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Summary. We show that if m > 1 is a Fibonacci number such that φ(m) |m− 1, where
φ is the Euler function, then m is prime.

Let φ(n) be the Euler function of the positive integer n. Clearly, φ(n) =
n − 1 if n is a prime. Lehmer [9] (see also B37 in [7]) conjectured that if
φ(n) |n−1, then n is prime. To this day, no counterexample to this conjecture
(and no proof of it either) has been found. Let us say that n has the Lehmer

property if n is composite and φ(n) |n−1. Thus, Lehmer’s conjecture is that
there is no number with the Lehmer property.

Pomerance (see [14], [15]) showed that if L(x) denotes the number of
numbers n ≤ x with the Lehmer property then the estimate

L(x) = O(x1/2(log x)3/4(log log x)−1/2)

holds, where log x stands for the natural logarithm of x. The exponent 3/4
of log x in the above bound was successively lowered to 1/2 by Zhun [18] and
to 0 (at the cost of some extra power of log log x) by Banks and Luca [2].

In the recent paper [6], Diaconescu studied numbers with the Lehmer
property and some extra structure and concluded that there should be only
finitely many of them. For example, he showed that if k ≥ 1 is a fixed
positive integer then there are only finitely many positive integers n with
the Lehmer property which also satisfy the congruence φ(n)k ≡ 1 (mod n).

Here, we study the numbers with the Lehmer property which belong to
a familiar subset of positive integers, namely the Fibonacci numbers. Recall
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that the sequence of Fibonacci numbers (Fn)n≥0 has F0 = 0, F1 = 1 and
Fn+2 = Fn+1 + Fn for all n ≥ 0. Our result is the following.

Theorem 1. There is no Fibonacci number with the Lehmer property.

Throughout this paper, we use p with or without subscripts for a prime
number. For a positive integer m we write ω(m) and τ(m) for the number of
distinct prime divisors of m and the total number of positive integer divisors
of m, respectively. Recall that if m = pα1

1 · · · pαk

k , where p1, . . . , pk are distinct
primes and α1, . . . , αk are positive integer exponents, then ω(m) = k and
τ(m) = (α1 + 1) · · · (αk + 1).

We also recall that if we write α = (1+
√

5)/2 and β = (1−
√

5)/2, then
Fn = (αn − βn)/(α − β) for all n ≥ 0. This is sometimes called the Binet
formula. Furthermore, if we write (Ln)n≥0 for the Lucas sequence given by
L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0, then both the Binet
formula Ln = αn + βn and

(1) L2
n − 5F 2

n = 4(−1)n

hold for all n ≥ 0.

Acknowledgements. The author thanks the referee for a careful read-
ing of the manuscript and Professors Janitzio Mej́ıa Huguet, Alvaro Al-
varez Parilla and Mihai Stoiciu for useful conversations. Work on this paper
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of 2006. The author thanks the people there for their warm hospitality.

1. The proof. Assume that n > 2 and that Fn is a composite positive
integer such that φ(Fn) |Fn − 1. Lehmer [9] showed that ω(Fn) ≥ 7 and this
was subsequently improved to 11 by Lieuwens [10], to 13 by Kishore [8], and
to 14 by Cohen and Hagis [5]. When 3 |Fn, Lieuwens [10] showed that in
fact Fn > 5.5 · 10570. Since certainly φ(Fn) is even, we infer that Fn is odd.
Thus, either 3 |Fn and Fn ≥ 5.5 · 10570, or

Fn ≥ 5 · 7 · 11 · 13 · · · 53.

In both cases, we see that n ≥ 50. Let K = ω(Fn). By Theorem 4 in [15],

we have Fn < K2K

. It is easy to check by induction that Fs > 2s/2 for all
s > 10. Since n > 50, we have K2K

> Fn > 2n/2, therefore

(2) 2K log K >
n log 2

2
>

n

3
.

We now check that the above inequality (2) implies that

(3) 2K >
n

4 log log n
.
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Indeed, assume that the reverse inequality

2K ≤ n

4 log log n

holds. Then

K log 2 < log n − log 4 − log log log n < log n.

In the rightmost inequality above we used the fact that n > 50 > ee, so
log log n > 1, therefore log log log n is positive. Thus, K < (log n)/ log 2 <
2 log n, therefore

2K log K <
n log(2 log n)

4 log log n
=

n

4
+

log 2

4 log log n
.

Comparing the last inequality above with (2), we get

n

3
<

n

4
+

log 2

4 log log n
,

therefore

n <
3 log 2

log log n
<

3 log 2

log log 50
< 2,

which is impossible. Thus, inequality (2) holds.

In what follows, we will use the following well-known relations (see, for
example, Lemma 2 in [11]):

(4)
F4m − 1 = F2m+1L2m−1, F4m+1 − 1 = F2mL2m+1,

F4m+2 − 1 = F2mL2m+2, F4m+3 − 1 = F2m+2L2m+1,

which can be easily verified using the Binet formulae.

We split the remaining analysis in two cases.

Case 1: n is odd. Let p be any prime factor of Fn. Clearly, p is odd.
Reducing relation (1) modulo p we get L2

n ≡ −4 (mod p), so we infer that
−1 is a quadratic residue modulo p. In particular, p ≡ 1 (mod 4). Since
this is true for all prime factors p of Fn, we conclude that 22K |φ(Fn). Since
n = 2m + 1 is odd, formulae (4) tell us that Fn − 1 = F(n−1)/2L(n+1)/2 or
F(n+1)/2L(n−1)/2 according as m is even or odd. Thus, we get

22K |φ(Fn) |Fn − 1 |F(n−ε)/2L(n+ε)/2 for some ε ∈ {±1}.
The period of the sequence (Ls)s≥0 modulo 8 is 12. Furthermore, listing the
first twelve members of (Ls)s≥0 one notices that none of them is a multiple
of 8. Thus, the above divisibility condition certainly implies that 22K−2

divides either F(n−1)/2 or F(n+1)/2. It is well-known and easy to check by

induction that if ℓ ≥ 3 and 2ℓ |Fs, then 2ℓ−2·3 | s. Since 2K−2 ≥ 2·14−2 > 3,
we find that 22K−4 · 3 divides one of (n− 1)/2 or (n+1)/2. Thus, using also
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inequality (3), we have

n + 1

2
≥ 22K−4 · 3 ≥ 3

16

(

n

4 log log n

)2

,

therefore

(5) n2 <
128

3
(n + 1)(log log n)2,

leading to n < 101.

Case 2: n is even. Here, we write n = 2m, so Fn = F2m = FmLm.
Relation (1) together with the fact that Fn is odd implies that Fm and Lm

are coprime, so φ(Fn) = φ(FmLm) = φ(Fm)φ(Lm). Let m = pα1

1 · · · pαk

k be
the factorization of n, where p1 < · · · < pk are distinct primes. We shall
spend a lot of time bounding p1.

We start by noticing that m has to be odd (so p1 > 2). Indeed, assume
that m = 2m0 is even. Then formula (4) tells us that φ(Fn) |F2m0+1L2m0−1.
As we have said before, 8 cannot divide Ls for any value of the positive
integer s. Furthermore, if 8 |Fs, then 6 | s, and in particular s is even. Since
2m0 + 1 is odd, we conclude that F2m0+1 is not a multiple of 8. Thus, 32
cannot divide F2m0+1L2m0−1, but this is impossible since 2K | φ(Fn) and
K ≥ 14. Hence, m is odd, therefore p1 > 2. If p1 = 3, then Fn is even, which
is not the case. Thus, p1 ≥ 5.

By the primitive divisor theorem for the Fibonacci and Lucas numbers
(see [4]), for each divisor d > 1 of m there exists a prime p |Ld such that
p ∤ Ld1

for all 0 < d1 < d. Since m is odd, Binet’s formula implies that p |Lm.
Reducing relation (1) modulo p, we get −5F 2

m ≡ −4 (mod p), therefore
5F 2

m ≡ 4 (mod p). This shows that 5 is a quadratic residue modulo p, so by
quadratic reciprocity, p is a quadratic residue modulo 5 also. Thus, p ≡ 1
(mod d), therefore d | p − 1. Now let d be an arbitrary divisor of m which
is a multiple of p1. The number of such divisors is at least τ(m/p1). For
each such d, there is a primitive prime factor pd of Ld such that p1 | d |
pd − 1 |φ(Ld) |φ(Lm). This shows that the exponent ℓ1 of p1 in φ(Lm) is at
least τ(m/p1). Thus,

p
τ(m/p1)
1 | pℓ1

1 |φ(Lm) |φ(Ln) | F2m − 1 |Fm−1Lm+1,

and p1 |m. Let z(p1) be the order of appearance of p1 in the Fibonacci
sequence, i.e., the smallest positive integer s such that p1 |Fs. It is known
that z(p1) | p1 − e, where e is the Legendre symbol (5/p1); hence, it is 1
if p1 ≡ ±1 (mod 5), it is −1 if p1 ≡ ±2 (mod 5), and it is 0 if p1 = 5.
Let a1 be the exponent of p1 in Fz(p1). Since p1 |Fm−1Lm+1, we find that
either p1 |Fm−1 or p1 |Lm+1. Since Lm+1 |F2(m+1), we further deduce that
either p1 |Fm−1 or p1 |F2(m+1). Let us notice that p1 can divide only one
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but not both of the above numbers. Indeed, since Fm−1 |F2(m−1), it follows
that if p1 divides both the above numbers, then it divides both F2m−2 and
F2m+2. But then p1 |Fgcd(2m−2,2m+2), and gcd(2m− 2, 2m + 2) | 4. However,
F4 = 3 and we have already seen that p1 > 3. Thus, only one of m − 1 or
2(m + 1) is divisible by z(p1), therefore pa1

1 divides either Fm−1 or F2(m+1).

It is well-known that if ℓ > a1 and pℓ
1 |Fs, then p1z(p1) | s. Since p1 | m and

p1 is odd, it follows that p1z(p1) can divide neither m − 1 nor 2m + 2. The
conclusion is that ℓ1 ≤ a1, therefore pℓ1

1 ≤ pa1

1 . In particular, ℓ1 = a1 = 1 if
p1 = 5 or p1 = 7.

Assume now that p1 ≥ 11. Then pa1

1 |Fp1−e = F(p1−e)/2L(p1−e)/2. The
greatest common divisor of F(p1−e)/2 and L(p1−e)/2 is at most 2 (by (1) for
n = (p1−e)/2) and p1 is odd, so either pa1

1 |F(p1−e)/2 or pa1

1 | L(p1−e)/2. Since
Fs < αs for all positive integers s, as can be easily verified by induction, we
see that when pa1

1 |F(p1−e)/2, we have

pa1

1 ≤ F(p1−e)/2 ≤ F(p1+1)/2 ≤ α(p1+1)/2,

so

(6) τ(m/p1) ≤ ℓ1 ≤ a1 ≤ (p1 + 1) log α

2 log p1
.

The same conclusion, namely that pa1

1 < α(p1+1)/2, is also reached when
pa1

1 |L(p1−e)/2, in the following way. First observe that the above inequality
is certainly true when a1 = 1 since p1 ≥ 11. Now assume that a1 > 1. If
L(p1−e)/2 = pa1

1 , then, in particular, L(p1−e)/2 is a perfect power. However,
by the recent results from [3], there is no perfect power of the form Ls for
s > 3. Hence,

pa1

1 ≤ 1

2
L(p1−e)/2 <

1

2
(α(p1−e)/2 + 1) < α(p1+1)/2,

which implies inequality (6). Now note that

τ(m/p1) = α1(α2 + 1) · · · (αk + 1) ≥
(

α1 + 1

2

)

(α2 + 1) · · · (αk + 1) =
τ(m)

2
,

therefore

(7) τ(m) ≤ 2τ(m/p1) ≤
(p1 + 1) log α

log p1
.

Now observe that φ(Fn) |Fn−1 and φ(Fn) < Fn−1. Thus, Fn−1 ≥ 2φ(Fn),
therefore

2 ≤ Fn

φ(Fn)
≤

∏

p|Fn

(

1 +
1

p − 1

)

< exp

(

∑

p|Fn

1

p − 1

)

,

so

(8) log 2 ≤
∑

p|Fn

1

p − 1
.



12 F. Luca

In what follows, we shall exploit the above relation. Since our ultimate goal
is to bound p1, we shall from now on assume that p1 > 1000.

Let us now take a closer look at the right hand side of inequality (8).
For each divisor d > 1 of m, let Pd be the set of primitive prime factors of
F2d = FdLd. All these primes are ≡ ±1 (mod d) and are odd. In particular,
the smallest one is ≥ 2d − 1. Assume that ℓd = #Pd is their number. Then

(2d − 1)ℓd ≤ F2d < α2d,
so

ℓd <
2d log α

log(2d − 1)
.

We next show that the estimate

(9)
∑

p∈Pd

1

p − 1
≤ 1.8

d
+

4.3 log log d

d

holds for our ranges of variables. Observe that
∑

p∈Pd

1

p − 1
=

∑

p∈Pd

1

p
+

∑

p∈Pd

1

p(p − 1)
≤

∑

p∈Pd

1

p
+

ℓd

(2d − 2)(2d − 1)

≤ 1

2d − 1
+

1

2d + 1
+

∑

3d<p<d2

1

p
+ ℓd

(

1

d2
+

1

(2d − 2)(2d − 1)

)

.

For coprime integers a and b and a positive real number t let π(t; a, b) be
the number of primes p ≤ t with p ≡ a (mod b). The large sieve inequality
of Montgomery and Vaughan [13] tells us that

π(t; a, b) ≤ 2t

φ(b) log(t/b)

for all t > b and all a coprime to b. Since the set of primes p ∈ (3d, d2) which
belong to Pd is contained in the set of primes p ≡ ±1 (mod d), it follows,
by Abel’s summation formula, that

∑

3d<p<d2

1

p
≤

∑

3d<p≤d2

p≡−1 (mod d)

1

p
+

∑

3d<p≤d2

p≡1 (mod d)

1

p

≤ π(d2;−1, d) + π(d2; 1, d)

d2
+

d2\
3d

π(t;−1, d) + π(t; 1, d)

t2
dt

≤ 4d2

φ(d)d2 log(d2/d)
+

4

φ(d)

d2\
3d

dt

t log(t/d)

=
4

φ(d) log d
+

4

φ(d)
log log(t/d)

∣

∣

∣

∣

t=d2

t=3d

<
4

φ(d) log d
+

4 log log d

φ(d)
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because log log 3 > 0. As for φ(d) versus d, note that, by inequality (7),

d

φ(d)
≤

∏

p |m

(

1 +
1

p − 1

)

≤
(

1 +
1

p1 − 1

)τ(m)

≤ exp

(

τ(m)

p1 − 1

)

≤ exp

(

(log α)(p1 + 1)

(p1 − 1) log p1

)

< 1.073

because p1 > 103. Thus, d/φ(d) ≤ 1.073, so putting all of the above estimates
together we get

∑

p∈Pd

1

p − 1
≤ 1

2d − 1
+

1

2d + 1
+ ℓd

(

1

d2
+

1

(2d − 2)(2d − 1)

)

(10)

+
4.3

d log d
+

4.3 log log d

d
.

Since d ≥ p1 > 103, we have

1

2d − 1
+

1

2d + 1
+ ℓd

(

1

d2
+

1

(2d − 2)(2d − 1)

)

+
4.3

d log d

≤ 1

d

(

4 · 106

4 · 106−1
+

2 log α

log(2 · 103−1)

(

1+
1

(2 −2/103)(2 −1/103)

)

+
4.3

log(103)

)

<
1.8

d
,

which together with inequality (10) gives

∑

d∈Pd

1

p − 1
<

1.8

d
+

4.3 log log d

d
,

which is the promised inequality (9).

Since the function x 7→ (log log x)/x is decreasing for x > 10, we have

∑

p|Fn

1

p − 1
=

∑

d|m

∑

p∈Pd

1

p − 1
≤

∑

d|m, d>1

(

1.8

d
+

4.3 log log d

d

)

(11)

≤
(

1.8

p1
+

4.3 log log p1

p1

)

τ(m)

≤ (log α)
(p1 + 1)

log p1
·
(

1.8

p1
+

4.3 log log p1

p1

)

,

and comparing (11) with (8), we get

(12) log p1 ≤ log α

log 2

p1 + 1

p1
(1.8 + 4.3 log log p1).
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Since p1 > 103, we get

log α

log 2

(

1 +
1

p1

)

< 0.7.

Hence, with x = log p1, we get x < 0.7(1.8 + 4.3 log x), which implies that
x < 7.21, therefore p1 = ex < e7.21 < 1400. Thus, p1 < 1400. We have finally
bounded p1.

At this point, we recall that D. D. Wall [17] conjectured that p ‖Fz(p)

for all primes p. No counterexample to this conjecture (nor a proof of it
either) has been found. Sun and Sun [16] deduced that the so-called first
case of Fermat’s Last Theorem is impossible under Wall’s conjecture. We
checked with Mathematica that Wall’s conjecture is true for all p < 1400.
In fact, in [1] it is mentioned that recently McIntosh and Roettger [12]
verified Wall’s conjecture for all p < 1014 and found it to be true. In par-
ticular, it is true for p1. This shows that a1 = 1 for all possible values
of p1, therefore τ(m/p1) = 1, so m = p1 and Lp1

is a prime. But in this
case, Fm = Fp1

has K − 1 prime factors and m is odd, so by the argu-
ments from Case 1 each prime factor of Fm is congruent to 1 modulo 4.
Thus, 22K−1 |φ(Fn) |Fm−1Lm+1. Since 8 cannot divide Lm+1, we infer that
22K−3 | Fm−1, therefore 22K−5 · 3 |m− 1. We thus find, using inequality (3),
that

n

2
>

n

2
− 1 = m − 1 ≥ 22K−5 · 3 ≥ 3

32

(

n

4 log log n

)2

,

therefore

n <
256

3
(log log n)2,

leading to n < 250.

Thus, in both cases of n odd or n even we arrived at the conclusion that
n < 250. We now checked that there is no Fibonacci number Fn with n < 250
having the Lehmer property in the following way. We used Mathematica to
show that if ω(Fn) ≥ 14 and n < 250, then n ∈ {180, 210, 240}. Then we
used again Mathematica and checked that for these three values of n, the
ratio (Fn − 1)/φ(Fn) is not an integer.

This completes the proof of Theorem 1.
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