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Summary. Emmanuele showed that if Σ is a σ-algebra of sets, X is a Banah spae,and µ : Σ → X is ountably additive with �nite variation, then µ(Σ) is a Dunford�Pettisset. An extension of this theorem to the setting of bounded and �nitely additive vetormeasures is established.A new haraterization of strongly bounded operators on abstrat ontinuous funtionspaes is given. This haraterization motivates the study of the set of (sb) operators.This lass of maps is used to extend results of P. Saab dealing with unonditionallyonverging operators. A haraterization of the existene of a ountably additive, non-strongly bounded representing measure in terms of c0 is presented. This haraterizationresolves a question posed in 1970.1. Introdution. If R is a ring of sets, X is a (real) Banah spae, and
µ : R → X is a �nitely additive set funtion, then µ is said to be stronglyadditive if µ(Ai) → 0 whenever (Ai) is a pairwise disjoint sequene from R.The notion of strong additivity has permeated muh of vetor measure theorysine its introdution by Rikart [24℄ in 1943. The �Notes and Remarks�setion of Chapter 1 of [13℄ ontains an exellent aounting of the mainresults assoiated with strong additivity from 1943 through the mid 70's.We brie�y mention two lassially important results in whih strong ad-ditivity (either expliitly or impliitly) played a pivotal role. In [7℄, Brooksand Jewett established the following generalization of the Vitali�Hahn�Sakstheorem.Theorem 1.1. Suppose that R is a σ-ring and for eah n, µn : R → Xis �nitely additive. Let µn ≪ λ, n = 1, 2, . . . , where λ is a nonnegativebounded �nitely additive measure. If limµn(R) exists for all R ∈ R, then2000 Mathematis Subjet Classi�ation: 46B20, 46B28, 46G10, 28B05.Key words and phrases: vetor measure, representing measure, strongly additive,strongly bounded, (sb) operator. [63℄
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µn ≪ λ uniformly in n. If the µn are strongly additive, then the boundednessassumption on λ may be omitted.In [3℄, Bartle, Dunford, and Shwartz showed that if K is a ompatHausdor� spae and L : C(K) → X is an operator with representing measure
µ, then L is weakly ompat if and only if µ is ountably additive. It is notdi�ult at all to see that a representing measure in this setting is ountablyadditive if and only if it is strongly additive. Thus the Bartle�Dunford�Shwartz theorem an be stated as follows.Theorem 1.2. If T : C(K) → X is an operator with representing mea-sure µ, then T is weakly ompat if and only if µ is strongly additive.It is well known that if E and F are Banah spaes, T : C(K, E) → F isa weakly ompat operator with representing measure m, and m̃(A) denotesthe semivariation ([14, p. 51℄) of m on A, then m̃(Ai) → 0 whenever (Ai) isany pairwise disjoint sequene of Borel subsets of K. That is, if T is weaklyompat, then its representing measure is strongly bounded. (The reader mayonsult [8℄, [9℄, [4℄, [25℄, [1℄, or [5℄ for details onerning representing measuresin this setting.) However, examples in [15℄, [19℄, and [22℄ show that a stronglyadditive representing measure need not be strongly bounded in general. Thestruture of non-strongly additive and non-strongly bounded measures arestudied in this paper.Our notation and terminology is onsistent with that used in Diestel [11℄and in Lindenstrauss and Tzafriri [23℄. We do note spei�ally that the anon-ial unit vetor basis of c0 will be denoted by (en) and the anonial basisof ℓ1 will be denoted by (e∗n).2. Non-strongly additive vetor measures. Joe Diestel and BarbaraFaires did muh to reveal the behavior of a non-strongly additive but �nitelyadditive and bounded vetor measure de�ned on an algebra of sets in [12℄and [13, p. 20℄. Their result makes it lear that the lassial Banah spae
c0 and non-strongly additive vetor measures are losely related. Our �rstresult demonstrates that ℓ1 and hereditary Dunford�Pettis sets are also veryprominent in the struture of a non-strongly additive vetor measure.Reall that a subset A of the Banah spae E is a Dunford�Pettis subsetof E if T (A) is relatively ompat in F whenever T : E → F is a weaklyompat operator [2℄. Further, a sequene (xn) in X is a hereditary Dunford�Pettis sequene if {xni

: i ∈ N} is a Dunford�Pettis subset of [xni
] for allsubsequenes (xni

) of (xn). Emmanuele [17℄ showed that if Σ is a σ-algebra,
X is a Banah spae, and µ : Σ → X is ountably additive and has �nite vari-ation, then µ(Σ) is a Dunford�Pettis subset of X. (The survey artile [10℄ byDiestel ontains a wealth of information about the Dunford�Pettis propertyand Dunford�Pettis sets.) The following theorem establishes an extension
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of Emmanuele's result to the �nitely additive ase and provides substantialadditional information about the nature of a non-strongly additive vetormeasure de�ned on a ring of sets.Theorem 2.1. If R is a ring of sets, m : R → X is a bounded and�nitely additive set funtion, and (Ai) is a pairwise disjoint sequene from R,then (m(Ai)) is a weakly null hereditary Dunford�Pettis set. If (x∗

i ) is anybounded sequene in X∗ so that x∗
i m(Ai) = 1 for all i , then there is asequene (w∗

n) in {x∗
i − x∗

j : i, j ∈ N} so that (w∗
n) ∼ (e∗n) and [w∗

n] isomplemented in X∗. In fat , if ‖m(Ai)‖ 6→ 0, then there is a subsequene
(m(Aij)) of (m(Ai)) and a sequene (f∗

j ) in X∗ so that (m(Aij), f
∗
j ) isbiorthogonal in X × X∗, (m(Aij)) ∼ (ej), and (f∗

j ) ∼ (e∗j).Proof. If m : R → X is bounded and �nitely additive and x∗ ∈ X∗, thenthe salar measure x∗m has �nite variation. Thus x∗m(Ai) → 0 and (m(Ai))is weakly null.Now suppose that Y is a Banah spae, and T : X → Y is a weaklyompat operator. Then T ◦m : R → Y is a �nitely additive vetor measurewith relatively weakly ompat range. By the orollary on p. 1000 of [6℄,
T ◦m is strongly additive. Therefore T ◦m(Ai) → 0, and T ({m(Ai) : i ∈ N})is relatively ompat. Hene {m(Ai) : i ∈ N} is a Dunford�Pettis subsetof X.Now suppose that (m(Aij)) is a subsequene of (m(Ai)), and let Z =
[m(Aij)]. Let A denote the algebra of subsets of N onsisting of the �niteand o�nite sets. Denote the omplement of F by F̃ . De�ne ν : A → Xby

ν(F ) =

{ ∑
j∈F m(Aij) if F is �nite,

−
∑

j∈F̃
m(Aij) if F is o�nite.It is straightforward to hek that ν is bounded and �nitely additive on A. Bythe proof in the preeding paragraph, {ν({j}) : j ∈ N} = {m(Aij) : j ∈ N}is a Dunford�Pettis subset of Z.Next let (x∗

i ) be a bounded sequene in X∗ so that x∗
i (m(Ai)) = 1 foreah i. Sine (m(Ai)) is a weakly null hereditary Dunford�Pettis set whih isnot norm null, we appeal to the disussion on pp. 26�28 of [10℄ and onludethat there is a subsequene (m(Aij)) of (m(Ai)) so that (m(Aij)) ∼ (ej).Certainly

∞∑

j=1

|〈m(Aij), x
∗
ij〉 − 1| < ∞.

Consequently, the main theorem in [20℄ applies and produes a sequene
(w∗

n) in {x∗
i − x∗

j : i, j ∈ N} so that (w∗
n) ∼ (e∗n) and [w∗

n] is omplementedin X∗.



66 E. M. Bator et al.
Now suppose that (m(Aij))

∞
j=1 is as before. Let y∗j denote the oe�-ient funtional (in [(m(Aij))

∞
j=1]

∗) of the Shauder basis element m(Aij),and let f∗
j be a Hahn�Banah extension of y∗j to all of X. Suppose that

(f∗
j ) has a weakly Cauhy subsequene, say (f∗

jk
). Then (f∗

jk+1
− f∗

jk
)

= (u∗
k) is weakly null in X∗. Thus, sine (m(Ai))

∞
i=1 is hereditary Dunford�Pettis, u∗

k(m(Aijk+1
)) → 0 (e.g., see [2℄ or Theorem 1 of [10℄). However,this is a ontradition sine u∗

k(m(Aijk+1
)) = 1 for eah k. Therefore Rosen-thal's ℓ1-theorem ensures that there is a subsequene (f∗

jk
) of (f∗

j ) so that
(f∗

jk
) ∼ (e∗k).Corollary 2.2 ([16, p. 318℄). If Σ is a σ-algebra and µ : Σ → X isweakly ountably additive, then µ is ountably additive.Proof. Note �rst that a weakly ountably additive set funtion µ : Σ →

X is bounded and �nitely additive. Further, as was noted earlier, a weaklyountably additive set funtion is ountably additive if and only if it isstrongly additive. Suppose then that ε > 0 and (Ai) is a pairwise dis-joint sequene from Σ so that ‖µ(Ai)‖ > ε for eah i. Sine (µ(Ai)) isa hereditary Dunford�Pettis sequene whih is not norm null, we may as-sume that (µ(Ai)) ∼ (ei). This immediately leads to a ontradition sine
(
∑n

i=1 µ(Ai))
∞
n=1 onverges weakly (to µ(

⋃∞
i=1 Ai)) and (

∑n
i=1 ei)

∞
n=1 doesnot onverge weakly.Corollary 2.3. If R is a ring of sets, eah of E and F is a Banahspae, L(E, F ) is the Banah spae of all bounded linear operators from Eto F , and m : R → L(E, F ) is a �nitely additive vetor measure with �nitesemivariation whih is not strongly bounded , then c0 embeds isomorphiallyin F .Proof. Suppose that (Ai) is a pairwise disjoint sequene from R and

ε > 0 so that m̃(Ai) > ε for eah i. Let (Aij)
ni

j=1 be a partition of Ai and let
(xij)

ni

j=1 be norm one vetors in X so that
∥∥∥

ni∑

j=1

m(Aij)xij

∥∥∥ > ε

for eah i. Use the partitions of (Ai) to form a natural partition of N:
{1, . . . , n1, n1 + 1, . . . , n1 + n2, n1 + n2 + 1, . . . , n1 + n2 + n3, . . .}.Let n0 = 0, and let Pi = {j ∈ N : n0 + n1 + · · · + ni−1 < j ≤ n0 + · · · + ni}.If S is a �nite subset of N, set

µ(S) =

∞∑

i=1

∑

j∈Pi∩S

m(Ai(j−(n0+···+ni−1)))xi(j−(n0+···+ni−1)).
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If S̃ is �nite, set µ(S) = −µ(S̃). Then µ is bounded, �nitely additive, andnot strongly additive on the �nite-o�nite algebra of subsets of N. Then
(
∑ni

j=1 m(Aij)xij)
∞
i=1 is a hereditary Dunford�Pettis sequene in F whih isnot norm null. Thus F ontains an isomorphi opy of c0.It is well known that there are (re�exive) in�nite-dimensional Banahspaes E so that ℓ∞ embeds isomorphially in L(E, E) (e.g., see [18, p. 267℄,and [17, Theorem 1℄). In fat, if E is any in�nite-dimensional Banah spaewith an unonditional Shauder deomposition [23, p. 47℄, then the nexttheorem and orollary show that L(E, E) must ontain an isomorphi opyof ℓ∞. These results also strengthen an impliation in Theorem 6 of [18℄.Theorem 2.4. If E is an in�nite-dimensional Banah spae and Fis an arbitrary Banah spae, then ℓ∞ embeds isomorphially in L(E, F )if and only if there is a seminormalized sequene (Tn) in L(E, F ) so that∑

|〈Tn(x), y∗〉| < ∞ for eah x ∈ E and y∗ ∈ F ∗.Proof. Suppose that (Tn) is as in the statement of the theorem.Sine ∑∞
n=1 Tn(x) is weakly unonditionally onvergent for all x ∈ E,

sup{‖
∑

n∈F Tn‖ : F is a �nite subset of N} < ∞. Let R denote the ringof all �nite subsets of N. De�ne µ : R → L(E, F ) by
µ(A) =

∑

n∈A

Tn, A 6= ∅,

µ(∅) = 0.Certainly µ is �nitely additive and bounded. Sine (Tn) is seminormalized, µis not strongly additive. Therefore c0 →֒ L(E, F ), and, by Theorem 1 of [21℄,
ℓ∞ →֒ L(E, F ).Conversely, suppose that φ : ℓ∞ → L(E, F ) is an isomorphism, and let
Tn = φ(en) for eah n. Sine φ is an isomorphism, (Tn) is seminormalized.Sine ∑

en is weakly unonditionally onvergent, ∑
|〈Tn(x), y∗〉| < ∞ for

x ∈ E and y∗ ∈ F ∗.Corollary 2.5. Suppose the in�nite-dimensional Banah spae E hasan unonditional Shauder deomposition (En)∞n=1 and Pn : E → En is theprojetion of E onto En. If F is any Banah spae for whih there is anoperator T : E → F so that ∑∞
n=1 TPn does not onverge in norm, then ℓ∞embeds isomorphially in L(E, F ). In partiular , ℓ∞ embeds isomorphiallyin L(E, E).We onlude this setion by noting that 2.3 and the proof of 2.4 showthat if E is in�nite-dimensional, m : R → L(E, F ) is �nitely additive with�nite semivariation, and m is not strongly bounded, then ℓ∞ →֒ L(E, F ).
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3. Strongly bounded measures and (sb) operators. The �rst theo-rem in this setion uses the Dvoretzky�Rogers theorem [11, Chapter VI℄ andtehniques in [15℄, [19℄, and [22℄ to establish the onverse of Corollary 2.3 andto answer a question posed in a problem session at a meeting of the Amer-ian Mathematial Soiety at the University of Illinois in the fall of 1970.Old examples of Dobrakov [15℄ and Lewis [19℄ showed that there exist rep-resenting measures whih are ountably additive and not strongly bounded.However, no haraterization of the spaes whih support a ountably ad-ditive and non-strongly bounded representing measure has been given. Inthis setion, we give a omplete desription of pairs (E, F ) of Banah spaesand ompat Hausdor� spaes H so that there exists a ountably additiverepresenting measure m : Σ → L(E, F ) whih fails to be strongly bounded.This result highlights a theme partiularly well enuniated in Theorem 2.1of Saab [25℄.Theorem 3.1. If H is an in�nite ompat Hausdor� spae with Borelsets Σ, X is an in�nite-dimensional Banah spae, and Y is a Banahspae, then there exists a ountably additive, non-strongly bounded repre-senting measure m : Σ → L(X, Y ) if and only if there exists an isomorphiembedding T : c0 → Y .Proof. Suppose that T : c0 → Y is an isomorphi embedding, and let

yn = T (en) for eah n ∈ N. Let (tn) be a sequene of distint pointsin H and ∑
x∗

n be an unonditionally onverging series in X∗ suh that∑∞
n=1 ‖x

∗
n‖ = ∞. Let (Ni) be a pairwise disjoint sequene of �nite subsetsof N so that(i) ‖
∑

n∈Z∩Ni
x∗

n‖ < 1/2i for all Z ⊂ N and for eah i,(ii) 1 ≥
∑

n∈Ni
‖x∗

n‖ > 1/2 for eah i.If A ∈ Σ and x ∈ X, de�ne
m(A)(x) =

∞∑

i=1

( ∑

n∈Ni∩Â

x∗
n(x)

)
yi,

where Â = {n : tn ∈ A}. It is lear that m(A) is a bounded linear operatorand m is �nitely additive. Further, (i) above and the fat that (yi) ∼ (ei)ensure that m is ountably additive. Also
m̃(H) ≤ sup

i

{ ∑

n∈Ni

‖x∗
n‖

}
‖T‖ ≤ ‖T‖.Moreover, if x ∈ X and y∗ ∈ Y ∗, then 〈m(·)x, y∗〉 : Σ → R is regular sine itis a onvergent in�nite sum of point-mass measures. However, (ii) guaranteesthat m is not strongly bounded. In fat, if Bi = {tj : j ∈ Ni}, then m̃(Bi) =

(
∑

n∈Ni
‖x∗

n‖)‖yi‖.
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Conversely, suppose that there is a ountably additive representing mea-sure m : Σ → L(X, Y ) so that m is not strongly bounded. An appeal toCorollary 2.3 �nishes the proof.We remark that the notion of semivariation m̃(A) used in this paperand in Dinuleanu [14℄ is not equivalent to the semivariation ‖m‖(A) whihis de�ned in Diestel and Uhl ([13, p. 2℄). Perhaps it is appropriate at thispoint to note that a representing measure is ountably additive if and onlyif ‖m‖(Ai) → 0 for eah pairwise disjoint sequene (Ai) from Σ.In our next theorem, we state a haraterization of strongly boundedoperators on C(H, X) whih does not seem to have been notied previously.In this theorem, it is helpful to reall that if E and F are Banah spaes, thenthe algebrai tensor produt E⊗F an be viewed as a subset of L(E∗, F ). Theompletion of E⊗F with respet to this identi�ation and this operator normis alled the injetive tensor produt ompletion�or the least rossnormompletion�of E⊗F and is denoted by E⊗λ F . In partiular, we note that

C(H, X) ∼= C(H) ⊗λ X (e.g., see Chapter VIII of [13℄).Theorem 3.2. If m ↔ T : C(H, X) → Y is a bounded linear operator ,then m is strongly bounded if and only if T (fi) → 0 whenever (fi) is abounded sequene in C(H) ⊗λ X so that fi(ϕ) → 0 for eah ϕ ∈ C(H)∗.This theorem follows almost immediately from the following lemmas. If
µ is a salar measure on H and f is Bohner integrable with respet to µ,we denote this integral by (B)-T

H
fdµ.Lemma 3.3. If f ∈ C(H, X) and ϕ ∈ C(H)∗, then f(ϕ) = (B)-T

H
f dµ,where µ is the unique member of rca(Σ) whih represents ϕ.Proof. Let f =

∑n
i=1 fi ⊗ xi, where fi ∈ C(H) and xi ∈ X for eah i.Let ϕ ∈ C(H)∗ and let µ be the unique element in rca(Σ) suh that ϕ(g) =T

H
g dµ for every g ∈ C(H). Then

f(ϕ) =

n∑

i=1

fi ⊗ xi(ϕ) =

n∑

i=1

ϕ(fi)xi

=
n∑

i=1

( \
H

fi dµ
)
xi =

n∑

i=1

[
(B)- \

H

(fi · xi) dµ
]

= (B)- \
H

f dµ.

The fat that f(ϕ) = (B)-T
H

f dµ for eah f ∈ C(H, Y ) readily follows.Lemma 3.4. If (fi) is a bounded sequene in C(H, X), then fi(h) → 0for every h ∈ H if and only if fi(ϕ) → 0 for every ϕ ∈ C(H)∗.
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Proof. Let (fi) be a bounded sequene in C(H, X). Suppose fi(h) → 0for every h ∈ H. Let ϕ ∈ C(H)∗, and let µ be the unique element in

rca(Σ) suh that ϕ(g) =
T
H

g dµ for every g ∈ C(H). It then follows fromthe vetor-valued Dominated Convergene Theorem that fi(ϕ) =
T
H

fi dµ
→ 0 for eah ϕ ∈ C(H)∗.For the reverse diretion, observe that for eah h ∈ H one an de�ne
ĥ ∈ C(H)∗ by ĥ(f) ≡ f(h) for every f ∈ C(H). It is readily seen that if
f ∈ C(H, Y ) then f(ĥ) = f(h). Hene if fi(ϕ) → 0 for every ϕ ∈ C(H)∗,then fi(h) → 0 for every h ∈ H.In Theorem 2.8 of [1℄, the authors showed that a representing measure
m ↔ T is strongly bounded if and only if T (fi) → 0 for eah boundedsequene (fi) suh that fi(h) → 0 for eah h ∈ H. Theorem 3.2 now followseasily from the preeding lemmas.We remark that Theorem 3.2 makes it plain that an operator

T : C(H) ⊗λ X (⊆ L(C(H)∗, X)) → Yis strongly bounded preisely when T maps sequenes whih onverge inthe strong operator topology ([16, pp. 475�476℄) into norm onvergent se-quenes. In general, if Z is a Banah spae and T : X ⊗λ Y → Z is abounded linear operator, we say that T is (sb) if T (µi) → 0 whenever (µi) isany bounded sequene in X ⊗λ Y (⊆ L(X∗, Y )) so that µi(x
∗) → 0 for eah

x∗ ∈ X∗. The following example is somewhat surprising onsidering the fatthat weakly ompat�even weakly ompletely ontinuous and unondition-ally onverging�operators on C(H, X) are strongly bounded [8℄.Example 3.5. Let X be an in�nite-dimensional re�exive spae, Y be anyBanah spae and let y∗0 ∈ Y ∗ be suh that y∗0 6= 0. De�ne S : Y ⊗λX → X by
S(µ) = µ(y∗0). Then S is linear, bounded by ‖y∗0‖, and S is weakly ompatsine X is re�exive. (It is easily heked that S is (sb).)Let I : X ⊗λ Y → Y ⊗λ X be the natural isometry, and T : X ⊗λ Y → Xbe de�ned by T = S ◦ I. Certainly T is weakly ompat. To see that T isnot (sb), hoose y0 ∈ Y suh that y∗0(y0) 6= 0 and hoose (xn) in X suhthat (xn) is weakly null but not norm null. Consider the sequene (xn⊗y0)nin X ⊗λ Y . It is bounded sine ‖xn ⊗ y0‖X⊗λY ≤ ‖xn‖ ‖y0‖ and (xn) isbounded in X. Also, if x∗ ∈ X∗ then (xn ⊗ y0)(x

∗) = x∗(xn)y0
‖·‖
−→ 0.However, T (xn ⊗ y0) = (y0 ⊗ xn)(y∗0) = y∗0(y0)xn 6→ 0 in norm.However, as the next theorem demonstrates, ompletely ontinuous op-erators on X ⊗λ Y are (sb).Theorem 3.6. If T : X ⊗λ Y → Z is ompletely ontinuous, then Tis (sb).
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Proof. Suppose T : X ⊗λ Y → Z is ompletely ontinuous and let (ϕi)be a bounded sequene in X ⊗λ Y suh that ϕi(x

∗) → 0Y for every x∗ ∈ X∗.Let K = (BX∗ , w∗). Then we may onsider X⊗λY to be a losed subspae of
C(K) ⊗λ Y ∼= C(K, Y ). As ϕi(x

∗)
‖·‖
−→ 0Y for every x∗ ∈ BX∗ , ϕi(x

∗)
w
→ 0Yfor every x∗ ∈ BX∗ . It follows from Lemma 3.2 in [1℄ that (ϕi) is weaklynull in C(K, Y ), and thus in X ⊗λ Y . Sine T is ompletely ontinuous,

T (ϕi)
‖·‖
−→ 0Y . Therefore T is (sb).At this time we point out that the olletion of (sb) operators is a losedlinear subspae of L(X ⊗λ Y, Z). It is also lear that if T : X ⊗λ Y → Z is(sb) and S : Z → W then S ◦ T is (sb). However in Example 3.5 we de�nedoperators S : Y ⊗λ X → X and I : X ⊗λ Y → Y ⊗λ X suh that S is (sb),but T = S ◦ I is not (sb). This example also indiates that the de�nition ofan (sb) operator is dependent on the �rst fator in the tensor produt.Paulette Saab [25℄ showed that if m ↔ T : C(H, X) → Y is a stronglybounded operator, then (1) T is unonditionally onverging if c0 does notembed in X and (2) T is ompletely ontinuous if X is a Shur spae. Thenext theorem generalizes eah of these results and ontinues the theme ofCorollary 2.3 and Theorem 3.1.Theorem 3.7.(i) The Banah spae Y does not ontain c0 if and only if for eah pair
(X, Z) of Banah spaes it follows that every operator T : X⊗λY → Zwhih is (sb) is also unonditionally onverging.(ii) The Banah spae Y is a Shur spae if and only if for eah pair
(X, Z) of Banah spaes it follows that every operator T : X ⊗λ Y →Zwhih is (sb) is also ompletely ontinuous.Proof. (i) Suppose T : X ⊗λ Y → Z is (sb) and further suppose that c0does not embed into Y . To see that T is unonditionally onverging, it suf-�es to show that whenever ∑∞

i=1 µi is a weakly unonditionally onvergingseries in X ⊗λ Y , then T (µi) → 0. Let ∑∞
i=1 µi be a weakly unondition-ally onverging series in X ⊗λ Y and let x∗ ∈ X∗. Then (µi) is bounded in

X ⊗λ Y , and ∑∞
i=1 µi(x

∗) is weakly unonditionally onverging in Y . Sine
c0 does not embed into Y , ∑∞

i=1 µi(x
∗) is unonditionally onverging. Thus

µi(x
∗)

‖·‖
−→ 0 for eah x∗ ∈ X∗, and sine T is (sb), T (µi)

‖·‖
−→ 0. Thus T isunonditionally onverging.Conversely, if eah (sb) operator is unonditionally onverging, then everystrongly bounded operator m ↔ T : C(K, Y ) → Z is unonditionally on-verging. Theorem 2.1 of [25℄ shows that Y does not ontain c0.(ii) Again assume that T : X ⊗λ Y → Z is (sb) and further suppose that

Y has the Shur property. Let (µi) be a weakly null sequene in X ⊗λ Y
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and let x∗ ∈ X∗. Then (µi(x

∗)) is weakly null in Y . Sine Y has the Shurproperty, µi(x
∗)

‖·‖
−→ 0. It follows that T (µi)

‖·‖
−→ 0 sine T is (sb). Therefore

T is ompletely ontinuous.The onverse follows exatly as in part (i).
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