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Summary. We prove that the hyperbolic Hausdorff dimension of Fr Ω, the boundary of
the simply connected immediate basin of attraction Ω to an attracting periodic point of a
rational mapping of the Riemann sphere, which is not a finite Blaschke product in some
holomorphic coordinates, or a 2 : 1 factor of a Blaschke product, is larger than 1. We prove
a “local version” of this theorem, for a boundary repelling to the side of the domain.

The results extend an analogous fact for polynomials proved by A. Zdunik and relies
on the theory elaborated by M. Urbański, A. Zdunik and the author in the late 80-ties. To
prove that the dimension is larger than 1, we use expanding repellers in ∂Ω constructed
in [P2].

To reach our results, we deal with a quasi-repeller, i.e. the limit set for a geometric
coding tree, and prove that the hyperbolic Hausdorff dimension of the limit set is larger
than the Hausdorff dimension of the projection via the tree of any Gibbs measure for a
Hölder potential on the shift space, under a non-cohomology assumption. We also consider
Gibbs measures for Hölder potentials on Julia sets.

0. Introduction. This paper completes [Z1], [Z2] and [P2]. In particular
we prove the following

Theorem A. Let f : C → C be a rational map of degree d ≥ 2 of the

Riemann sphere and Ω be the simply connected immediate basin of attrac-

tion to a periodic attracting orbit. Then, provided f is not a finite Blaschke

product in some holomorphic coordinates, or a quotient of a Blaschke prod-
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uct by a rational function of degree 2, the hyperbolic Hausdorff dimension

of FrΩ is larger than 1.

The immediate basin of attraction to a periodic orbit O = {p1, . . . , pk−1}
of period k is the union of the components, intersectingO, of the set of points
whose forward orbits converge to O. From now on we shall assume that Ω
is the immediate basin of attraction to a fixed point, by considering fk in
place of f if k > 1.

The hyperbolic Hausdorff dimension of an f -invariant set K, HDhyp(K),
is defined as the supremum of the Hausdorff dimensions of f -invariant sub-
sets X of K such that f |X is expanding, i.e. |(fN |X)′| > 1 for an integer N .
One can assume that the X are isolated, i.e. there is an open set U ⊃ X such
that

⋂
n≥0(f |U )−n(U) = X. Moreover, in this definition we can consider only

X being Cantor sets.
In the case where f is a polynomial and Ω is the basin of attraction to ∞,

Theorem A was proved in [Z1]. In fact a stronger theorem was proved there:
either a rational map f has a parabolic orbifold (in particular f(z) = zd or
a Chebyshev polynomial, if f is a polynomial), or the Hausdorff dimension
of the Julia set J(f) (which is FrΩ for polynomials) is larger than the
Hausdorff dimension of the measure µmax of maximal entropy. In the case of
polynomials, µmax is equivalent to harmonic measure on J(f) viewed from
Ω, whose Hausdorff dimension for J(f) connected is equal to 1 [Mak].

To the best of our knowledge the question whether HD(J(f)) > 1 is true
for all rational f not being Blaschke or a 2 : 1 factor of Blaschke and J(f)
connected, remains open, though a negative answer seems improbable. One
can also ask about the Hausdorff dimension of non-one-point components of
J(f).

It is stated in [Z2, p. 635, end of Introduction] that Theorem A (in the RB
version, see below) can be proved by the method of [Z1]. This is indeed true,
an invariant expanding set X of dimension larger than 1 can be constructed
as in [Z1]. It is not however clear that X ⊂ FrΩ; this needs some care in the
construction. We verify it here using a more careful construction originated
in [PZ] and carefully described in [P2].

As in the other papers, we deal with another, local, version of Theorem A,
that is, we prove

Theorem A′. Assume that f is defined and holomorphic on a neighbour-

hood W of FrΩ, where Ω is a simply connected domain in C whose boundary

has at least two points. Assume that f(W ∩ Ω) ⊂ Ω, f(FrΩ) ⊂ FrΩ and

FrΩ repells to the side of Ω, that is,
⋂∞

n=0 f
−n(W ∩ clΩ) = FrΩ. Then

either HDhyp(Fr(Ω)) > 1 or FrΩ is a real-analytic Jordan curve or arc.

Domains Ω with the properties as in Theorem A′ were introduced in [P1]
and called RB-domains (repelling boundary to the side of Ω).
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Theorem A′ yields Theorem A since if f extends to a rational function
on C, then FrΩ analytic implies that f is special as in Theorem A by [Bro].

In Theorems A and A′ the proof of the dichotomy saying that either f
(or FrΩ) is special or HDhyp(FrΩ) > 1 uses the fact that if R : D → Ω
is a univalent holomorphic function from the unit disc to Ω (also called a

Riemann mapping) then the radial limit R̂ exists l-almost everywhere, for
l the length measure (Fatou theorem). Denote by g the extension to ∂D

of the function R−1 ◦ f ◦ R on D. It is analytic and expanding (see [P1]).

The function ψ := log |g′| − log(|f ′| ◦ R̂) composed with iterates of g, i.e.
the sequence of random variables ψ ◦ gn, satisfies the central limit theorem
(CLT) (see [PUZ]). This sequence is stationary with respect to a g-invariant
measure ν on ∂D equivalent to l.

The case

σ2(ψ) := lim
n→∞

1

n

\(n−1∑

k=0

ψ ◦ gk
)2
dν = 0

leads to the real analyticity of FrΩ (see [Z2]), hence in the case f is rational
on C to f Blaschke or a 2 : 1 factor of Blaschke.

The case we need to consider is σ2 > 0. Using deviations of the sums∑n−1
k=0 ψ ◦ gk from the expectation value

T
ψ dν = 0, we construct an iterated

function system in FrΩ whose limit set has Hausdorff dimension larger
than HD(R̂∗(ν)) = 1 (the measure R̂∗(ν) is equivalent to the harmonic
measure ω).

As in all the papers mentioned above it is enough to deal with a geometric
coding tree version of Theorem A′ (see Theorem B in Sections 1, 2). Namely
we consider the Gibbs measure for an arbitrary Hölder continuous potential
on the shift space, its projection µ via coding given by the tree to the limit
set Λ, and prove that usually HDhyp(Λ) > HD(µ). In Theorems A and A′,
µ is equivalent to the harmonic measure. For a more general version see
Theorem C in Section 3.

In Section 3, in Theorem D, we consider µ given directly on the Julia set
J(f), as the Gibbs measure for a Hölder potential on J(f), as in [DU], [P3]
and [DPU].

1. Geometric coding trees. We recall the definitions from [PUZ],
[PS], [PZ] and [P1]. Let U be an open connected subset of the Riemann
sphere C. Consider any holomorphic mapping f : U → C such that f(U) ⊃
U and f : U → f(U) is a proper map. Define Crit(f) = {z : f ′(z) = 0},
the set of critical points for f . Suppose that Crit(f) is finite. Consider any
z ∈ f(U). Let z1, . . . , zd be some f -preimages of z in U , where d ≥ 2.
Consider smooth curves γj : [0, 1] → f(U), j = 1, . . . , d, joining z to zj

respectively (i.e. γj(0) = z, γj(1) = zj), such that there are no critical
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values for iterates of f in
⋃d

j=1 γ
j , i.e. γj ∩ fn(Crit(f)) = ∅ for every j and

n > 0.
Let Σd := {1, . . . , d}Z

+

denote the one-sided shift space and σ the shift
to the left, i.e. σ((αn)) = (αn+1). For every sequence α = (αn)∞n=0 ∈ Σd we
define γ0(α) := γα0 . Suppose that for some n ≥ 0, for every 0 ≤ m ≤ n,
and all α ∈ Σd, the curves γm(α) are already defined. Suppose that for
1 ≤ m ≤ n we have f ◦ γm(α) = γm−1(σ(α)), and γm(α)(0) = γm−1(α)(1).

Define the curves γn+1(α) so that the previous equalities hold by taking
suitable f -preimages of the curves γn. For every α ∈ Σd and n ≥ 0 set
zn(α) := γn(α)(1). Note that zn(α) and γn(α) depend only on (α0, . . . , αn)
so sometimes we consider zn and γn as functions on blocks of symbols of
length n+ 1. Sometimes it is convenient to denote z by z−1.

The graph T (z, γ1, . . . , γd) with the vertices z and zn(α) and edges γn(α)
is called a geometric coding tree with the root at z. For every α ∈ Σd the
subgraph composed of z, zn(α) and γn(α) for all n ≥ 0 is called a geometric

branch and denoted by b(α).
For each j = 1, . . . , d we define f−1

j on a small neighbourhood of z as

the branch of f−1 mapping z to zj . For each α ∈ Σd the branch f−1
j has an

analytic continuation f−1
j,α along the curve b(α). Note that by the construc-

tion f−1
j,α (b(α)) = b(jα), where jα is the concatenation of the symbol j and

the sequence α. By induction, for any block v of k symbols in {1, . . . , d}, for
f−k

v being the branch of f−k mapping z to zk−1(v) and for f−k
v,α being the

analytic continuation along b(α), we get

f−k
v,α(b(α)) = b(vα).(1)

For infinite α the branch b(α) is called convergent if the sequence γn(α) is
convergent to a point in clU . We define the coding map z∞ : D(z∞) → clU
by z∞(α) := limn→∞ zn(α) on the domain D = D(z∞) consisting of all α’s
for which b(α) is convergent. It was proved in [PS] that D is the whole Σd

except a “thin” set. In particular for a Gibbs measure ν as in Theorem B
below, z∞(α) exists for ν-a.e. α, hence the push forward measure (z∞)∗(ν)
makes sense.

For each geometric branch b(α) denote by bm(α) the part of b(α) starting
from zm(α), i.e. consisting of the vertices zk(α), k ≥ m, and of the edges
γk(α), k > m.

If the map f extends holomorphically to a neighbourhood of the closure
of the limit set Λ of a geometric coding tree, Λ = z∞(D(z∞)), then Λ is
called a quasi-repeller (see [PUZ]).

Theorem B. Let Λ be a quasi-repeller for a geometric coding tree

T (z, γ1, . . . , γd) for a holomorphic map f : U → C. Let ν be a σ-invariant

Gibbs probability measure on Σd for a Hölder continuous real-valued function
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u on Σd. Let µ := (z∞)∗(ν). Assume that for ψ :=−u−HD(µ) log(|f ′| ◦z∞)
the asymptotic variance σ2 := σ2(ψ) is positive. Then there exists an f -
invariant hyperbolic subset X of Λ such that HD(X) > HD((z∞)∗(ν)).

Recall that a probability measure ν is called a Gibbs measure for a Hölder
continuous function u : Σd → R if there is a constant C1 > 0 such that for
every cylinder

Cn−1(β) := {α ∈ Σd : α0 = β0, . . . , αn−1 = βn−1}
for a sequence β = (β0, . . . , βn−1) ∈ {1, . . . , d}n, we have

C−1
1 ≤ ν(Cn−1)/exp(Sn(u)(α) − nP (σ, u)) ≤ C1,(2)

where P (σ, u) is the topological pressure for the shift mapping σ and poten-
tial function u (see [Bow] or [PU]) and Sn(u)(α) =

∑n−1
j=0 u ◦ σj(x).

We can assume that P (σ, u) = 0 by replacing u by u−P (σ, u). Then we
have

T
ψ dν = 0 (see [PUZ, Sec. 4, Lemma 7]).

2. Proof of Theorem B. We proceed as in [P2]. Denote the natural
extension of the one-sided shift σ with the measure ν and Borel σ-algebra
F by (Σ̃d, F̃ , ν̃). This is a two-sided shift space with the shift σ̃ to the left.

Denote the projection Σ̃d → Σd mapping α to (α0, α1, . . .) by π+. For each

α ∈ Σ̃d denote π+(α) by α+.

The Lyapunov exponent χ(µ) :=
T
log |f ′| dµ is positive, since 2χ(µ) ≥

hµ(f) = hν(σ) > 0 (cf. [P1] and [PUZ]).

By the existence of z∞ ν-a.e. and by Pesin theory (see [PZ, Lemma 1]

for the version we apply), for every ε > 0 we find a set K ⊂ Σ̃d, δ > 0, a
positive integer M and a constant C > 0 such that ν̃(K) > 1− ε and for all
α ∈ K and n ≥ 0,

(i) bM (α+) ⊂ B(z∞(α+), δ/3),
(ii) there exist univalent branches f−n

α of f−n on B(z∞(α+), δ) for all
n = 1, 2, . . .mapping z∞(α+) to z∞(σ̃−n(α)+), of distortion bounded
by C, i.e.

sup
x∈B(z∞(α+),δ)

|(f−n
α )′(x)|/ inf

x∈B(z∞(α+),δ)
|(f−n

α )′(x)| ≤ C.

In the notation accompanying the property (1) these branches are the
continuations along b(α+) of f−n

(α−n,...,α−1)
, i.e. the branches f−n

(α−n,...,α−1),α+ .

The assumption σ2(ψ) > 0 implies σ2(ψ ◦ π+, σ̃
−1) = σ2(ψ) > 0 for the

asymptotic variance of the sequence of ψ ◦π+ composed with the iterates of
the mapping σ̃−1. Due to CLT, verified in [PUZ], we know that there exists
ε1 > 0 such that for

Kn := {α ∈ Σ̃d : Sn(ψ)(α) ≥ √
n}
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we have

ν̃(Kn) ≥ ε1

for all n large enough. Here Snψ :=
∑n−1

j=0 ψ ◦ π+ ◦ σ̃−j.

Consider K ′
n := K ∩Kn.

For each n large enough we choose a cylinder

CM = CM (β) := {α ∈ Σ̃d : α0 = β0, . . . , αM = βM}
for a sequence β = (β0, . . . , βM ) ∈ {1, . . . , d}M+1, such that

ν̃(CM ∩K ′
n) ≥ ε1

2
ν̃(CM ) := ξ,

which is possible if ε is small enough. Restricting to a subsequence N of n’s
we can fix one CM , in particular ξ is fixed, independent of n ∈ N .

Consider Ln := σ̃−n(CM ∩K ′
n).

By the Birkhoff ergodic theorem there exists N ≥ 0 independent of n
such that for all n ∈ N ,

ν̃({α ∈ Ln : ∃i : 0 ≤ i < N, σ̃−i(α) ∈ K ∩ CM}) ≥ ξ/2.

Therefore for every n ≥ 0 there exists N ′ with 0 ≤ N ′ < N such that,
setting n′ := n + N ′, for A(n′) := {α ∈ CM ∩K ′

n : σ̃−n′

(α) ∈ K ∩ CM} we
have

ν̃(A(n′)) ≥ ξ/2N.(3)

As in [P2] let Gn′ ⊂{1, . . . , d}n′

be the set of sequences v=(v−n′ , . . . , v−1) of
length n′ which are truncations of α∈A(n′) to the coordinates {−n′, . . . ,−1}.
For each v we choose one α = αv whose truncation is v.

We consider the iterated function system consisting of the branches Fv :=
f−n′

v,α+ on B := B(zM (β), 2δ/3), for v ∈ Gn′ . The branches do not depend on

α+ (see [P2]). It is proved in [P2] that indeed the Fv map B to B and the
limit set

X ′ :=
⋂

j≥0

⋃

v1,...,vj∈Gn′

Fvj ◦ · · · ◦ Fv1(clB)

is in the quasi-repeller Λ. This set is invariant under Φ := fn′

.

As in [Z1, Section 9] we estimate the topological pressure on X ′ for
t = HD(µ) using preimages of y = zM (β) (we could use any point in B
here), remembering that C bounds distortion for all Fv on B and writing

Qv,n,α(u) := u(v−n . . . v−1α
+) + · · · + u(v−1α

+),

as follows:
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(4) P (Φ,−t log |Φ′|)
= lim

j→∞

1

j
log

∑

v1,...,vj∈Gn′

|F ′
vj(Fvj−1 ◦ · · · ◦ Fv1(y))|t · · · |F ′

v1(y)|t

≥ − t logC

+ log
∑

v=(v
−n′ ,...,v−1)∈Gn′

exp(
√
n+Qv,n,αv

(u) − (n′ − n)t sup log |f ′|)

≥ − t log(C sup |f ′|N ′

) +
√
n+ log

∑

v=(v
−n′ ,...,v−1)

expQv,n,αv
(u)

≥ − t log(C sup |f ′|N ′

) +
√
n + C−1

1 ξ/2N,

where the last estimate of the sum follows from (3) and from the definition
of Gibbs measure (2).

Indeed, for each v ∈ Gn′ we have

Qv,n,αv
(u) ≥ C−1

1 ν̃{α ∈ A(n′) : α−n = v−n, α−1 = v−1},(5)

which, summed over v, was estimated from below in (3).
The right hand side of (4) is positive for n large enough. Hence HD(X)

> t, as HD(X) is (the only) zero of P (Φ,−t log |Φ′|).
Finally, we define an f -invariant isolated Cantor set in Λ of Hausdorff

dimension larger than HD(µ) as in [P2] by setting

X :=
⋃

{f j(X ′) : j = 0, . . . , n′ − 1}.

3. Generalizations. Gibbs measures for Hölder functions on

J(f). By the same considerations as in the proof of Theorem B one can
prove the following

Theorem C. Suppose that for a quasi-repeller Λ as in Theorem B , ν
is a σ-invariant probability measure on Σd, of positive entropy , and u =
log(Jacν(σ

−1)) ◦ σ : Σd → R, where Jacν(σ
−1) is the Jacobian of σ−1 with

respect to ν (the branch of σ−1 inverting σ). (We assume that σ−1 is ab-

solutely continuous with respect to ν.) Suppose there exists ε > 0 and a

sequence an → ∞ such that for Kn := {α ∈ Σ̃d : Sn(ψ)(α) ≥ an} with

Sn(ψ) being the “backward sum” defined in the proof of Theorem B, we have

ν̃(Kn) ≥ ε. Then there exists an f -invariant hyperbolic subset X of Λ such

that HD(X) > HD((z∞)∗(ν)).

To prove Theorem C we choose, for each v in (5), αv ∈ A(n′) such that
for Bv := {vα+ ∈ Σd : α ∈ A(n′), αj = vj ∀j = −n, . . . ,−1},

expQv,n,αv
(u) ≥

\
Bv

expQv,n,α(u) d(ν ◦ σn)(vα+) = ν(Bv)

and next, as in Section 2, we use
∑
ν(Bv) = ν̃(A(n′)) ≥ const > 0.
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We do not need to assume Hölder continuity of u.

We can apply Theorem C to a class of measures discussed in the following

Theorem D. Let f be a rational mapping of degree d ≥ 2 on the Rie-

mann sphere. Let µ be the Gibbs measure for a Hölder function ϕ : J(f) → R

such that the pressure satisfies P (f, ϕ) > supϕ (see [P3] and [DU]). Then,
if ϕ is not cohomologous to −HD(µ) log |f ′|, we get

HD(µ) < HDhyp(J(f)).

Proof. Theorem D follows from Theorem C under the additional as-
sumption that there exists a geometric coding tree T (z, γ1, . . . , γd), with d
being the degree of f , and there exists a probability measure ν on Σd such
that

(∗) µ = (z∞)∗(ν).

This holds for example if diam(γn(α)) → 0 as n → ∞, uniformly over α
(see [P4]), in particular if z is taken in the basin of attraction to ∞ for f a
polynomial.

We do not know whether µ = (z∞)∗(ν) in the general situation for every
µ of positive Lyapunov exponent.

Let us assume that (∗) holds. Since in view of the Variational Principle
(see [P3] or [DU]), hµ(f) > 0 because P (f, ϕ) > supϕ, we get hν(f) > 0.

Now, to apply Theorem C, it is sufficient to prove that ψ = −ϕ −
HD(µ) log |f ′| satisfies some assumptions sufficient for CLT to hold. Namely,
it is sufficient to prove that

∞∑

n=0

‖Ln(ψ/h) − µ(ψ/h)‖2 <∞(6)

(see [DPU] and [Gor]). Here the norm is in L2(µ) (square integrable func-
tions) and L is the normalized transfer operator, namely the transfer oper-
ator for the function ϕ0 := ϕ−P (f, ϕ)+h◦ f −h, where h is the eigenfunc-
tion for the transfer operator with potential ϕ corresponding to the leading
eigenvalue equal to expP (f, ϕ). By [DPU], h is Hölder.

By [DPU], Ln(ϕ/h) − µ(ϕ/h) = O(exp(−√
n)), even in L∞. (N. Haydn

[Hay] proved that the rate of convergence is in fact exponential.)
So it is sufficient to discuss ‖Ln((log |f ′|)/h) − µ((log |f ′|)/h)‖2.
Note that for any η ∈ L2(µ), using

∑
y∈f−1(x) expϕ0(y) ≡ 1 and the

convexity of the square function, we get

(7) ‖L(η)‖2
2 =

\
|L(η)|2 dµ =

\∣∣∣ ∑

y∈f−1(x)

(expϕ0(y))η(y)
∣∣∣
2
dµ(x)

≤
\ ∑

y∈f−1(x)

(expϕ0(y))|η|2(y) dµ(x) ≤
\
L(|η|2) dµ =

\
|η|2 dµ = ‖η‖2

2.
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We shall use also the following fact (see [DPU, (3.1)]): For every 0 <
α ≤ 1 there exists τ > 0 such that

sup
n≥0

‖Ln(η)‖Hτ
<∞ ∀η ∈ Hα,

where ‖·‖Ha
denotes the Hölder norm in the Banach space Ha of real-valued

Hölder continuous functions on J(f) (Lipschitz for a = 1).
The constant τ has been chosen in [DPU] so that the operators Ln are

continuous. So, by the Banach–Steinhaus theorem (or direct analysis of the
proof of the above estimate in [DPU]), there is a common bound A for the
norms of the family of the operators Ln : Hα → Hτ .

Having this, we can apply Lemma 1 below (Lemma 4.4 from [DPU]) for
functions of the form η = Lk(ξ), k ≥ 0, with C1 depending only on ‖ξ‖Hα

.

Lemma 1. There exist 0 < λ < 1, 0 < γ < 1, C > 0 such that for every

C1 > 0 and Θ > 0, and for n = n(Θ) being the least positive integer greater

than (logΘ − logCC1)/log λ, if µ(η) = 0, ‖η‖Hτ
< C1 and ‖η‖∞ < Θ, then

‖Ln(η)‖∞ < γΘ.

Now we can prove (6). In what follows, C will denote various positive
constants, depending only on f .

Let η := −(log |f ′|)/h− µ(−(log |f ′|)/h) and ηn := min(η,
√
n).

Then, summing over c ∈ Crit(f) ∩ J(f), using µ(B(z, r)) ≤ rκ for a
constant κ > 0 and for all discs B(z, r) small enough (which follows as in
the proof of Lemma 4 in [PUZ]), for all n large enough we get

‖η − ηn‖2
2 ≤

∑

c

∞∑

j=C−1n

C(
√
j)2µ(B(c, exp(−

√
j)))

≤
∑

c

∞∑

j=C−1n

Cj exp(−κ
√
j) ≤ exp(−(κ/2)

√
C−1n).

(C−1 in the summation ranges also depends on inf h, i.e. on ϕ.)
Hence, with the use of (7), we get

‖Ln(η − ηn) − µ(η − ηn)‖2
2 ≤ exp(−(κ/2)

√
C−1n).

Now, let us consider ηn. Its Lipschitz norm, and hence its α-Hölder norm,
is bounded by

C(
√
n+ 1 −√

n)/(exp(−√
n) − exp(−

√
n+ 1)) ≤ C exp

√
n.

Hence ‖Ln(ηn) − µ(ηn)‖Hτ
≤ AC exp

√
n.

Let us iterate Lemma 1 s times starting from ξn := ηn − µ(ηn). We get,
for Θ := ‖ξn‖∞ ≤ 2

√
n and all s,

‖LN(s)(ξn)‖∞ ≤ 2γs
√
n,
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where N(s) := n(Θ) + n(γΘ) + · · · + n(γs−1Θ). We have

N(s) ≤
s−1∑

j=0

(log(γj2
√
n) − logAC −√

n)/log λ(8)

≤ s(s− 1)

2

log γ

log λ
+ s

logn

log(1/λ)
+ s

logAC

log(1/λ)
+ s

√
n

log(1/λ)
.

If we want N ≤ n, it is sufficient that the right hand side in (8) is less than
n, which holds if s satisfies

A1s
2 +A2s logn+A3s+A4s

√
n ≤ n

for positive constants A1, A2, A3, A4 resulting from (8), i.e. if s ≤ C
√
n.

Then
‖Ln(ξn)‖∞ ≤ 2γC

√
n ≤ exp(−ϑ√n).

for ϑ = −(C/2) log γ. Thus we proved the convergence of the series in (6).
Moreover the sequence summed in (6) is O(exp(−ϑ√n)) for a constant ϑ>0.
Hence, setting ψ0 := ψ/h− µ(ψ/h), we get
∞∑

n=1

n
\
ψ0(ψ0 ◦ fn) dµ =

∞∑

n=1

n
\
Ln(ψ0)ψ0 dµ ≤

∞∑

n=1

n‖Ln(ψ0)‖2‖ψ0‖2 <∞.

So by the assumption that ψ is not cohomologous to 0, we get σ2(ψ/h) > 0
(see [PUZ, Lemma 1]).

If we do not assume (∗) we cannot use Theorem C. Fortunately, in the
case we look for a hyperbolic X in J(f) rather than in a proper subset of
J(f), lifting the problem to the shift space is purely formal. So we can use a
counterpart of Theorem C directly on J(f), for u being the logarithm of the
Jacobian of f−1 with respect to µ on J(f) of positive Lyapunov exponent,
for ψ := −u− HD(µ) log |f ′|. This ends the proof of Theorem D.

Conjecture 1. For any rational map f there is at most one f -invariant
probability measure µ on the Julia set J(f), of positive Lyapunov exponent,
such that HD(µ) = HDhyp(J(f)).

In other words, Conjecture 1 says that there is at most one measure µ
which is an equilibrium measure for the potential function

β := −HDhyp(J(f)) log |f ′|.
Indeed, HD(µ) = hµ(f)/χ(µ) (see [Ma]), hence hµ(f) − HD(µ)χ(µ) = 0.
Since P (f |J(f), β) = 0 (see [P5] or [PRS]), µ is an equilibrium measure for
β iff HD(µ) = HDhyp(J(f)).

A stronger conjecture would be if we omit the positive Lyapunov expo-
nent assumption.

Let us note that such a measure µ exists (and is indeed unique) for f
topological Collet–Eckmann (see [PR]). In this case HDhyp(J(f))=HD(J(f))
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(see [P5]), and Jacµ(f) is cohomologous in measurable functions to HD(J(f))
· log |f ′| on J(f). The function giving the cohomology is log dµ/dm, where
m is a unique conformal measure with exponent HDhyp(J(f)) (see [PR]).

Acknowledgements. We wish to thank Juan Rivera-Letelier for sev-
eral useful remarks.
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