
BULLETIN OF THE POLISH

ACADEMY OF SCIENCES

MATHEMATICS

Vol. 54, No. 1, 2006

COMPLEX ANALYSIS

Regularity and Uniqueness of Solutions to BoundaryBlow-up Problems for theComplex Monge�Ampère OperatorbyBjörn IVARSSONPresented by Józef SICIAK
Summary. We prove that plurisubharmoni solutions to ertain boundary blow-up prob-lems for the omplex Monge�Ampère operator are Lipshitz ontinuous. We also provethat in ertain ases these solutions are unique.1. Introdution. In [3℄, Cheng and Yau studied the problem





det

(
∂2u

∂zj∂zk
(z)

)
= f(z)eKu(z), z ∈ Ω,

lim
z→z0

u(z) = ∞ for all z0 ∈ ∂Ω,where Ω is a bounded strongly pseudoonvex domain in C
n with smoothboundary, f is a smooth stritly positive funtion and K > 0 a onstant.They showed that there is a unique smooth plurisubharmoni solution tothis problem. In this paper we study a similar problem, namely

(1) 



det

(
∂2u

∂zj∂zk
(z)

)
= f(z, u(z)), z ∈ Ω,

lim
z→z0

u(z) = ∞ for all z0 ∈ ∂Ω,where the right hand side is a funtion f ∈ C∞(Ω × R) whih is stritlypositive, inreasing in the seond variable and satis�es the following threeonditions:2000 Mathematis Subjet Classi�ation: 32W20, (32U10, 35B65, 35J60).Key words and phrases: omplex Monge�Ampère operator, interior regularity, pluri-subharmoni funtion, strongly pseudoonvex domain.[13℄
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A: There exist funtions h ∈ C∞(Ω) and f1 ∈ C∞(R) and two stritlypositive onstants c1 and c2 suh that

lim
t→∞

f(z, t)

f1(t)
= h(z)uniformly in Ω and c1f1(t) ≤ f(z, t) ≤ c2f1(t) for all (z, t) ∈ Ω × R.B: The funtion f1 is stritly positive and inreasing.C: The funtion

Ψn(a) =

∞\
a

((n + 1)F (y))−1/(n+1) dyexists for a > 0, where F ′(s) = f1(s) and F (0) = 0.Certain aspets of this problem has been studied by the author and Materoin [7℄.The following theorem proven by Ca�arelli, Kohn, Nirenberg and Sprukin [2℄ will be useful.Theorem 1.1. Let Ω be a bounded , strongly pseudoonvex domain in
C

n with smooth boundary. Let f ∈ C∞(Ω × R) be a stritly positive fun-tion whih is inreasing in the seond variable. Let ϕ ∈ C∞(∂Ω). Then theproblem
(2) 




det

(
∂2u

∂zj∂zk

)
= f(z, u) in Ω,

u = ϕ on ∂Ω,has a unique stritly plurisubharmoni solution u. Moreover , u ∈ C∞(Ω).This result is used to onstrut solutions to Problem (1). A sequene ofplurisubharmoni funtions uN whih solve Problem (2) on ertain pseudo-onvex domains ΩN is onstruted. We onstrut upper and lower boundsfor these solutions and sine Ω =
⋃

N ΩN we an onlude that the sequene
uN onverges to a solution for Problem (1) on Ω. This is done in Setion 2.In Setion 3 the regularity of the solution is studied in some speial ases.There it is assumed that the right hand side f depends only on u, that is,
f(z, u) = f(u), and also satis�es an extra ondition. The extra assumption isused to get a priori estimates for the �rst derivatives of solutions, whih letsus onlude that solutions to Problem (1) are Lipshitz under these assump-tions. Finally, in Setion 4 uniqueness of solutions is studied. Here the righthand side an depend on the z-variable but we need to make another extraassumption. This extra assumption together with estimates on the bound-ary behavior of the solution, whih were proved in [7℄, lets us onlude thatsolutions to Problem (1) are unique.
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We will use the notation

uj =
∂u

∂zj
, uk =

∂u

∂zk
, ujk =

∂2u

∂zj∂zk
.

2. Constrution of solutions. In order to prove existene of a solutionof the problem




det (ujk(z)) = f(z, u(z)), z ∈ Ω,

lim
z→z0

u(z) = ∞ for all z0 ∈ ∂Ω,we shall begin by onstruting approximate solutions. Let ̺ : Ω → R bea stritly negative plurisubharmoni funtion suh that ̺ ∈ C∞(Ω) and
limz→z0

̺(z) = 0 for all z0 ∈ ∂Ω. Take a stritly inreasing onvex funtion
g : R

− → R suh that limx→0− g(x) = ∞. Put ϕ(z) = g(̺(z)). This is aplurisubharmoni funtion whih satis�es limz→z0
ϕ(z) = ∞ for all z0 ∈ ∂Ω.Let

(̺jk) = (̺jk)
−1and

‖d̺‖2
̺ = ̺jk̺j̺k.We see that

∂ϕ

∂zk
= ̺kg

′(̺)and
ϕjk = ̺jkg

′(̺) + ̺j̺kg
′′(̺).Let Mjk be the minor

det




̺11 . . . ̺
1(k−1)

̺
1(k+1)

. . . ̺1n... . . . ... ... . . . ...
̺(j−1)1 . . . ̺

(j−1)(k−1)
̺
(j−1)(k+1)

. . . ̺(j−1)n

̺(j+1)1 . . . ̺
(j+1)(k−1)

̺
(j+1)(k+1)

. . . ̺(j+1)n... . . . ... ... . . . ...
̺n1 . . . ̺n(k−1) ̺n(k+1) . . . ̺nn




.

We see that
det (ϕjk) = det (̺jkg

′(̺) + ̺j̺kg
′′(̺))

= g′(̺)n det (̺jk) + g′′(̺)g′(̺)n−1
n∑

j,k=1

Mjk̺j̺k

= (g′(̺)n + ‖d̺‖2
̺g

′′(̺)g′(̺)n−1) det (̺jk).
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Sine

g′(̺(z)) = 1/(g−1)′(ϕ(z))and
g′′(̺(z)) = −(g−1)′′(ϕ(z))/(g−1)′(ϕ(z))3,this an be rewritten as

det (ϕjk) =
1

(g−1)′(ϕ(z))n
det (̺jk) −

(g−1)′′(ϕ(z))

(g−1)′(ϕ(z))n+2
‖d̺‖2

̺ det (̺jk).We shall show that we an hoose g so that
1

(g−1)′(ϕ(z))n
≤ −

(g−1)′′(ϕ(z))

(g−1)′(ϕ(z))n+2
‖d̺‖2

̺near the boundary. This will show that the last term is the important term.Hopf's lemma, sometimes also referred to as Zaremba's priniple, impliesthat a plurisubharmoni funtion u ∈ C1(Ω)∩C2(Ω) whih satis�es u(z) <
u(z0) for all z ∈ Ω and a boundary point z0 also satis�es (∂u/∂ν)(z0) < 0where ν denotes the inward-pointing normal to ∂Ω. A proof of Hopf's lemmaan be found in Taylor's book [9℄. Sine every boundary point is a globalmaximum for ̺ and ∂Ω is ompat we see that ‖d̺‖2

̺ > ε, for some ε > 0,near the boundary.We are interested in solving




det (ujk(z)) = f(z, u(z)), z ∈ Ω,

lim
z→z0

u(z) = ∞ for all z0 ∈ ∂Ω,where f is stritly positive, inreasing in the seond variable and satis�esonditions A,B and C. We dedue what g should be by solving
−

(g−1)′′(x)

(g−1)′(x)n+2
= f1(x).Rewriting this we get

d

dx

(
1

(n + 1)(g−1)′(x)n+1

)
= f1(x).Integrating we see that

1

(g−1)′(x)n+1
= (n + 1)F (x).This implies that

g−1(x) =
\
((n + 1)F (x))−1/(n+1) dx.In partiular, we an hoose g−1(x) = −Ψn(x). Making this hoie we get

(g−1)′(x) = ((n + 1)F (x))−1/(n+1) .
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Let us now turn to the question if

1

(g−1)′(ϕ(z))n
≤ −

(g−1)′′(ϕ(z))

(g−1)′(ϕ(z))n+2
‖d̺‖2

̺near the boundary. But this is the same as
ε−1 ≤ −

(g−1)′′(x)

(g−1)′(x)2
=

d

dx

(
1

(g−1)′(x)

)

as x tends to ∞. Here ε is the in�mum of ‖d̺‖2
̺ in some neighborhood ofthe boundary. Assume that

d

dx

(
1

(g−1)′(x)

)
=

d

dx
((n + 1)F (x))1/(n+1) < ε−1for large x. We get

((n + 1)F (x))1/(n+1) < ε−1x + Cfor large x but this ontradits the integrability of ((n + 1)F (x))−1/(n+1).Hene
d

dx

(
1

(g−1)′(x)

)
≥ ε−1and we onlude that

1

(g−1)′(ϕ(z))n
≤ −

(g−1)′′(ϕ(z))

(g−1)′(ϕ(z))n+2
‖d̺‖2

̺near the boundary.Having this at our disposal we an onstrut plurisubharmoni funtionswhih are approximate solutions to the problem we are interested in. Namely,given f and f1 use the method above to hoose g. Take a plurisubharmonifuntion ̺ whih solves



det (̺jk(z)) = 1, z ∈ Ω,

lim
z→z0

̺(z) = 0 for all z0 ∈ ∂Ω.By Theorem 1.1 we know that ̺ ∈ C∞(Ω). It is also stritly plurisub-harmoni on Ω. Hene ‖d̺‖2
̺ ∈ C∞(Ω). Put ϕ = g ◦ ̺. We see that

limz→z0
ϕ(z) = ∞ for all z0 ∈ ∂Ω and
det (ϕjk(z)) =

1

(g−1)′(ϕ)n
−

(g−1)′′(ϕ)

(g−1)′(ϕ)n+2
‖d̺‖2

̺ = κ(z)f1(ϕ)where
0 < C ≤ κ(z) = ‖d̺‖2

̺ −
(g−1)′(ϕ)2

(g−1)′′(ϕ)
≤ C ′.The existene of the upper bound C ′ is lear. The lower bound is a little trik-ier. At points near the boundary we know, by Hopf's lemma, that ‖d̺‖2

̺ > ε.
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At points where ‖d̺‖2

̺ ≤ ε (these points are not lose to the boundary), wesee that ϕ is bounded and hene
−

(g−1)′(ϕ)2

(g−1)′′(ϕ)
≥ ε′for some ε′ > 0. We see that there is a lower bound C so that 0 < C < κ(z).Now notie that ̺K = K̺ satis�es




det (̺K,jk(z)) = Kn, z ∈ Ω,

lim
z→z0

̺K(z) = 0 for all z0 ∈ ∂Ω.The funtion ϕK = g ◦ ̺K satis�es g−1(̺K) = Kg−1(̺). Therefore
det (ϕK,jk(z)) = det (̺K,jk(z))

(
‖d̺K‖2

̺K
−

(g−1)′(ϕK)2

(g−1)′′(ϕK)

)
f1(ϕK)

= Kn

(
K‖d̺‖2

̺ −
(g−1)′(ϕK)2

(g−1)′′(ϕK)

)
f1(ϕK)

= Kn+1

(
‖d̺‖2

̺K
−

(g−1)′(ϕ)2

(g−1)′′(ϕ)

)
f1(ϕK) = Kn+1κ(z)f1(ϕK).We see that by hoosing K and K̃ suitably we have K̃n+1κ ≤ c1 and c2 ≤

Kn+1κ. Let ΩN = {z ∈ Ω; ϕK(z) < N} and uN be the solution of



det (uN,jk(z)) = f(z, uN(z)), z ∈ ΩN ,

lim
z→z0

uN (z) = N for all z0 ∈ ∂ΩN .whih exists by Theorem 1.1. By Lemma 2.2 in [6℄ we get ϕK ≤ uN ≤
uN+1 ≤ ϕK̃ on ΩN . De�ne u(z) = limN→∞ uN (z). We now investigate theregularity of u.3. A priori estimate of �rst derivatives of solutions. In this setionwe assume that f(z, u) = f(u) is a funtion satisfying B, C and the tehnialondition

n − 1

n + 1
≤

F (x)f ′(x)

f(x)2
.We shall estimate the norm of the gradient of uN on ompat subsets of Ω.We do this by studying the funtions vN = |∇uN |2(g−1)′(uN )2. Notiethat |∇̺K |2 = |∇ϕ|2(g−1)′(ϕ)2 ≤ C and that vN = |∇uN |2(g−1)′(uN )2 ≤

|∇ϕ|2(g−1)′(ϕ)2 on ∂ΩN sine uN = ϕ on ∂ΩN and ϕ ≤ uN in ΩN . Welaim that sup(vN (z); z ∈ ΩN ) ≤ sup(vN (z); z ∈ ∂ΩN ) ≤ C. We shall showthat vN does not have any interior maximum in ΩN to establish the laim.This alulation was inspired by Bo Guan's work on the regularity of thepluriomplex Green funtion [4℄, [5℄. Readers interested in the regularity ofthe pluriomplex Green funtion should also onsult Bªoki's paper [1℄.
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Assume that a loal maximum for vN is attained at p ∈ ΩN . We knowthat ∇vN (p) = 0. Choose oordinates near p so that uN,jk(p) = uN,jk(p) = 0and uN,jk(p) = 0 if j 6= k. It is known that suh oordinates an be found if

∇uN (p) 6= 0, whih is the ase at a maximum point of vN . A proof an beextrated from the alulation on page 130 of [8℄. Remember that
vN =

n∑

l=1

uN,luN,l(g
−1)′(uN )2and hene

vN,j =

n∑

l=1

(uN,luN,jl(g
−1)′(uN )2

+ uN,jluN,l(g
−1)′(uN )2 + 2(g−1)′(uN )(g−1)′′(uN )uN,luN,luN,j).Evaluating this at p yields

vN,j =
n∑

l=1

(uN,luN,jl(g
−1)′(uN )2 + 2(g−1)′(uN )(g−1)′′(uN )uN,luN,luN,j)

= uN,juN,jj(g
−1)′(uN )2 +

n∑

l=1

2(g−1)′(uN )(g−1)′′(uN )uN,luN,luN,j

= uN,j(g
−1)′(uN )2

(
uN,jj + 2

(g−1)′′(uN )

(g−1)′(uN )
|∇uN |2

)
= 0.At the relevant loal maximum point we have |∇uN | > 0 and therefore

n∏

j=1

(
uN,jj + 2

(g−1)′′(uN )

(g−1)′(uN )
|∇uN |2

)
= 0.Thus we have

|∇uN |2 = −
(g−1)′(uN )

2(g−1)′′(uN )
uN,jjfor some j. We see that

|∇uN |2 ≤ −
(g−1)′(uN )

2(g−1)′′(uN )

n∑

j=1

uN,jjwith equality if and only if uN,jj = 0 for all but one j. Hene
|∇uN |2 < −

(g−1)′(uN )

2(g−1)′′(uN )

n∑

j=1

uN,jjbeause otherwise det (uN,jk) = 0. Remembering that
(g−1)′(x) = ((n + 1)F (x))−1/(n+1)
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we get

|∇uN |2 <
(n + 1)F (uN )

2f(uN )

n∑

j=1

uN,jj .

So far we have only used the fat that p is a ritial point. Now we shalluse the fat that it is a loal maximum point. We have log det (uN,jk) =

log f(u). Di�erentiating we see that
∂

∂zj
log det (uN,kl) =

n∑

k,l=1

Mkl

det (uN,kl)
uN,klj =

n∑

k,l=1

ukl
NuN,klj =

n∑

l=1

ull
NuN,llj

and hene we get the relation
n∑

l=1

ull
NuN,llj =

f ′(uN )

f(uN )
uN,j .

We also have
n∑

l=1

ull
NuN,llj =

f ′(uN )

f(uN )
uN,j .If we di�erentiate vN twie we get

vN,jk = (g−1)′(uN )2
n∑

l=1

(uN,ljkuN,l + uN,lkuN,jl + uN,luN,jlk)

+ 2(g−1)′(uN )(g−1)′′(uN )uN,k

n∑

l=1

uN,luN,jl

+ 2(g−1)′(uN )(g−1)′′(uN )uN,j

n∑

l=1

uN,lkuN,l

+ 2(g−1)′(uN )(g−1)′′(uN )uN,jk

n∑

l=1

uN,luN,l

+ (2(g−1)′(uN )(g−1)′′′(uN ) + 2(g−1)′′(uN )2)uN,juN,k

n∑

l=1

uN,luN,l.Here we have used the fat that the Hessian of uN is diagonal to simplify theexpression. Sine p is assumed to be a loal maximum point we know that
n∑

j,k=1

ujk
N vN,jk ≤ 0.
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Therefore

n∑

j,k=1

ujk
N vN,jk =

n∑

j=1

ujj
NvN,jj

= (g−1)′(uN )2
( n∑

j,l=1

(ujj
NuN,ljjuN,l + ujj

NuN,luN,jlj) +

n∑

j=1

uN,jj

)

+ (4 + 2n)(g−1)′(uN )(g−1)′′(uN )
n∑

j=1

uN,juN,j

+ (2(g−1)′(uN )(g−1)′′′(uN ) + 2(g−1)′′(uN )2)
n∑

j,l=1

ujj
NuN,juN,juN,luN,l

= 2(g−1)′(uN )2
f ′(uN )

f(uN )
|∇uN |2 + (g−1)′(uN )2

n∑

j=1

uN,jj

+ (4 + 2n)(g−1)′(uN )(g−1)′′(uN )|∇uN |2

+ (2(g−1)′(uN )(g−1)′′′(uN ) + 2(g−1)′′(uN )2)|∇uN |2
n∑

j=1

ujj
NuN,juN,j ≤ 0

at p. We need to analyze ∑n
j=1 ujj

NuN,juN,j . At p we have
uN,jj = −2

(g−1)′′(uN )

(g−1)′(uN )
|∇uN |2if uN,j 6= 0. Therefore

n∑

j=1

ujj
NuN,juN,j =

n∑

j=1

uN,juN,j

uN,jj

= −
(g−1)′(uN )

2(g−1)′′(uN )
.

Using this gives the inequality
n∑

j=1

uN,jj ≤ |∇uN |2
(

(g−1)′′′(uN )

(g−1)′′(uN )
−

2f ′(uN )

f(uN)
−

(3 + 2n)(g−1)′′(uN )

(g−1)′(uN )

)
.

We have
(g−1)′(x) = ((n + 1)F (x))−1/(n+1),

(g−1)′′(x) = − f(x)((n + 1)F (x))−1−1/(n+1),

(g−1)′′′(x) = − f ′(x)((n + 1)F (x))−1−1/(n+1)

+ (n + 2)f(x)2((n + 1)F (x))−2−1/(n+1).
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Hene

(g−1)′′′(uN )

(g−1)′′(uN )
−

2f ′(uN )

f(uN )
−

(3 + 2n)(g−1)′′(uN )

(g−1)′(uN )

=
(g−1)′′′(uN )

(g−1)′′(uN )
−

2f ′(uN )

f(uN)
+

(3 + 2n)f(uN)

(n + 1)F (uN )
= −

f ′(uN )

f(uN )
+

f(uN )

F (uN )
.Combining the two inequalities

|∇uN |2 <
(n + 1)F (uN )

2f(uN )

n∑

j=1

uN,jjand
n∑

j=1

uN,jj ≤ |∇uN |2
(

f(uN )

F (uN )
−

f ′(uN )

f(uN )

)

yields
|∇uN |2 <

n + 1

2

F (uN )

f(uN )

n∑

j=1

uN,jj ≤
n + 1

2

(
1 −

F (uN )f ′(uN )

f(uN )2

)
|∇uN |2,whih gives a ontradition if

n + 1

2

(
1 −

F (uN )f ′(uN )

f(uN )2

)
≤ 1.We see that, on the assumption

n − 1

n + 1
≤

F (uN )f ′(uN )

f(uN )2
,the funtion |∇uN |2(g−1)′(uN )2 attains its maximum on the boundary andhene we have

|∇uN |2(g−1)′(uN )2 ≤ Con ΩN . Sine any ompat set K ⊆ Ω is ontained in ΩN for su�ientlylarge N we have proven that
sup(|∇uN(z)|2(g−1)′(uN (z)); z ∈ K) < Cfor all N large enough. Hene

|∇uN(z)|2 ≤ Cg′(uN (z))2in K and sine uN (z) ≤ ϕ(z) ≤ C in K we see that ‖uN‖C1(K) ≤ C. Sinethe sequene of uN 's onverges uniformly on ompats we an onlude that
u is Lipshitz. We state this in a theorem.Theorem 3.1. Let Ω be a bounded strongly pseudoonvex domain in C

nwith smooth boundary. Suppose that f satis�es B, C and
n − 1

n + 1
≤

f ′(x)F (x)

f(x)2
.
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Then the problem 




(ddcu)n = f(u(z)), z ∈ Ω

lim
z→z0

u(z) = ∞ for all z0 ∈ ∂Ω,has a solution u that is Lipshitz.Remark 3.2. Note that f(u) = eKu, K > 0, and f(u) = uγ (suitablymodi�ed for u < 1) where γ ≥ (n − 1)/2, satis�es all the onditions in thetheorem.4. Uniqueness. We shall now establish a uniqueness result. Uniquenessfor boundary blow-up problems is not as straightforward as for the Dirihletproblem. This is beause the omparison priniples in [6℄ and [7℄ are notformulated with the situation in mind where both plurisubharmoni funtionstend to ∞ as we approah the boundary.We need the following de�nition and theorem from [7℄.Definition 4.1. Assume that Ω = {z ∈ C
n; ̺(z) < 0} where ̺ ∈

C∞(Ω). For z0 ∈ ∂Ω suppose that |∇̺(z0)| = 1. Let Π(z0) be the produtof the eigenvalues of the form
n∑

j,k=1

∂2̺

∂zj∂zk
(z0) dzj ∧ dzk

restrited to the vetor spae {w ∈ C
n;

∑n
j=1

∂̺
∂zj

(z0)wj = 0}.Theorem 4.2. Let Ω be a bounded , strongly pseudoonvex domain in
C

n with smooth boundary. Let f ∈ C∞(Ω×R) be a stritly positive funtionwhih is inreasing in the seond variable and satis�es assumptions A, Band C. For boundary points z0 ∈ ∂Ω let Π(z0) be the number desribed inDe�nition 4.1. Then any solution u to Problem (1) satis�es
lim

z→z0

Ψn(u(z))

dΩ(z)
= 41/(n+1)h(z0)

1/(n+1)Π(z0)
−1/(n+1)for any z0 ∈ ∂Ω.We an now prove the following proposition.Proposition 4.3. Let Ω be a bounded strongly pseudoonvex domainwith smooth boundary and assume that f ∈ C∞(Ω × R) is a stritly posi-tive funtion, inreasing in the seond variable and satisfying A,B and C.Assume also that

Ψn(t)/Ψ ′

n(t)is bounded for large t. If u and v are plurisubharmoni solutions of Prob-lem (1) then u ≡ v.
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Remark 4.4. The assumption that Ψn(t)/Ψ ′

n(t) is bounded for large t isful�lled when f1 has exponential growth but not when it has only polynomialgrowth.Proof of Proposition 4.3. Assume that we have two distint plurisubhar-moni solutions u and v of Problem (1). Assume for the moment that weknow that limz→z0
(u(z) − v(z)) = 0 for all z0 ∈ ∂Ω. We shall return tothis laim later to �nish the proof. Assume that sup(u(z) − v(z); z ∈ Ω) =

K > 0. Then there is a p ∈ Ω suh that u(p) − v(p) = K. At p we have
det (ujk(p)) ≤ det (vjk(p)). However, sine u(p) > v(p) we see that

det (ujk(p)) = f(p, u(p)) > f(p, v(p)) = det (vjk(p)),whih is a ontradition. Hene u(z) − v(z) ≤ 0 in Ω. Arguing in the sameway we also see that v(z) − u(z) ≤ 0 in Ω. This proves uniqueness.It remains to prove our laim that limz→z0
(u(z) − v(z)) = 0. We knowthat for all z0 ∈ ∂Ω we have

lim
z→z0

Ψn(u(z))

dΩ(z)
= lim

z→z0

Ψn(v(z))

dΩ(z)
= C(z0)where C(z0) is the onstant given in Theorem 4.2. Given ε > 0, for z loseto z0 we have

(C(z0) − ε)dΩ(z) ≤ Ψn(u(z)) ≤ (C(z0) + ε)dΩ(z)and
(C(z0) − ε)dΩ(z) ≤ Ψn(v(z)) ≤ (C(z0) + ε)dΩ(z).This gives

Ψ−1
n ((C(z0) + ε)dΩ(z)) ≤ u(z) ≤ Ψ−1

n ((C(z0) − ε)dΩ(z))and
−Ψ−1

n ((C(z0) − ε)dΩ(z)) ≤ −v(z) ≤ −Ψ−1
n ((C(z0) + ε)dΩ(z)).We get

u(z) − v(z) ≤ Ψ−1
n ((C(z0) − ε)dΩ(z)) − Ψ−1

n ((C(z0) + ε)dΩ(z))

= −2εdΩ(z)(Ψ−1
n )′(η(z))for some η(z) ∈ [(C(z0) − ε)dΩ(z), (C(z0) + ε)dΩ(z)] by the mean-valuetheorem. Hene

u(z) − v(z) ≤ −2εdΩ(z)(Ψ−1
n )′(η(z)) = −

2εdΩ(z)

η(z)
η(z)

1

Ψ ′

n(Ψ−1
n (η(z)))

= −
2εdΩ(z)

η(z)

Ψn(Ψ−1
n (η(z)))

Ψ ′

n(Ψ−1
n (η(z)))

≤ −
2ε

C(z0) − ε

Ψn(Ψ−1
n (η(z)))

Ψ ′

n(Ψ−1
n (η(z)))

.The assumption that Ψn(t)/Ψ ′

n(t) is bounded for large t lets us onlude that,sine ε is arbitrary, limz→z0
(u(z) − v(z)) = 0.
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