) = v(x, y) = 2y − |x|.(3.4)Then we haveLemma 2. The funtions Û , V̂ satisfy (2.1)�(2.3).Proof. The ondition (2.2) holds trivially. Let us deal with the majorizingondition (2.1). Note that for any x ∈ H and y ∈ [0,∞) satisfying |x| ≤ √

2 y,we have(3.5) √
2y2 − |x|2 ≤ 2y − |x|.Indeed, squaring both sides, we obtain 2(y−|x|)2 ≥ 0. Therefore (2.1) holdsif y ≥ |x|. In the opposite ase both sides of (2.1) are equal.Now we turn to (2.3). Suppose �rst that y ≥ |x|. If y = 0, then x = 0and the inequality is trivial: it redues to the inequality E|d| ≥ 0. Supposethen that y > 0. We shall show that for any d ∈ H,(3.6) u(x + d,

√
y2 + d2) ≥ u(x, y) +

(x, d)√
2y2 − |x|2

.This will immediately yield (2.3) (by taking expetations of both sides). Wehave
2(

√
y2 + |d|2)2 − |x+ d|2 ≥ 2|x|2 + 2|d|2 − |x|2 − 2(x, d)− |d|2 = |x− d|2 ≥ 0and, due to (3.3) and (3.5),

u(x + d,
√

y2 + |d|2) ≥
√

2(y2 + |d|2) − |x + d|2.Hene it su�es to hek the inequality(3.7) √
2(y2 + |d|2) − |x + d|2 ≥

√
2y2 − |x|2 − (x, d)√

2y2 − |x|2
,or √

2y2 − |x|2
√

2y2 − |x|2 − 2(x, d) + |d|2 ≥ 2y2 − |x|2 − (x, d).But we have
(2y2 − |x|2)(2y2 − |x|2 − 2(x, d) + |d|2)

≥ (2y2 − |x|2)2 − 2(2y2 − |x|2)(x, d) + |x|2|d|2 ≥ (2y2 − |x|2 − (x, d))2and the inequality follows.Now suppose that y < |x| and let d ∈ H. Again, the inequality (2.3) willfollow immediately by taking expetations, if we show that
u(x + d,

√
y2 + |d|2) ≥ u(x, y) + (x/|x|, d).
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If √

y2 + d2 < |x + d|, then we must show that
2
√

y2 + d2 − |x + d| ≥ 2y − |x| − (x/|x|, d),or, equivalently,(3.8) 2
√

y2 + |d|2 − 2y ≥ |x + d| − |x| − (x/|x|, d).By inequality (3.1), we may bound from below the left hand side of the aboveinequality by
2
√

|x|2 + |d|2 − 2|x|and, therefore, it su�es to prove that(3.9) 2
√

|x|2 + |d|2 − |x + d| ≥ |x| − (x/|x|, d).Now we will use the inequalities we have just proven. Setting y = |x| in (3.7),we get(3.10) √
2(|x|2 + |d|2) − |x + d|2 ≥ |x| − (x/|x|, d)and using (3.5) with x := x + d, y :=

√
|x|2 + |d|2, we obtain

2
√

|x|2 + |d|2 − |x + d| ≥
√

2(|x|2 + |d|2) − |x + d|2,whih establishes (3.9).Finally, let us onsider the ase √
y2 + |d|2 ≥ |x+d|. We must prove that

√
2(y2 + |d|2) − |x + d|2 ≥ 2y − |x| − (x/|x|, d),or √

2(y2 + |d|2) − |x + d|2 − 2y ≥ −|x| − (x/|x|, d).By inequality (3.2), the left hand side is not smaller than
√

2(|x|2 + |d|2) − |x + d|2 − 2|x|,whih, with the aid of (3.10), yields the desired inequality. The proof isomplete.Proof of Theorem 1. It su�es to ombine Lemma 2 with Theorem 3;indeed, for any �xed martingale (Mn) and any nonnegative integer n,
2ESn(M)−E|Mn| = EV̂ (Mn, Sn(M), 0)(3.11)

≥ Û(M0, S0(M), |M0|) = Û(M0, |M0|, |M0|) ≥ 0,whih ompletes the proof of the inequality (1.1).Now we will show that the inequality in Theorem 1 is sharp, even if
H = R. Suppose that the inequality holds with a onstant C ∈ [1,∞) andlet V (x, y, z) = v(x, y) = Cy−|x|. Let us now apply Theorem 4. The funtion
U de�ned by (2.5) does not depend on z (beause V does not), therefore thepair (u, v), where u(x, y) = U(x, y, z), satis�es (2.1), (2.3) and u(0, 0) > −∞.Let n be a �xed nonnegative integer and set x = n, y =

√
n. Applying the
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ondition (2.3) to a mean-zero random variable taking values s < 0 and 1,we obtain

s

s − 1
u(n + 1,

√
n + 1) +

1

1 − s
u(n + s,

√
n + s2) ≥ u(n,

√
n),whih, by (2.1), implies

s

s − 1
u(n + 1,

√
n + 1) +

1

1 − s
v(n + s,

√
n + s2) ≥ u(n,

√
n).Now we let s → −∞ to get

u(n + 1,
√

n + 1) + C − 1 ≥ u(n,
√

n),whih, by indution, implies that for any nonnegative integer n,
u(n,

√
n) ≥ u(0, 0) − n(C − 1).Therefore

u(0, 0) − n(C − 1) ≤ v(n,
√

n) = C
√

n − n,or, equivalently,
C ≥ 2n + u(0, 0)

n +
√

n
.Now letting n → ∞ yields the result.Finally, we will prove that the inequality is strit in all nontrivial ases.Let n be a �xed nonnegative integer and (Mn) be a martingale suh that

P(Mn 6= 0) > 0. Let us introdue the stopping time
τ = inf{k : Mk 6= 0}.If P(τ = 0) > 0, then the last inequality in (3.11) is strit and we aredone. If P(τ > 0) = 1, then applying the optional sampling theorem to thesubmartingale Û(Mk, Sk(M), M∗

k ), k = 0, 1, 2, . . . , we have
EU(Mn, Sn(M), M∗

n) ≥ EU(Mτ∧n, Sτ∧n(M), M∗
τ∧n).Sine

U(Mτ∧n, Sτ∧n(M), M∗
τ∧n) = U(Mτ∧n, |Mτ∧n|, M∗

τ∧n) > 0on the set {τ ≤ n} (whih has positive probability), the stritness follows.The proof of Theorem 1 is omplete.4. The proof of Theorem 2. We start from a simpleLemma 3. For x, d ∈ H and z ∈ R+ we have(4.1) |x + d| ∨ z − |x + d| ≤
∣∣∣∣−

x

|x| (|x| ∨ z − |x|) + d

∣∣∣∣.
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Proof. We may and will assume that z ≥ |x|. For |x + d| ≥ z there isnothing to prove. If |x+d| < z, then the left hand side is equal to z−|x+d|and, squaring both sides, we obtain the equivalent inequality to prove:

z2 − 2z|x + d| + |x + d|2 ≤ |x + d|2 − 2

(
x + d, x · z

|x|

)
+ z2,or the obvious inequality

(
x + d,

x

|x|

)
≤ |x + d|.As in the proof of Theorem 1, we will use Theorem 3 of Burkholder; letus introdue funtions U1, V1 : H× [0,∞)2 → R de�ned by

U1(x, y, z) =

{√
2y2 − (|x| ∨ z − |x|)2 if y > |x| ∨ z − |x|,

2y − (|x| ∨ z − |x|) if y ≤ |x| ∨ z − |x|,
V1(x, y, z) = 2y − (|x| ∨ z − |x|).Note that

U1(x, y, z) = u

(
± x

|x| (|x| ∨ z − |x|), y
)

,(4.2)
V1(x, y, z) = v

(
± x

|x| (|x| ∨ z − |x|), y
)

,(4.3)where u, v are de�ned by (3.3), (3.4).We must hek the assumptions of Theorem 3.Lemma 4. The funtions U1, V1 satisfy (2.1)�(2.3).Proof. The formulae (4.2), (4.3) will enable us to redue the laim toLemma 2. The ondition (2.2) obviously holds; the inequality (2.1) followsimmediately from (4.2), (4.3) and the ondition u ≤ v proved in Lemma 2.Hene it su�es to show (2.3).With �xed y, the funtion x 7→ u(x, y) dereases as |x| inreases; thereforethe formula (4.2) and the inequality (4.1) imply
U1(x + d,

√
y2 + d2, |x + d| ∨ z) − U1(x, y, |x| ∨ z)

= u

(
x

|x|(|x + d| ∨ z − |x + d|),
√

y2 + |d|2
)
− u

(
− x

|x|(|x| ∨ z − |x|), y
)

≥ u

(
− x

|x|(|x| ∨ z − |x|) + d,
√

y2 + d2)

)
− u

(
− x

|x|(|x| ∨ z − |x|), y
)

.Now if d is a entered H-valued random variable, then the inequality (2.3)for Û (de�ned by (3.3)) and for the point
(
− x

|x| (|x| ∨ z − |x|), y, |x| ∨ z

)
∈ H × [0,∞)2
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states that the expetation of the right hand side of the inequality aboveis nonnegative. Therefore the left hand side also has nonnegative expetedvalue, whih is the laim.Proof of Theorem 2. We repeat the arguments from the proof of The-orem 1. Fix an H-valued martingale M and a nonnegative integer n. ByLemma 4 and Theorem 3, the inequality (1.2) is established:

2ESn(M) + E|Mn| − EM∗
n = EV1(Mn, Sn(M), M∗

n)

≥ U1(M0, S0(M), |M0|) = U1(M0, |M0|, |M0|) ≥ 0.Aknowledgements. I would like to thank Professor S. Kwapie« forvaluable omments and remarks.
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