Intertwining Multiplication Operators on Function Spaces

by
Bahman YOUSEFI and Leila BAGHERI

Presented by Stanistaw KWAPIEN

Summary. Suppose that X is a Banach space of analytic functions on a plane domain Ω. We characterize the operators T that intertwine with the multiplication operators acting on X.

Introduction. Suppose that the set of analytic polynomials is dense in a Banach space X of functions analytic on a plane domain Ω, and suppose that for each $\lambda \in \Omega$ the linear functional of evaluation at $\lambda, e(\lambda)$, is bounded on X. We further assume that X contains the constant functions and that multiplication by the independent variable z defines a bounded linear operator M_{z} on X. Also, we assume that for any fixed $n \in \mathbb{N}$, every f in X has a unique decomposition $f=\bigoplus_{i=0}^{n-1} f_{i}$ where $f_{i} \in X_{i}$ and X_{i} is the closed linear span of the set $\left\{z^{n k+i}: k \geq 0\right\}$ in X for $i=0,1, \ldots, n-1$.

The weighted Hardy spaces, $H^{p}(\beta)$, are examples of such spaces. For more information on such spaces see $[5,7,8]$.

Throughout this paper, by a Banach space of analytic functions on a plane domain Ω we mean one satisfying the above conditions. For some results on such spaces see $[1,2,3,6,10]$.

A complex-valued function φ on Ω for which $\varphi f \in X$ for every $f \in X$ is called a multiplier of X. Every multiplier φ of X determines a multiplication operator M_{φ} on X by $M_{\varphi} f=\varphi f, f \in X$. The set of all multipliers of X is denoted by $M(X)$. Clearly $M(X) \subset H^{\infty}(\Omega)$, where $H^{\infty}(\Omega)$ is the space of all bounded analytic functions on Ω. In fact $\|\varphi\|_{\infty} \leq\left\|M_{\varphi}\right\|$. A good source on this topic is [4].

[^0]Let $B(X)$ be the set of all bounded operators on X. If $T \in B(X)$ and $T M_{\varphi}=-M_{\varphi} T$ or $T M_{\varphi^{2}}=M_{\varphi^{2}} T$ where $\varphi \in H^{\infty}(\Omega)$, then under suitable conditions the structure of T was determined in [9]. In this paper we want to characterize the operators T satisfying $T M_{\varphi}=M_{\psi} T$ where φ and ψ are multipliers of X. Specially, the case $\psi=a \varphi$ is considered.

Main results. In this section we will characterize the structure of operators that intertwine with the multiplication operators acting on function spaces.

Note that by our assumptions each $f \in X$ has a unique decomposition $f=\bigoplus_{i=0}^{n-1} f_{i}$ where $f_{i} \in X_{i}$ and X_{i} is the closed linear span of the set $\left\{z^{n k+i}: k \geq 0\right\}$ in X for $i=0, \ldots, n-1$. From now on suppose that X is a Banach space of analytic functions on the open unit disc U and $0<|a| \leq 1$. Assume further that the composition operators C_{φ} and $C_{a \varphi}$ are bounded on X where φ is a multiplier of X.

Theorem 1. Suppose that φ is a multiplier of X and let $T \in B(X)$ be such that $T M_{\varphi^{n}}=a^{n} M_{\varphi^{n}} T$ for some positive integer n. Also consider f in X with decomposition $\bigoplus_{i=0}^{n-1} f_{i}$ where $f_{i} \in X_{i}$ for $i=0, \ldots, n-1$. Then there exist functions $u_{0}, u_{1}, \ldots, u_{n-1}$ such that

$$
T C_{\varphi} f=u_{0} C_{a \varphi} f_{0}+u_{1} C_{a \varphi} f_{1}+\cdots+u_{n-1} C_{a \varphi} f_{n-1} .
$$

Proof. Let $u_{0}=T(1)$ and put

$$
\begin{equation*}
\psi_{i}=\left(T M_{\varphi^{i}}-a^{i} M_{\varphi^{i}} T\right)(1) \tag{*}
\end{equation*}
$$

for $i=1, \ldots, n-1$. For all integers $k \geq 0$ we have

$$
\begin{aligned}
T C_{\varphi} z^{n k} & =T\left(\varphi^{n k}\right)=\left(T M_{\varphi}^{n k}\right)(1) \\
& =\left(a^{n k} M_{\varphi}^{n k} T\right)(1)=u_{0} a^{n k} C_{\varphi} z^{n k}=u_{0} C_{a \varphi} z^{n k}
\end{aligned}
$$

Also, for all $i=1, \ldots, n-1$, by using $(*)$ we get

$$
\begin{aligned}
T C_{\varphi} z^{i}=T\left(\varphi^{i}\right)=\left(T M_{\varphi^{i}}\right)(1) & =\psi_{i}+\left(a^{i} M_{\varphi^{i}} T\right)(1) \\
& =\psi_{i}+u_{0} a^{i} C_{\varphi} z^{i} \\
& =\psi_{i}+u_{0} C_{a \varphi} z^{i}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
T C_{\varphi} z^{n k+i} & =\left(T M_{\varphi}^{n k+i}\right)(1) \\
& =a^{n k} M_{\varphi}^{n k}\left(\psi_{i}+u_{0} C_{\varphi} C_{a z} z^{i}\right) \\
& =\psi_{i} C_{\varphi} C_{a z} z^{n k}+u_{0} C_{\varphi} C_{a z} z^{n k+i} \\
& =\left(u_{0}+\frac{\psi_{i}}{(a \varphi)^{i}}\right) C_{a \varphi} z^{n k+i}
\end{aligned}
$$

for all integers $k \geq 0$ and $i=1, \ldots, n-1$. Now consider a polynomial p with decomposition $p=\bigoplus_{i=0}^{n-1} p_{i}$ where $p_{i} \in X_{i}$ for $i=0, \ldots, n-1$. So we have

$$
\begin{aligned}
T C_{\varphi} p & =T C_{\varphi} p_{0}+T C_{\varphi} p_{1}+\cdots+T C_{\varphi} p_{n-1} \\
& =u_{0} C_{a \varphi} p_{0}+u_{1} C_{a \varphi} p_{1}+\cdots+u_{n-1} C_{a \varphi} p_{n-1}
\end{aligned}
$$

where $u_{i}=u_{0}+\psi_{i} /(a \varphi)^{i}$ for $i=1, \ldots, n-1$. Since the set of analytic polynomials is dense in X, we get

$$
T C_{\varphi} f=u_{0} C_{a \varphi} f_{0}+u_{1} C_{a \varphi} f_{1}+\cdots+u_{n-1} C_{a \varphi} f_{n-1}
$$

This completes the proof.
The following corollary is an immediate consequence of the proof of Theorem 1, which gives the structure of the functions u_{i} in Theorem 1.

Corollary 2. Under the conditions of Theorem 1 , for $f=\bigoplus_{i=0}^{n-1} f_{i}$ in X, we have

$$
T C_{\varphi} f=T(1) C_{a \varphi} f_{0}+\sum_{i=1}^{n-1}\left(T(1)+\frac{\left(T M_{\varphi^{i}}-a^{i} M_{\varphi^{i}} T\right)(1)}{(a \varphi)^{i}}\right) C_{a \varphi} f_{i}
$$

Theorem 3. Let φ be a multiplier of X and $T \in B(X)$ be such that $T M_{\varphi^{n}}=a^{n} M_{\varphi^{n}} T$. If $C_{a \varphi}$ is invertible and $T M_{\varphi}-a M_{\varphi} T$ is compact, then $T C_{\varphi}=M_{u_{0}} C_{a \varphi}$ where $u_{0}=T(1)$.

Proof. Let $f \in X$ and $f=\bigoplus_{i=0}^{n-1} f_{i}$ where $f_{i} \in X_{i}$ for $i=0,1, \ldots, n-1$. By Theorem 1, we have

$$
\begin{equation*}
T C_{\varphi} f=u_{0} C_{a \varphi} f_{0}+u_{1} C_{a \varphi} f_{1}+\cdots+u_{n-1} C_{a \varphi} f_{n-1} \tag{**}
\end{equation*}
$$

where

$$
\begin{aligned}
u_{0} & =T(1) \\
u_{i} & =u_{0}+\psi_{i} /(a \varphi)^{i} \\
\psi_{i} & =\left(T M_{\varphi^{i}}-a^{i} M_{\varphi^{i}} T\right)(1)
\end{aligned}
$$

for $i=1, \ldots, n-1$. Put

$$
S=\left(T M_{\varphi}-a M_{\varphi} T\right) C_{\varphi}
$$

Then S is compact and we have

$$
\begin{aligned}
S f= & T C_{\varphi}(z f)-a M_{\varphi} T C_{\varphi} f \\
= & u_{0} C_{a \varphi}\left(z f_{n-1}\right)+u_{1} C_{a \varphi}\left(z f_{0}\right)+\cdots+u_{n-1} C_{a \varphi}\left(z f_{n-2}\right) \\
& -a \varphi\left(u_{0} C_{a \varphi} f_{0}+\cdots+u_{n-1} C_{a \varphi} f_{n-1}\right)
\end{aligned}
$$

Now by substituting $u_{0}+\psi_{i} /(a \varphi)^{i}$ for u_{i} in the above relation, we get

$$
\begin{aligned}
S f= & \psi_{1} C_{a \varphi} f_{0}+\left(\frac{\psi_{2}}{a \varphi}-\psi_{1}\right) C_{a \varphi} f_{1}+\cdots \\
& +\left(\frac{\psi_{n-1}}{(a \varphi)^{n-2}}-\frac{\psi_{n-2}}{(a \varphi)^{n-3}}\right) C_{a \varphi} f_{n-2}-\frac{\psi_{n-1}}{(a \varphi)^{n-2}} C_{a \varphi} f_{n-1}
\end{aligned}
$$

Since S is compact, so also are

$$
\left.M_{\psi_{1}} C_{a \varphi}\right|_{X_{0}}=\left.S\right|_{X_{0}} \quad \text { and }\left.\quad M_{\psi_{1}} M_{(a \varphi)^{n}} C_{a \varphi}\right|_{X_{0}} .
$$

But

$$
\left.M_{\psi_{1}} M_{(a \varphi)^{n}} C_{a \varphi}\right|_{X_{i}}=\left.\left.M_{(a \varphi)^{i}} M_{\psi_{1}} C_{a \varphi}\right|_{X_{0}} M_{z^{n-i}}\right|_{X_{i}},
$$

and thus indeed $M_{\psi_{1}(a \varphi)^{n}} C_{a \varphi}$ is compact on X. This implies that $M_{\psi_{1}(a \varphi)^{n}}$ is compact on X, since $C_{a \varphi}$ is invertible. Now by the Fredholm alternative we get $(a \varphi)^{n} \psi_{1}=0$, which implies that $\psi_{1}=0$, because $a \varphi$ is univalent. By the same method we can see that $\psi_{1}=\psi_{2}=\cdots=\psi_{n-1}=0$, so $u_{i}=u_{0}$ for all $i=1, \ldots, n-1$. Now ($* *$) implies that $T C_{\varphi}=M_{u_{0}} C_{a \varphi}$ and this completes the proof.

Corollary 4. Let $T \in B(X)$ be such that $T M_{z^{n}}=a^{n} M_{z^{n}} T$ where $0<|a| \leq 1$. If $T M_{z}-a M_{z} T$ is compact, then $T=M_{u_{0}} C_{a z}$ where $u_{0}=T(1)$.

References

[1] P. S. Bourdon and J. H. Shapiro, Spectral synthesis and common cyclic vectors, Michigan Math. J. 37 (1990), 71-90.
[2] B. Khani Robati, On the structure of certain operators on spaces of analytic functions, Asian J. Math., submitted.
[3] S. Richter, Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc. 304 (1987), 585-616.
[4] A. Shields and L. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1971), 777-788.
[5] B. Yousefi, Bounded analytic structure of the Banach spaces of formal power series, Rend. Circ. Mat. Palermo 51 (2002), 403-410.
[6] -, Multiplication operators on Hilbert spaces of analytic functions, Arch. Math. (Basel) 83 (2004), 536-539.
[7] -, Strictly cyclic algebra of operators acting on Banach spaces $H^{p}(\beta)$, Czechoslovak Math. J. 54 (129) (2004), 261-266.
[8] -, On the eighteenth question of Allen Shields, Internat. J. Math. 16 (2005), 37-42.
[9] B. Yousefi and S. Foroutan, On the multiplication operators on spaces of analytic functions, Studia Math. 168 (2005), 187-191.
[10] K. Zhu, Irreducible multiplication operators on spaces of analytic functions, J. Operator Theory 51 (2004), 377-385.

Bahman Yousefi
Department of Mathematics
College of Sciences
Shiraz University
Shiraz 71454, Iran
E-mail: byousefi@shirazu.ac.ir

Leila Bagheri
Department of Mathematics Shiraz Payame-Noor University

Shiraz, Iran
E-mail: sky_sun_1980@yahoo.com

[^0]: 2000 Mathematics Subject Classification: Primary 47B35; Secondary 47B38.
 Key words and phrases: Banach spaces of analytic functions, bounded point evaluation, Fredholm alternative, multiplication operators.

