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A Constrution of a Skewa�ne Struture inLaguerre GeometrybyAndrzej MATRA�Presented by Jan RYCHLEWSKI
Summary. J. Andre onstruted a skewa�ne struture as a group spae of a normallytransitive group. In this paper his onstrution is used to desribe the struture of the setof irles not passing through a point of a Laguerre plane. Su�ient onditions to ensurethat this struture is a skewa�ne plane are given.Introdution. The derived a�ne plane assoiated with a point p of aLaguerre plane onsists of all points nonparallel to p and, as lines, all irlespassing through p (extended by all parallel lasses not passing through p).A natural question is to haraterize the struture of the set of irles notpassing through p by some linear geometry.In the wide lass of nonommutative (in general) linear strutures on-struted by J. Andre (f. [1℄) there are skewa�ne planes whih are goodandidates for obtaining the haraterization we are looking for. One of thelassial examples of a skewa�ne plane is the set of irles of the Eulideanplane with enters as basepoints (f. [1℄). Under weak onditions Wilbrink(f. [12℄) onstruted, at a �xed point of a Minkowski plane, a skewa�neplane suh that any straight line intersets any nonparallel line in exatlyone point. This is known as a residual neara�ne plane. In the known ex-amples (irles and hyperbolas) the onstrution is based on the observationthat any irle (resp. hyperbola) has exatly one enter whih an be takenas the basepoint of the line orresponding to a given oni. This enter isthe image of our point p in the symmetry with respet to the irle. In thease of Laguerre planes this onstrution annot be used, sine the image2000 Mathematis Subjet Classi�ation: Primary 51B20.Key words and phrases: miquelian Laguerre plane, symmetry axiom.[277℄
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of the point p in the symmetry is parallel to p and the symmetry does notdistinguish any point whih ould be taken as a basepoint. It seems naturalto investigate a symmetry with two pointwise �xed generators. However, two�xed generators do not de�ne a symmetry of a Laguerre plane. To make theonstrution uniquely determined we �x an invariant penil 〈p,K〉 of irlestangent at p. The basepoint of a line orresponding to a irle (whih doesnot pass through p) is obtained as the point of tangeny of the irle withthe unique irle of the penil 〈p,K〉. In ontrast to Möbius and Minkowskiplanes, the basepoints belong to the orresponding irles, moreover, theresidual skewa�ne plane is not determined by the point p alone, but by thepenil 〈p,K〉.A large lass of regular skewa�ne planes was given in [1℄, [10℄ as the groupspae V(G) of a normally transitive group G. In suh skewa�ne planes aline is obtained as the union of the basepoint and the orbit of another pointwith respet to the stabilizer of the basepoint.The starting point of our paper is a group G of automorphisms of a La-guerre plane suh that V(G) ontains the set of irles not passing through
p as lines. The group G �xes points parallel to p and the penil 〈p,K〉.Minimal onditions for the group G are transitivity (all it (A1)) and ir-ular transitivity for some irle of the penil 〈p,K〉 (all it (A2)). The lastaxiom, (A3), is the ondition that for any L ∈ C with p /∈ L there existsexatly one M ∈ 〈p,K〉 tangent to L. It guarantees that eah irle notpassing through p orresponds to some line of V(G). We show that underaxioms (A1)�(A3) the group G ontains L-translations and L-strains �xingthe penil 〈p,K〉. This group is the subdiret produt of the normal sub-group of L-translations and an arbitrary subgroup of L-strains with a �xedenter (f. Theorem 3.2). We give an example of a nonovoidal Laguerre planewhih satis�es our axioms for some penil 〈p,K〉 (f. Remark 2.2). MiquelianLaguerre planes of harateristi distint from 2 satisfy the axioms for anypenil (f. Remark 2.1).We use skewa�ne planes to get a haraterization of tangeny in La-guerre planes. We obtain a ondition determining whether a irle throughtwo points tangent to a irle an be onstruted (f. Theorem 4.2). Asan appliation we also show that the tangeny points of the irles ofpenils 〈p,K〉 and 〈q, x〉, where q is parallel to p, form a irle (f. The-orem 4.1).Aknowledgements. The author wishes to thank the reviewer formany helpful suggestions.1. Notations and basi de�nitions. A Laguerre plane is a struture
L = (P, C,∼), where P is a set of points denoted by small Latin letters,
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C ⊂ 2P is a set of irles denoted by apital Latin letters, and ∼ is anequivalene relation on P alled parallelity (f., for example, [4℄).(We use the notation ∼ to avoid onfusion whih would result from theuse of the ommon notation �‖� for the parallelity of points of a Laguerreplane and of lines on a skewa�ne plane.)The equivalene lasses of the relation ∼, alled generators, are denotedby apital Latin letters. The following onditions must be satis�ed:(1) Three pairwise nonparallel points are joined by a unique irle.(2) For every irle K and any two nonparallel points p ∈ K, q /∈ Kthere is preisely one irle L passing through q whih touhes K at

p (i.e. K ∩ L = {p}).(3) For any point p and irle K there exists exatly one point q suhthat p ∼ q and q ∈ K.(4) There exists a irle ontaining at least three points, but not allpoints.The unique generator ontaining the point p is denoted by p. If a, b, c arepairwise nonparallel points, the unique irle ontaining them is denoted by
(a, b, c)◦. The irle tangent to a irle K and passing through points p, q(p ∈ K, q /∈ K, p ≁ q) is denoted by (p,K, q)◦. If p ∈ K, the symbol
〈p,K〉 stands for the penil of irles tangent to K at the point p. If x, yare nonparallel, then the set of irles ontaining x, y is alled the penil ofirles with verties x, y and is denoted by 〈x, y〉. For a point x and a irle Kthe unique point of K parallel to x (whih exists by (3)) is denoted by xK.The derived plane at a point p of a Laguerre plane L, denoted by Ap, on-sists of all points not parallel to p and, as lines, all irles passing through p(exluding p) and all generators not passing through p. This is an a�neplane.An automorphism of a Laguerre plane is a permutation of the set ofpoints whih maps irles to irles (and generators to generators). An au-tomorphism φ is alled entral if there exists a point p suh that φ induesa entral ollineation of Ap, the projetive extension of the derived a�neplane Ap.An L-translation is a entral automorphism of a Laguerre plane L whih�xes the points of p and indues a translation of Ap for some point p. Thegroup of translations whih �x the irles of a penil 〈p,K〉 (respetively thefamily of generators G) is denoted by T(p,K) (resp. T(p,G)) (f. [6℄).An L-strain with respet to a generator is a entral automorphism of
L whih �xes the points of some generator p and the irles of some penil
〈q,M〉 (p ≁ q). The group of all L-strains �xing the points of p and the irlesof the penil 〈q,M〉 is denoted by ∆(p, q,M). An involutory automorphismwhih �xes pointwise two generators X,Y and a irle M (not pointwise) is
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alled a Laguerre symmetry and denoted by SX,Y ;M (SX,Y ;M ∈ ∆(p, q,M)for p ∈ X, q ∈ Y ).A group of entral automorphisms is alled irular transitive if the ex-tension to Ap of its restrition to Ap is linear transitive, i.e. is transitive onany line passing through the enter. A group of automorphisms of L is alled
〈p,K〉-transitive (resp. p-transitive) if it ontains a irular transitive group
T(p,K) (resp. T(p,G), f. [8℄). A group of automorphisms of L is alled
(p, 〈q,M〉)-transitive if it ontains a irular transitive group ∆(p, q,M).A skewa�ne spae (f. [1℄) is an inidene struture S = (X,⊔, ‖), where
X is a nonempty set of points, denoted by small Latin letters, and

⊔ : {(x, y) ∈ X2 | x 6= y} → 2Xis a funtion. Sets of the form x ⊔ y (x 6= y) are alled lines. They will alsobe denoted by apital Latin letters. The symbol ‖ denotes an equivalenerelation among lines. The following axioms are assumed:(L1) x, y ∈ x ⊔ y,(L2) z ∈ x ⊔ y \ {x} implies x ⊔ y = x ⊔ z (exhange ondition),(P1) given any line L and any point x there exists exatly one line x⊔ yparallel to L (Eulid's axiom),(P2) ∀x, x′, y, y′ : (x 6= y, x′ 6= y′ ∧ x ⊔ y ‖ x′ ⊔ y′) → y ⊔ x ‖ y′ ⊔ x′(symmetry ondition),(T) if x, y, z are pairwise di�erent points suh that x⊔ y ‖ x′ ⊔ y′, thenthere exists a point z′ suh that x ⊔ z ‖ x′ ⊔ z′ and y ⊔ z ‖ y′ ⊔ z′(Tamashke's ondition).If we assume x = x′ in axiom (T), then the axiom is alled the a�neVeblen ondition (V).We will onsider additional onditions for a skewa�ne spae:(Pgm) ∀x, y, z ∈ X, {x, y, x} 6= ∃w ∈ X with x⊔y ‖ z⊔w and x⊔z ‖ y⊔w,(Des) ∀u, x, y, z, x′ ∈ X, {u, x, y, z} 6= x′ ∈ u⊔x\{u} → ∃y′ ∈ u⊔y\{u},
z′ ∈ u⊔ z \ {u} with x⊔ y ‖ x′ ⊔ y′, x⊔ z ‖ x′ ⊔ z′, y ⊔ z ‖ y′ ⊔ z′,(Pap) ∀u, x, y, z, x′ ∈ X, {u, x, x′} 6= with u ⊔ x = u ⊔ y = u ⊔ z →
∃y′, z′ ∈ X with u⊔x′ = u⊔y′ = u⊔z′ and x⊔x′ ‖ z⊔z′, x⊔y′ ‖
y ⊔ z′, y ⊔ x′ ‖ z ⊔ y′.A skewa�ne plane satisfying (Des) resp. (Pap) is alled desarguesianresp. pappian.If a line L has the form x⊔y then x is alled a basepoint of L. It is a simpleonsequene of the axioms that any line has either exatly one basepoint orall its points are basepoints (f. [10℄). A line suh that all of its points arebasepoints is alled a straight line. A line whih is not straight (and henehas exatly one basepoint) is alled a proper line.
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A group G ating on a setX is alled normally transitive if G is transitiveand Gx \ Gy 6= ∅ for any x, y ∈ X with x 6= y (Gx denotes the stabilizerof the point x with respet to G). For any group ating on a set X one anonstrut a group spae V(G) = (X,⊔, ‖) with
• x ⊔ y = Gx{x, y} = {x} ∪ Gxy,
• L ‖ L′ if there exists g ∈ G suh that gL = L′ for any lines L,L′.The following theorem will be the basis of our onstrution ([1, p. 5℄, f.also [10, Proposition 6.5, p. 94℄).Theorem 1.1. The group spae V(G) with respet to a normally tran-sitive group G is a desarguesian skewa�ne spae.A more detailed disussion of the properties of the group spae V(G)an be found in [10℄.
Example 1.1. Let AF = (P,L,∈) be an a�ne plane over a Eulidean�eld F, and L0 := {L0,m | m ∈ F}, where L0,m := F ×m = {(x, y) ∈ F

2 |
y = m}. The set of a�ne transformations

G := {ϕk,a,b | k, a, b ∈ F, k 6= 0},where
ϕk,a,b : P → P, ϕk,a,b(x, y) := (kx+ a, k2y + b),is a subgroup of Aut AF and G(L0) = L0. A transformation ϕk,a,b is atranslation for k = 1 and a strain for k 6= 1.For any point (a, b) the stabilizer G(a,b) equals {ϕk,a−ka,b−k2b | k ∈ F

∗}.For the group spae V(G) = (P,⊔, ‖) we have
(a, b) ⊔ (x0, y0) := {(a, b)} ∪ {(x, y) | y = r(x− a)2 + b},(1.1)where r = (y0 − b)/(x0 − a)2 for x0 6= a and

(a, b) ⊔ (x0, y0) := {(a, b)} ∪ {(x, y) | x = x0, y = b+ k2(y0 − b)}(1.2)for x0 = a. The lass of parallel parabolas of equation (1.1) is determined bythe oe�ient r. The lass of parallel half-lines of equation (1.2) is determinedby the sign of y0 − b. The set of straight lines is L0.The onstrution an be generalized for any a�ne plane over a �eld ofharateristi di�erent from 2. The parallel lasses of the sets of equation(1.2) are assoiated with the lasses of squares of the �eld.If the a�ne plane AF is the derived plane at a point p of a miquelianLaguerre plane of harateristi di�erent from 2, the lines of V(G) are asso-iated with the irles of the Laguerre plane and subsets of the generators.The straight lines are assoiated with the line of one penil of irles withvertex p.
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2. Residual skewa�ne plane. Let 〈p,K〉 be a �xed penil of irlesof a Laguerre plane L = (P, C,∼) and ∆(p,K) the group of automorphismsof L whih �x the penil 〈p,K〉 (not pointwise) and all points parallel to p.We assume that ∆(p,K) satis�es the following onditions:(A1) ∆(p,K) is transitive on the set P \ p.(A2) For any x, y ∈ K \ {p, r} there exists σ ∈ ∆(p,K)r with σ(x) = y.From (A1), (A2) we obtain a generalization of (A2).Corollary 2.1. For any x, y ∈ M \ {p, r} where M ∈ 〈p,K〉 thereexists σ ∈ ∆(p,K)r suh that σ(x) = y.Definition 2.1. The residual skewa�ne plane with respet to 〈p,K〉(written SA(p,K)) is the group spae V(∆(p,K)) = (P \ p,⊔, ‖).By the de�nition ∆(p,K) is normally transitive and aording to Theo-rem 2.1 we getTheorem 2.1. Suppose 〈p,K〉 is a �xed penil of a Laguerre plane L =

(P, C,∼) and onditions (A1), (A2) are satis�ed. Then the residual skewa�neplane SA(p,K) is a skewa�ne desarguesian spae.In the following let 〈p,K〉 be a �xed penil suh that the orrespondinggroup ∆(p,K) satis�es axioms (A1), (A2).Proposition 2.1.(a) If r ∼ x, then r ⊔ x = M \ p, where M is a irle of 〈p,K〉 or airle tangent at r to some irle of 〈p,K〉.(b) If r − x, then r ⊔ x ⊆ r.Proof. (a) If r /∈ K, then onsider the irle L = (p,K, r)◦. For x ∈ L,by Corollary 2.1, L \ {p} = ∆(p,K)rx. In the ase x /∈ L we de�ne M =
(r, L, x)◦, x′ = xL and y ∈ M \ p, y 6= r. The irle M is invariant withrespet to the group ∆(p,K)r sine it is tangent to L at r and has a �xedpoint at p. By Corollary 2.1 there exists β ∈ ∆(p,K)r suh that β(x′) = yL.Hene β(x) = y.(b) This follows diretly from the de�nition.Definition 2.2. The line x ⊔ y of SA(p,K) is alled speial if x ∼ y.From the proof of Proposition 2.1 we get a further generalization of ax-iom (A2).Corollary 2.2. Let r /∈ p and suppose M is invariant with respet to
∆(p,K)r. Then for any x, y ∈M with x, y 6= pM, r there exists σ ∈ ∆(p,K)rsuh that σ(x) = y (i.e. ∆(p,K)r is irular transitive for any r /∈ p).Proposition 2.2. The lines determined by the irles of the penil
〈p,K〉 are straight lines.
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Proof. If x, y are distint points of a irle L ∈ 〈p,K〉, then ∆(p,K)x(y)

= L \ {p} by Corollary 2.2.The group ∆(p,K) �xes the generator p pointwise. Hene by the de�ni-tion of parallelity we get:Proposition 2.3. For any M,N ∈ C if M \ p ‖ N \ p, then pM = pN .Propositions 2.1�2.3 provide a representation of the basi notions of aresidual skewa�ne plane of a Laguerre plane. However, this representationis not omplete. The onstrution does not assume that any irle of theLaguerre plane orresponds to some line of the skewa�ne plane. Similarly,the statements onverse to Propositions 2.2 and 2.3 do not hold (as an ex-ample, take any miquelian Laguerre plane of harateristi 2). To make therepresentation more omplete the following axiom will be needed throughoutthe rest of the paper.(A3) For any irle M suh that p /∈ M there exists exatly one irle
L ∈ 〈p,K〉 tangent to M .Proposition 2.4. If M is a irle suh that p /∈M , then M \p = x⊔y,where x is the point of tangeny of M with the unique irle of the penil

〈p,K〉 and y is any point of M di�erent from x and pM .Proof. Aording to (A3) there exists exatly one irle L ∈ 〈p,K〉 tan-gent to M . Let x be the point of tangeny. The irle L is invariant withrespet to ∆(p,K)x, sine L ∈ 〈p,K〉 and x 6= p is �xed. HeneM , as a irletangent to an invariant irle and ontaining a �xed point pM , is invariantwith respet to ∆(p,K)x. The assertion follows from Corollary 2.2.Aording to Proposition 2.4 in the ase x ⊔ y = M \ p the basepoint xof the line x ⊔ y will also be alled the basepoint of the irle M .Proposition 2.5. If M \ p is a straight line, then M ∈ 〈p,K〉.Proof. Assume that M \ p = x ⊔ y = y ⊔ x for some distint points
x, y ∈M \p and M /∈ 〈p,K〉. Then the subgroup of ∆(p,K) �xing the irle
M is transitive on its points, ontrary to (A3).Proposition 2.6. If pM = pL with p /∈M,L, then M \ p ‖ L \ p.Proof. From Proposition 2.4, M \ p = x ⊔ y where x is the point oftangeny of M with some M ′ ∈ 〈p,K〉 and L \ p = z ⊔ t where z is the pointof tangeny of L with some L′ ∈ 〈p,K〉. By (A1) there exists σ ∈ ∆(p,K)suh that σ(x) = z. We obtain σ(M ′) = L′ and hene σ(M) = L by thetouhing axiom.Remark 2.1. In the ase of miquelian planes of harateristi di�erentfrom 2 any penil 〈p,K〉 satis�es (A3) and the group ∆(p,K) has properties(A1) and (A2). Additionally, V(∆(p,K)) satis�es (Papp) and (Pgm).
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Remark 2.2. Examples of nonmiquelian (even nonovoidal) planes sat-isfying (A1)�(A3) may be obtained if in the onstrution in [2℄ we put

f(x) = |x|r (r > 1) and p = (∞, 0), K = {(x, 0) | x ∈ K} ∪ {(∞, 0)}.The transformations of the form x′ = kx, y′ = |k|ry (identity for points
(∞, a)) form the stabilizer of the point (0, 0).Remark 2.3. Axiom (A3) is satis�ed for any penil 〈p,K〉 of a topologi-al Laguerre plane of dimension 2 and 4 (this is a speial ase of the solutionof the Apollonius problem for suh planes, f. [11℄).3. A haraterization of the group ∆(p,K)Theorem 3.1. For any point r /∈ p the stabilizer ∆(p,K)r is a
(p, 〈r, L〉)-transitive group of L-strains ∆(p, r, L) ontaining Sr,p;K , where
L = (p,K, r)◦.Proof. As in the proof of Proposition 2.4, for any φ ∈ ∆(p,K)r and
M ∈ 〈r, L〉 we have φ(M) = M . The (p, 〈r, L〉)-transitivity of the group
∆(p,K) follows from Corollary 2.2. To obtain Sr,p;K onsider an arbitrary
x /∈ L ∪ r ∪ p and the irles M = (r, L, x)◦, N = (p, L, x)◦. Aordingto (A3) these irles are not tangent, so there exists a point y with y 6= x,
y ∈ M ∩ N . By (p, 〈r, L〉)-transitivity there exists ψ ∈ ∆(p,K)r suh that
ψ(x) = y. Hene ψ(N) = N and ψ(y) = x. This shows that ψ = Sr,p;K .Proposition 3.1. The group ∆(p,K) is 〈p,K〉-transitive.Proof. Let x, y ∈ K be suh that #{x, y, p} = 3. Consider an arbitraryirleM suh thatM∩K = {x, y} and let r be the basepoint ofM . Aordingto Theorem 3.1 the symmetries Sr,p;K and Sx,p;K exist and the superposition
Sr,p;K ◦ Sx,p;K is a translation whih maps x to y.From the proof of Proposition 3.1 we obtain:Corollary 3.1. For any distint points x, y suh that x, y 6= p, x, y ∈
R ∈ 〈p,K〉 there exists r ∈ R suh that Sr,p;K(x) = y.Lemma 3.1. Any �xed point free (outside p) automorphism from ∆(p,K)is a translation.Proof. Suppose there exists x suh that x ≁ φ(x) for some φ satisfyingthe assumptions of the lemma. Then φ(x) ≁ φ2(x). If x 6= φ2(x), then theautomorphism φ �xes the irle M = (x, φ(x), φ2(x))◦. If x = φ2(x), then φ�xes any irleM ∈ 〈x, φ(x)〉. Hene p ∈M , beause otherwise the basepointof the irleM is �xed. This means that φ is a translation with the invariantpenil 〈p,M〉. In the ase x ∼ φ(x) the assumption that there exists y suh
y ≁ φ(y) implies that the irle N = (y, φ(y), φ2(y))◦ is invariant and xNis �xed, a ontradition. Thus in this ase φ is a translation whih �xes allgenerators.
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Proposition 3.2. The group ∆(p,K) is p-transitive.Proof. Let x ∼ y, x 6= y and r ≁ x. Suppose φ ∈ ∆(p,K)r, z = φ(x),

z′ = Sp,r;K(z) and M = (y, z, z′)◦. Beause Sp,r;K(M) = M the basepoint sof the irle M is parallel to r. By Theorem 3.1 there exists ψ ∈ ∆(p,K)ssuh that ψ(z) = y, so that ψ ◦φ(x) = y. The automorphism ψ ◦φ �xes (notpointwise) two generators distint from p. Additionally it is not an L-strainso it is �xed point free outside p. By Lemma 3.1, ψ ◦φ is a translation whihmaps x to y.The group of translations ontained in ∆(p,K) will be denoted by
T(p,∆).Theorem 3.2. Elements of the group ∆(p,K) without �xed points (out-side p) are either translations in the diretion of any L (p ∈ L) or transla-tions whih �x generators. The group T(p,∆) is transitive on the set P \ pand T(p,∆)E∆(p,K). Elements of ∆(p,K) with �xed points are L-strainsand ∆(p,K) ≃ T(p,∆) ⋊∆(p,K)r for any r /∈ p.Proof. The �rst part of the theorem follows from Proposition 3.1, Propo-sition 3.2, and [7, Theorem 4.19, p. 100℄. For any L-strain φ and a trans-lation ψ the superposition φ ◦ ψ ◦ φ−1 is a translation. Indeed, otherwise
x = φ ◦ ψ ◦ φ−1(x) for some x /∈ p and φ−1(x) is a �xed point of the trans-lation ψ, a ontradition.Corollary 3.2. The group ∆(p,K) is of type 1H in the lassi�a-tion [8℄ of Laguerre planes.Corollary 3.3. The group spae V(∆(p,K)) satis�es ondition (Pgm).Proof. The group T(p,∆) is ommutative by [7, Theorem 4.14, p. 97℄and transitive by [7, Theorem 4.19, p. 100℄. Hene ondition 5 in [10, Propo-sition 6.5, p. 94℄ is satis�ed.Corollary 3.4. Lines A,B of a residual skewa�ne plane are paralleli� there exists a translation φ suh that φ(A) = B.4. Some properties of residual skewa�ne planes and their ap-pliations to Laguerre planesProposition 4.1. There are no three irles L,M,N that are pairwisetangent at di�erent points with L ∈ (p,K) and M ∩N ⊂ p.Proof. Suppose the irles M,N are tangent to the irle L of the penil
〈p,K〉 at points x, y respetively and M,N have a ommon point on thegenerator p. By Corollary 3.1 there exists r ∈ L \ p suh that Sr,p;K(x) = y.We obtain Sr,p;K(M) = N and hene rM = rN is another ommon pointof M,N .
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Corollary 4.1. Parallel lines of SA(p,K) determined by irles withbasepoints on a straight line determined by a irle have a ommon point.Proposition 4.2. Proper parallel lines of SA(p,K) determined by ir-les are disjoint i� their basepoints are distint and parallel.Proof. ⇐ Let m,n be distint and parallel basepoints of irles M,Nand suppose M,N have a ommon point on the generator p. A translation

α ∈ T(p,G) suh that α(m) = nmapsM onto N , hene (M \p)∩(N \p) = ∅.
⇒ Assume the irles M,N are tangent at a point q ∈ p and theirbasepoints m,n are not parallel. De�ne L = (p,K,m)◦, z = nL and M ′ =

(z, L, q)◦. By Corollary 4.1, M ′ is not tangent to M . This ontradits thepart of the proposition already proved.Proposition 4.3. Suppose that the basepoints of parallel lines A,A′ be-long to a straight line B determined by a irle. If a straight line C determinedby a irle intersets A then it intersets A′.Proof. Let x, x′ be the basepoints of A and A′, respetively. Let also ybe one of the ommon points of A,C. There exists a translation τ ∈ T(p,K)suh that τ(x) = x′. We obtain τ(A) = A′ and the point y′ = τ(y) is aommon point of A′, C.Lemma 4.1. Let irles P,Q,R be tangent to a irle L ∈ 〈p,K〉 atpairwise distint points. If Q has ommon points with P,R, then P,R havea ommon point.Proof. If two of the irles P,Q,R determine parallel lines, the assertionfollows from Propositions 4.1 and 4.3. Assume x ∈ P ∩ Q, y ∈ Q ∩ Rand x, y /∈ p. If Q ∈ 〈p,K〉, onsider a translation τ ∈ T(p,K) suh that
τ(x) = y, and the irle P ′ = τ(P ). We obtain y ∈ P ′ ∩R and P ′ is tangentto L. Hene, by the Veblen ondition (V), the irles P,R have a ommonpoint. In the ase Q∩L = {r} 6= {p} instead of the translation τ we use the
L-strain φ ∈ ∆(p,K, r) suh that φ(x) = y, and the assertion follows by theVeblen ondition or Proposition 4.3.Definition 4.1. Let L be a irle of the penil 〈p,K〉. We say thatpoints a, b 6∈ L are equivalent (under L), and write a ≡L b, if |P ∩Q| ≥ 1 forany irles P,Q tangent to L and passing through a and b, respetively.Lemma 4.1 gives the following.Proposition 4.4. For any irle L ∈ 〈p,K〉 the relation ≡L is an equiv-alene relation on the set P \ L.Proposition 4.5. For any points a, b ∈ P \L, a ≡L b i� there exist ir-les P,Q tangent to L at distint points and passing through a, b respetivelysuh that |P ∩Q| ≥ 1.
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The set of points of a speial line an be desribed by the relation ≡ asfollows:Proposition 4.6. Let x ⊔ y be a speial line, and let L = (p,K, x)◦,

z ∼ y, z 6= x. Then z ∈ x ⊔ y i� z ≡L y.Proof. ⇒ Assume y′ ∈ (p,K, y)◦, M = (x, L, y′)◦ for some y′ 6= p, y. Bythe de�nition of x ⊔ y there exists σ ∈ ∆(p,K)x suh that σ(y) = z. Then
σ(M) = M . If z′ = σ(y′), we obtain y ≡L y

′ ≡L z
′ ≡L z.

⇐ Let y ∈ N ∈ 〈p,K〉 and M be a irle passing through z tangent to
L at a point di�erent from p. Sine z ≡L y, there exists a point r suh that
r ∈ M ∩ N . De�ne P = (x, L, r)◦ and Q = (p,K, z)◦. Then P and Q havea ommon point s beause r ≡L z. An L-strain φ ∈ ∆(p,K, x) suh that
φ(r) = s maps y to z.Proposition 4.7. If x ∼ p, x 6= p, then for any point y /∈ L, x ≡L y i�there exist exatly two irles M,M ′ tangent to L suh that x, y ∈M,M ′.Proof. It is su�ient to prove ⇒. Let N be any irle tangent to Lsuh that x ∈ N and P = (p, L, y)◦. From x ≡L y it follows that thereexists z ∈ P ∩ N . Then M = τ(N) where τ ∈ T(p,K), τ(z) = y and
M ′ = Sp,y,K(M) 6= M . Suppose, ontrary to our laim, that there is a irle
M ′′ through x, y, tangent to L and distint from M,M ′. Denote by r, r′, r′′the basepoints of M,M ′,M ′′, respetively. There exists φ ∈ ∆(p,K)r′′ with
φ(r) = r′. We have φ(M ′′) = M ′′, φ(M) = M ′ and φ(y) 6= x, y. Hene
x, y, φ(y) are three distint points of two distint irles M ′,M ′′, a ontra-dition.Lemma 4.2. For any q parallel to p and di�erent from p there existsexatly one q′ parallel to p with the property :
∀x, y ((x ≁ y, p ≁ x, y) ∧ q ∈ (x(p,K, x)◦, y)◦ → q′ ∈ (y, (p,K, y)◦, x)◦).Proof. The assertion is a onsequene of axiom (P2). If the point q de-termines the lass of lines parallel to a line x⊔y, then q′ determines the lassof lines parallel to y ⊔ x.Theorem 4.1. Let q 6= p, q ∼ p, x ≁ p. Then the points of tangenyof irles of the penil 〈p,K〉 with irles of the penil 〈x, q〉 form a irle(without a point of the generator p).Proof. Let L = (p,K, x)◦ and M = (x, L, q)◦. The point x is the point oftangeny of the irles L andM of the penils 〈p,K〉 and 〈q, x〉, respetively.Consider an arbitrary irle N ∈ 〈q, x〉, N 6= M . By axiom (A3), thereexists exatly one irle P ∈ 〈p,K〉 tangent to N at some point y. The irle

Q = (x, L, y)◦ is �xed by the group ∆(p,K)x. Aording to Corollary 2.2,any point of Q distint from x and pQ is the image of y under some σ ∈
∆(p,K)x. Hene it is a point of tangeny of irles of the penils 〈p,K〉 and
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〈pQ, x〉, respetively. It follows that the irle Q satis�es the assertion of thetheorem.Corollary 4.2. The irle Q determined in Theorem 4.1 passes throughthe point q′ from Lemma 4.2.In the ase of miquelian Laguerre planes of harateristi di�erent from 2,the point p in Theorem 4.1 an be hosen arbitrarily by Remark 2.1. For suhplanes we also obtain a ondition determining whether a irle through twopoints tangent to a irle an be onstruted.Theorem 4.2. Let x, y be points and L a irle with x ≁ y, x, y /∈ L ofa miquelian Laguerre plane of harateristi distint from 2. The followingonditions are equivalent :

(1) There exist exatly two irles through x, y tangent to L.
(2) Any irle through x tangent to L intersets any irle through ytangent to L.
(3) There exist two interseting irles tangent to L at distint pointsontaining x, y, respetively.Proof. Aording to Remark 2.1 the assertion follows by De�nition 4.1,Proposition 4.5 and Proposition 4.7 applied to the penil 〈xL,L〉.Remark 4.1. In miquelian Laguerre planes over a �eld F of harater-isti di�erent from 2 the onditions of Theorem 4.2 de�ne the relation �≡L�for any irle L. In an analyti representation of suh planes given in [9℄, fora irle K = {(x, 0) | x ∈ F}∪ {(∞)}, points (a1, b1) and (a2, b2) are equiva-lent with respet to K i� b2 ∈ b1F

2. In this ase the lasses of parallelity ofspeial lines orrespond to the lasses of squares of F.Remark 4.2. If F is quadratially losed, then any speial line oinideswith a generator and is a straight line. In this ase SA(p,K) ontains twofamilies of straight lines like a neara�ne residual plane onneted with aMinkowski plane (f. [12℄). But the lass of straight lines determined by theirles of the penil 〈p,K〉 does not satisfy the ondition of having exatlyone ommon point with other lines.
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