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DYNAMICAL SYSTEMS AND ERGODIC THEORY

An Appliation of Skew Produt Maps to Markov ChainsbyZbigniew S. KOWALSKIPresented by Stanisªaw KWAPIE�
Summary. By using the skew produt de�nition of a Markov hain we obtain the fol-lowing results:(a) Every k-step Markov hain is a quasi-Markovian proess.(b) Every pieewise linear map with a Markovian partition de�nes a Markov hain forevery absolutely ontinuous invariant measure.() Satisfying the Chapman�Kolmogorov equation is not su�ient for a proess to bequasi-Markovian.

0. Introdution. Consider a stationary Markov hain with �nite statespae, i.e., a probability spae (Ω, P ), a sequene of (Xn)∞n=0 random vari-ables Xn : Ω → {1, . . . , s} a probability vetor ~p = (p1, . . . , ps), a stohastimatrix Π = (pij)s×s suh that ~pΠ = ~p and
P (Xn+1 = j |X0 = i0, . . . , Xn = in) = P (Xn+1 = j |Xn = in) = pinj .To apply ergodi theory here, we need a sequene representation of the pro-ess. Therefore we assume that Ω = {1, . . . , s}N , N = {0, 1, 2, . . .}, P is themeasure given by

P (ω : ω0 = i0, . . . , ωn = in) = pi0pi0i1 · · · pin−1inand σ is the 1-sided shift on Ω, (σω)i = ωi+1. Finally, we get the measurepreserving dynamial system (Ω,A, P, σ, α), where A is the σ-algebra gen-erated by the ylinder sets {ω : ωi1 = j1, . . . , ωin = jn} and α = {Ai}
s
i=1,where Ai = {ω : ω0 = i}, i = 1, . . . , s. The proess (X ′

n)∞n=0 given by
X ′

n(ω) = i ⇔ σn(ω) ∈ Ai is a Markov hain with the same distribution2000 Mathematis Subjet Classi�ation: Primary 37A05; Seondary 60J10.Key words and phrases: skew produt, Markov hain, quasi-Markovian proess.Researh supported by grant MENII 1 P03A 021 29, Poland.[35℄ © Instytut Matematyzny PAN, 2007
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as (Xn)∞n=0. The above proess is denoted by (σ, α) and alled a Markovproess.For our aims we will use more general notations. Let (X,A, m, f, α)be a measure preserving dynamial system where (X,A, m) is a probabil-ity Lebesgue spae and additionally f is a positively nonsingular map (i.e.
m(A) = 0 ⇒ m(f(A)) = 0), and α = {Ai}

s
i=1 is a generating partition,i.e. ∨

∞

i=0 f−iα = A. We denote by (f, α) the proess (Xn)∞n=0 suh that
Xn(x) = i ⇔ fn(x) ∈ Ai. For our aims it is onvenient to use an equiva-lent de�nition of Bernoulli and Markov proesses (see [4℄). To this end letus onsider another Lebesgue probability spae (Y,B, q) and let {Ti}

s
i=1 bea family of positively and negatively nonsingular maps of Y into Y (Ti isnegatively nonsingular if q(B) = 0 ⇒ q(T−1

i B) = 0). The proess (f, α) andthe family {Ti}
s
i=1 de�ne the skew produt map

(1) T (x, y) = (f(x), Ta(x)(y)),where a : X → {1, . . . , s} is determined by a(x) = i ⇔ x ∈ Ai. Let E(f, α)be the lass of funtions g suh that there exists a Lebesgue probability spae
(Y,B, q) and a family of positively and negatively nonsingular maps {Ti}

s
i=1suh that g is the density of an absolutely ontinuous invariant measure(a..i.m.) under the skew produt as in (1).We also denote by α̂ the �eld of unions of elements of α.

Definition 1. The proess (f, α) is(i) a Bernoulli proess if for every g ∈ E(f, α), g is measurable withrespet to B,(ii) a Markov proess if for every g ∈ E(f, α), g is measurable withrespet to α̂ × B.Redution of the ondition in (ii) allows us to introdue quasi-Markovianproesses.
Definition 2. We say that (f, α) is a quasi-Markovian proess (q.m.p.)if for every g ∈ E(f, α) the set {g > 0} belongs to α̂ × B.Some generalizations of De�nition 2 and its appliations an be found in[1, 2℄. By using De�nitions 1 and 2 we obtain the following fats.
Theorem 1. If α has the Markov property (i.e. f(α) ⊂ α̂) and if

(fn,
∨n−1

i=0 f−iα) is a q.m.p. for some n with respet to m then (f, α) is alsoa q.m.p.
Theorem 2. If X = [0, 1], f is pieewise linear, α has the Markov prop-erty and f |Ai is linear for i = 1, . . . , s then (f, α) is a Markov proess forevery f-invariant probability measure whih is absolutely ontinuous with re-spet to the Lebesgue measure.
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Let (Xn)∞n=0 be a stationary proess with s states. Moreover, let m be themeasure on {1, . . . , s}N determined by the �nite-dimensional distributionsof (Xn)∞n=0.

Definition 3. We say that (Xn)∞n=0 is a k-step Markov hain if
m(ωn+1 = j |ω0 = i0, . . . , ωn = in)

= m(ωn+1 = j |ωn−k+1 = in−k+1, . . . , ωn = in).A 1-step Markov hain is a Markov hain. As a orollary to Theorem 1we get
Theorem 1′. If a stationary proess (Xn)∞n=0 is a k-step Markov hainfor some k ≥ 1 then it is a q.m.p.Conerning Theorem 2 let us remark that if f is not pieewise linear butpieewise monotoni then (f, α) is not a Markov proess in general. However,in many ases it turns out to be a q.m.p., for example if f is a Lasota�Yorkeor Misiurewiz map ([4℄). Let us turn to Theorem 1′. If we replae the Markovhain onditions by the Chapman�Kolmogorov equation (for the de�nitionsee below) then we may fall outside the lass of quasi-Markovian proesses(see Setion 3).
Definition 4. We say that a proess (f, α) satis�es the C-K-equation if

m(f−nAj |Ai) = (Πn)ij for i, j = 1, . . . , s and n ∈ N.Here Πij = m(f−1Aj |Ai) for i, j = 1, . . . , s.1. Proof of Theorem 1. We will use the skew produt desription ofproesses. Let us onsider the skew produt map
T (x, y) = (f(x), Ta(x)(y))where a : X → α is determined by a(x) = A ⇔ x ∈ A. Here {TA}A∈α isa family of positively and negatively nonsingular maps of Y into Y. Let νbe a T -invariant measure absolutely ontinuous with respet to m × q. Themeasure ν is also Tn-invariant. Here

Tn(x, y) = (fn(x), Tb(x)(y))where b : X → β =
∨n−1

i=0 f−iα is de�ned similarly to a. Here
TB(y) = TAn

◦ · · · ◦ TA1
(y) for B = A1 ∩ f−1(A2) ∩ · · · ∩ f−(n−1)(An).Therefore, {

dν

d(m × q)
> 0

}
=

⋃

B∈β

B × DB
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if (fn, m, β) is a q.m.p. by De�nition 2. From

Tn
( ⋃

B∈β

B × DB

)
=

⋃

B∈β

B × DBwe get ⋃

B∈β

B × DB =
⋃

B∈β

fn(B) × TB(DB) =
⋃

A∈α

A × CA.Here we use fn(B) ∈ α̂ for B ∈ β. Therefore (f, m, α) is a q.m.p.2. Proof of Theorem 2. Consider the skew produt map
T (x, y) = (f(x), Ta(x)(y))as in (1). Let P be the Frobenius�Perron (F-P) operator for T , i.e.\

T−nE

Gd(λ × q) =
\
E

P (G) d(λ × q)for E ∈ A × B and G ∈ L1(λ × q). Here λ is the Lebesgue measure. By thede�nition of T we have
P (wh)(x, y) =

s∑

i=1

aiw(f−1
i (x))1f(Ai)(x)Pih(y) for w ∈ L1(λ), h ∈ L1(q),where fi = f |Ai, ai = 1/f ′

i(x) for x ∈ Ai and Pi denotes the F-P operator for
Ti, i = 1, . . . , s. Let µ be f -invariant, µ ≪ λ. Moreover, let ν be T -invariantand ν ≪ µ × q. Then also ν ≪ λ × q and therefore for G = dν/d(λ × q)we obtain PnG = G for n = 1, 2, . . . . Let Ai1,...,in = Ai1 ∩ f−1(Ai2) ∩ · · · ∩
f−(n−1)(Ain). Thus, as f(α) ⊂ α̂,

P (1Ai1···in
h) = ai11Ai2···in

Pi1h.Consequently,
Pn(1Ai1···in

h) =
s∑

i=1

1Ai
hi.By using approximation arguments as in [5℄ we onlude that

G =
s∑

i=1

1Ai
gi.By repeating a similar reasoning for µ and the F-P operator for f we get

dµ

dλ
=

s∑

i=1

ci1Ai
.Hene,

dν

d(µ × λ)
=

dν

d(λ × q)

(
d(µ × q)

d(λ × q)

)
−1

=
s∑

i=1

1Ai
di.Therefore (f, α) is a Markov proess with respet to µ.



Skew Produt Maps 39
Let us remark that Theorem 3 in [7℄ and Theorem 6.3 in [8℄ are speialases of Theorem 2. Here the Markov property of (f, α) has been obtainedfor some lasses of pieewise linear transformations by using an expliit def-inition of invariant measure.3. C-K-proess whih is not a q.m.p. We reall the onstrution ofCourbage and Hamdan from [3℄, using their notation. Let K = {0, . . . , k−1}and Ω = KN = {ω : ω(i) ∈ K, i = 0, 1, 2, . . .}. We say that a probabilitymeasure µ on Kn+1 is invariant if for any subsets A1, . . . , An of K,

µ(K × A1 × · · · × An) = µ(A1 × · · · × An × K).Denote by Inv(Kn+1) the set of invariant measures. For µ ∈ Inv(Kn+1) wede�ne the measure ν0 = Φ(µ) on Ω by
ν0({ω ∈ Ω : ω0 = x0, . . . , ωpn = xpn})

= µ(x0, . . . , xn)µ(xn+1, . . . , x2n | xn) · · ·µ(x(p−1)n+1, . . . , xpn |x(p−1)n)for all p ≥ 1 and x = (xi)
pn
i=0 ∈ Kn+1. The measure ν0 is σn-invariant where

σ is the 1-sided shift on Ω. Now, we proeed to determine a suitable measure
µ ∈ Inv(Kn+1). Let Π be a k×k stohasti stritly positive matrix and ~p bea row probability vetor whih is invariant under Π. By analyzing the proofof [4, Theorem 3.1℄ we onlude that there exists a measure µ ∈ Inv(Kn+1),for some prime number n ≥ 3, suh that
(2) µ(A0 × · · · × An) > 0for any A0, . . . , An ⊆ K. The above holds beause Π is stritly positive and
µ|Kn = µΠ |Kn (by onditions (3.4), (3.5) from [4℄). Here µΠ denotes the
(Π, ~p) Markovian measure. The measure

ν =
1

n

n−1∑

i=0

σiν0,where ν0 = Φ(µ), is not (Π, ~p) Markovian sine µ 6= µΠ |Kn+1 (by [4,(3.18)℄). Moreover the proess (σ, ν,P) satis�es the C-K-equation with Π,i.e. ν(σ−nPj |Pi) = (Πn)i,j for n = 1, 2, . . . , by [4, (3.6)℄ and by the de�ni-tion of ν. Here Pi = {ω ∈ Ω : ω(0) = i}. We will prove that (σ.ν,P) is not aq.m.p. To this end we show that there exists a Borel invariant set E ⊂ Ω ofmeasure one suh that (E, ν, σ) is positively nonsingular and ν(σ(Pi∩E)) = 1for i = 0, . . . , k − 1. Combining this with the ergodi properties of (σ, ν) weget the desired onlusion. Let Pn
0 =

∨n−1
i=0 σ−iP. By the de�nition of ν0 andby (2) we get

Lemma 1. The proess (σn, σiν0) is a Markov hain with vetor ~q:
~q(x0,...,xn−1) = µ(x0, . . . , xn−i)µ(xn−i+1, . . . , xn−1 |xn−i)
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and the stritly positive matrix W :

W(x0,...,xn−1),(y0,...,yn−1)

= µ(y0, . . . , yn−i |xn−i, . . . , xn−1)µ(yn−i+1, . . . , yn−1 | yn−i),for i = 2, . . . , n.The ase i = 1 is onsidered in [3℄. Here ~q(x0,...,xn−1) = µ(x0, . . . , xn−1)and
W(x0,...,xn−1),(y0,...,yn−1) = µ(y0, . . . , yn−1 |xn−1).By [6, Chapter 10℄ there exists an invariant set Ω′ ⊂ Ω with ν(Ω′) = 1suh that σ|Ω′ is positive nonsingular. The Markov hains (σn, σiν0) areergodi, being aperiodi, for i = 1, . . . , n. Therefore the supports of σiν0are pairwise disjoint sets with respet to ν. Hene there exists a Borel set

E0 ⊂ Ω′ suh that σn(E0) = E0 = σ−n(E0), ν0(E0) = 1, the sets σ−iE0are pairwise disjoint and σiν0(σ
i(E0)) = 1 for i = 1, . . . , n. Set µi = σiν0and Ei = σiE0, i = 0, . . . , n − 1. Let E =

⋃n−1
i=0 Ei. Then σ−1E = E and

ν(E) = 1.

Remark. (σ, ν) is not totally ergodi as σn(E0) = E0 and ν(E0) = 1/n.Obviously (σ, ν) is positively nonsingular on E.

Lemma 2. The partition PE = {Pi ∩ E}k−1
i=0 of E is a Markovian gener-ator for (σ, ν). Moreover, ν(σ(Pi ∩ E)) = 1 for i = 0, . . . , k − 1.Proof. It su�es to show that ν(σ(Pj ∩E)) = 1 for j = 0, . . . , k − 1. Bythe de�nition of ν,

ν(σ(Pj ∩ E)) =
1

n

n∑

i=1

µi(σ(Pj ∩ Ei−1)).By (2) and Lemma 1, µi(σ
n([x1, . . . , xn−1, j] ∩ Ei)) = 1 for every blok

[x1, . . . , xn−1]. Hene the inlusion
σn−1([x1, . . . , xn−1, j] ∩ Ei) ⊂ Pj ∩ E(i+n−1)modn = Pj ∩ Ei−1implies µi(σ(Pj ∩ Ei−1)) = 1. Hene µi(σ(Pj ∩ Ei−1)) = 1 for i = 1, . . . , n.This �nishes the proof.

Theorem 3. The proess (σ, ν,PE) is not a q.m.p.Proof. By the onstrution (σ, ν) is ergodi but not weakly mixing. Theprevious observations imply σ|E is positively nonsingular and P is a Marko-vian generator for (σ, ν). Let Pσ denote the smallest �eld whih ontains
{σ(Pi ∩ E)}k−1

i=0 . By Lemma 2, Pσ = {∅, Ω}. Assume that (σ, ν,PE) is aq.m.p. Then, by [4, Lemma 2℄, all eigenfuntions of σ are Pσ-measurable,whih implies that (σ, ν) is weakly mixing. This ontradits our assump-tion.
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