An Application of Skew Product Maps to Markov Chains

by
Zbigniew S. KOWALSKI

Presented by Stanistaw KWAPIEŃ

Summary. By using the skew product definition of a Markov chain we obtain the following results:
(a) Every k-step Markov chain is a quasi-Markovian process.
(b) Every piecewise linear map with a Markovian partition defines a Markov chain for every absolutely continuous invariant measure.
(c) Satisfying the Chapman-Kolmogorov equation is not sufficient for a process to be quasi-Markovian.
0. Introduction. Consider a stationary Markov chain with finite state space, i.e., a probability space (Ω, P), a sequence of $\left(X_{n}\right)_{n=0}^{\infty}$ random variables $X_{n}: \Omega \rightarrow\{1, \ldots, s\}$ a probability vector $\vec{p}=\left(p_{1}, \ldots, p_{s}\right)$, a stochastic matrix $\Pi=\left(p_{i j}\right)_{s \times s}$ such that $\vec{p} \Pi=\vec{p}$ and

$$
P\left(X_{n+1}=j \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=P\left(X_{n+1}=j \mid X_{n}=i_{n}\right)=p_{i_{n} j} .
$$

To apply ergodic theory here, we need a sequence representation of the process. Therefore we assume that $\Omega=\{1, \ldots, s\}^{N}, N=\{0,1,2, \ldots\}, P$ is the measure given by

$$
P\left(\omega: \omega_{0}=i_{0}, \ldots, \omega_{n}=i_{n}\right)=p_{i_{0}} p_{i_{0} i_{1}} \cdots p_{i_{n-1} i_{n}}
$$

and σ is the 1 -sided shift on $\Omega,(\sigma \omega)_{i}=\omega_{i+1}$. Finally, we get the measure preserving dynamical system $(\Omega, \mathcal{A}, P, \sigma, \alpha)$, where \mathcal{A} is the σ-algebra generated by the cylinder sets $\left\{\omega: \omega_{i_{1}}=j_{1}, \ldots, \omega_{i_{n}}=j_{n}\right\}$ and $\alpha=\left\{A_{i}\right\}_{i=1}^{s}$, where $A_{i}=\left\{\omega: \omega_{0}=i\right\}, i=1, \ldots, s$. The process $\left(X_{n}^{\prime}\right)_{n=0}^{\infty}$ given by $X_{n}^{\prime}(\omega)=i \Leftrightarrow \sigma^{n}(\omega) \in A_{i}$ is a Markov chain with the same distribution

[^0]as $\left(X_{n}\right)_{n=0}^{\infty}$. The above process is denoted by (σ, α) and called a Markov process.

For our aims we will use more general notations. Let $(X, \mathcal{A}, m, f, \alpha)$ be a measure preserving dynamical system where (X, \mathcal{A}, m) is a probability Lebesgue space and additionally f is a positively nonsingular map (i.e. $m(A)=0 \Rightarrow m(f(A))=0)$, and $\alpha=\left\{A_{i}\right\}_{i=1}^{s}$ is a generating partition, i.e. $\bigvee_{i=0}^{\infty} f^{-i} \alpha=\mathcal{A}$. We denote by (f, α) the process $\left(X_{n}\right)_{n=0}^{\infty}$ such that $X_{n}(x)=i \Leftrightarrow f^{n}(x) \in A_{i}$. For our aims it is convenient to use an equivalent definition of Bernoulli and Markov processes (see [4]). To this end let us consider another Lebesgue probability space (Y, \mathcal{B}, q) and let $\left\{T_{i}\right\}_{i=1}^{s}$ be a family of positively and negatively nonsingular maps of Y into $Y\left(T_{i}\right.$ is negatively nonsingular if $\left.q(B)=0 \Rightarrow q\left(T_{i}^{-1} B\right)=0\right)$. The process (f, α) and the family $\left\{T_{i}\right\}_{i=1}^{s}$ define the skew product map

$$
\begin{equation*}
T(x, y)=\left(f(x), T_{a(x)}(y)\right) \tag{1}
\end{equation*}
$$

where $a: X \rightarrow\{1, \ldots, s\}$ is determined by $a(x)=i \Leftrightarrow x \in A_{i}$. Let $E(f, \alpha)$ be the class of functions g such that there exists a Lebesgue probability space (Y, \mathcal{B}, q) and a family of positively and negatively nonsingular maps $\left\{T_{i}\right\}_{i=1}^{s}$ such that g is the density of an absolutely continuous invariant measure (a.c.i.m.) under the skew product as in (1).

We also denote by $\widehat{\alpha}$ the field of unions of elements of α.
Definition 1. The process (f, α) is
(i) a Bernoulli process if for every $g \in E(f, \alpha), g$ is measurable with respect to \mathcal{B},
(ii) a Markov process if for every $g \in E(f, \alpha), g$ is measurable with respect to $\widehat{\alpha} \times \mathcal{B}$.

Reduction of the condition in (ii) allows us to introduce quasi-Markovian processes.

Definition 2. We say that (f, α) is a quasi-Markovian process (q.m.p.) if for every $g \in E(f, \alpha)$ the set $\{g>0\}$ belongs to $\widehat{\alpha} \times \mathcal{B}$.

Some generalizations of Definition 2 and its applications can be found in [1, 2]. By using Definitions 1 and 2 we obtain the following facts.

Theorem 1. If α has the Markov property (i.e. $f(\alpha) \subset \widehat{\alpha}$) and if $\left(f^{n}, \bigvee_{i=0}^{n-1} f^{-i} \alpha\right)$ is a q.m.p. for some n with respect to m then (f, α) is also a q.m.p.

Theorem 2. If $X=[0,1], f$ is piecewise linear, α has the Markov property and $f \mid A_{i}$ is linear for $i=1, \ldots, s$ then (f, α) is a Markov process for every f-invariant probability measure which is absolutely continuous with respect to the Lebesgue measure.

Let $\left(X_{n}\right)_{n=0}^{\infty}$ be a stationary process with s states. Moreover, let m be the measure on $\{1, \ldots, s\}^{N}$ determined by the finite-dimensional distributions of $\left(X_{n}\right)_{n=0}^{\infty}$.

Definition 3. We say that $\left(X_{n}\right)_{n=0}^{\infty}$ is a k-step Markov chain if

$$
\begin{aligned}
m\left(\omega_{n+1}=j \mid \omega_{0}=i_{0}\right. & \left., \ldots, \omega_{n}=i_{n}\right) \\
& =m\left(\omega_{n+1}=j \mid \omega_{n-k+1}=i_{n-k+1}, \ldots, \omega_{n}=i_{n}\right)
\end{aligned}
$$

A 1-step Markov chain is a Markov chain. As a corollary to Theorem 1 we get

Theorem 1'. If a stationary process $\left(X_{n}\right)_{n=0}^{\infty}$ is a k-step Markov chain for some $k \geq 1$ then it is a q.m.p.

Concerning Theorem 2 let us remark that if f is not piecewise linear but piecewise monotonic then (f, α) is not a Markov process in general. However, in many cases it turns out to be a q.m.p., for example if f is a Lasota-Yorke or Misiurewicz map ([4]). Let us turn to Theorem 1'. If we replace the Markov chain conditions by the Chapman-Kolmogorov equation (for the definition see below) then we may fall outside the class of quasi-Markovian processes (see Section 3).

Definition 4. We say that a process (f, α) satisfies the C - K-equation if

$$
m\left(f^{-n} A_{j} \mid A_{i}\right)=\left(\Pi^{n}\right)_{i j} \quad \text { for } i, j=1, \ldots, s \text { and } n \in \mathbb{N}
$$

Here $\Pi_{i j}=m\left(f^{-1} A_{j} \mid A_{i}\right)$ for $i, j=1, \ldots, s$.

1. Proof of Theorem 1. We will use the skew product description of processes. Let us consider the skew product map

$$
T(x, y)=\left(f(x), T_{a(x)}(y)\right)
$$

where $a: X \rightarrow \alpha$ is determined by $a(x)=A \Leftrightarrow x \in A$. Here $\left\{T_{A}\right\}_{A \in \alpha}$ is a family of positively and negatively nonsingular maps of Y into Y. Let ν be a T-invariant measure absolutely continuous with respect to $m \times q$. The measure ν is also T^{n}-invariant. Here

$$
T^{n}(x, y)=\left(f^{n}(x), T_{b(x)}(y)\right)
$$

where $b: X \rightarrow \beta=\bigvee_{i=0}^{n-1} f^{-i} \alpha$ is defined similarly to a. Here

$$
T_{B}(y)=T_{A_{n}} \circ \cdots \circ T_{A_{1}}(y) \quad \text { for } B=A_{1} \cap f^{-1}\left(A_{2}\right) \cap \cdots \cap f^{-(n-1)}\left(A_{n}\right)
$$

Therefore,

$$
\left\{\frac{d \nu}{d(m \times q)}>0\right\}=\bigcup_{B \in \beta} B \times D_{B}
$$

if $\left(f^{n}, m, \beta\right)$ is a q.m.p. by Definition 2 . From

$$
T^{n}\left(\bigcup_{B \in \beta} B \times D_{B}\right)=\bigcup_{B \in \beta} B \times D_{B}
$$

we get

$$
\bigcup_{B \in \beta} B \times D_{B}=\bigcup_{B \in \beta} f^{n}(B) \times T_{B}\left(D_{B}\right)=\bigcup_{A \in \alpha} A \times C_{A}
$$

Here we use $f^{n}(B) \in \widehat{\alpha}$ for $B \in \beta$. Therefore (f, m, α) is a q.m.p.
2. Proof of Theorem 2. Consider the skew product map

$$
T(x, y)=\left(f(x), T_{a(x)}(y)\right)
$$

as in (1). Let P be the Frobenius-Perron (F-P) operator for T, i.e.

$$
\int_{T^{-n} E} G d(\lambda \times q)=\int_{E} P(G) d(\lambda \times q)
$$

for $E \in \mathcal{A} \times \mathcal{B}$ and $G \in L_{1}(\lambda \times q)$. Here λ is the Lebesgue measure. By the definition of T we have

$$
P(w h)(x, y)=\sum_{i=1}^{s} a_{i} w\left(f_{i}^{-1}(x)\right) 1_{f\left(A_{i}\right)}(x) P_{i} h(y) \quad \text { for } w \in L_{1}(\lambda), h \in L_{1}(q)
$$

where $f_{i}=f \mid A_{i}, a_{i}=1 / f_{i}^{\prime}(x)$ for $x \in A_{i}$ and P_{i} denotes the F-P operator for $T_{i}, i=1, \ldots, s$. Let μ be f-invariant, $\mu \ll \lambda$. Moreover, let ν be T-invariant and $\nu \ll \mu \times q$. Then also $\nu \ll \lambda \times q$ and therefore for $G=d \nu / d(\lambda \times q)$ we obtain $P^{n} G=G$ for $n=1,2, \ldots$ Let $A_{i_{1}, \ldots, i_{n}}=A_{i_{1}} \cap f^{-1}\left(A_{i_{2}}\right) \cap \cdots \cap$ $f^{-(n-1)}\left(A_{i_{n}}\right)$.Thus, as $f(\alpha) \subset \widehat{\alpha}$,

$$
P\left(1_{A_{i_{1} \cdots i_{n}}} h\right)=a_{i_{1}} 1_{A_{i_{2} \cdots i_{n}}} P_{i_{1}} h .
$$

Consequently,

$$
P^{n}\left(1_{A_{i_{1} \cdots i_{n}}} h\right)=\sum_{i=1}^{s} 1_{A_{i}} h_{i}
$$

By using approximation arguments as in [5] we conclude that

$$
G=\sum_{i=1}^{s} 1_{A_{i}} g_{i}
$$

By repeating a similar reasoning for μ and the F-P operator for f we get

$$
\frac{d \mu}{d \lambda}=\sum_{i=1}^{s} c_{i} 1_{A_{i}}
$$

Hence,

$$
\frac{d \nu}{d(\mu \times \lambda)}=\frac{d \nu}{d(\lambda \times q)}\left(\frac{d(\mu \times q)}{d(\lambda \times q)}\right)^{-1}=\sum_{i=1}^{s} 1_{A_{i}} d_{i}
$$

Therefore (f, α) is a Markov process with respect to μ.

Let us remark that Theorem 3 in [7] and Theorem 6.3 in [8] are special cases of Theorem 2. Here the Markov property of (f, α) has been obtained for some classes of piecewise linear transformations by using an explicit definition of invariant measure.
3. C-K-process which is not a q.m.p. We recall the construction of Courbage and Hamdan from [3], using their notation. Let $K=\{0, \ldots, k-1\}$ and $\Omega=K^{N}=\{\omega: \omega(i) \in K, i=0,1,2, \ldots\}$. We say that a probability measure μ on K^{n+1} is invariant if for any subsets A_{1}, \ldots, A_{n} of K,

$$
\mu\left(K \times A_{1} \times \cdots \times A_{n}\right)=\mu\left(A_{1} \times \cdots \times A_{n} \times K\right) .
$$

Denote by $\operatorname{Inv}\left(K^{n+1}\right)$ the set of invariant measures. For $\mu \in \operatorname{Inv}\left(K^{n+1}\right)$ we define the measure $\nu_{0}=\Phi(\mu)$ on Ω by

$$
\begin{aligned}
\nu_{0}(\{\omega & \left.\left.\in \Omega: \omega_{0}=x_{0}, \ldots, \omega_{p n}=x_{p n}\right\}\right) \\
& =\mu\left(x_{0}, \ldots, x_{n}\right) \mu\left(x_{n+1}, \ldots, x_{2 n} \mid x_{n}\right) \cdots \mu\left(x_{(p-1) n+1}, \ldots, x_{p n} \mid x_{(p-1) n}\right)
\end{aligned}
$$

for all $p \geq 1$ and $x=\left(x_{i}\right)_{i=0}^{p n} \in K^{n+1}$. The measure ν_{0} is σ^{n}-invariant where σ is the 1 -sided shift on Ω. Now, we proceed to determine a suitable measure $\mu \in \operatorname{Inv}\left(K^{n+1}\right)$. Let Π be a $k \times k$ stochastic strictly positive matrix and \vec{p} be a row probability vector which is invariant under Π. By analyzing the proof of [4, Theorem 3.1] we conclude that there exists a measure $\mu \in \operatorname{Inv}\left(K^{n+1}\right)$, for some prime number $n \geq 3$, such that

$$
\begin{equation*}
\mu\left(A_{0} \times \cdots \times A_{n}\right)>0 \tag{2}
\end{equation*}
$$

for any $A_{0}, \ldots, A_{n} \subseteq K$. The above holds because Π is strictly positive and $\left.\mu\right|_{K^{n}}=\left.\mu_{\Pi}\right|_{K^{n}}$ (by conditions (3.4), (3.5) from [4]). Here μ_{Π} denotes the (Π, \vec{p}) Markovian measure. The measure

$$
\nu=\frac{1}{n} \sum_{i=0}^{n-1} \sigma^{i} \nu_{0}
$$

where $\nu_{0}=\Phi(\mu)$, is not (Π, \vec{p}) Markovian since $\mu \neq\left.\mu_{\Pi}\right|_{K^{n+1}}$ (by $[4$, (3.18)]). Moreover the process $(\sigma, \nu, \mathcal{P})$ satisfies the C-K-equation with Π, i.e. $\nu\left(\sigma^{-n} P_{j} \mid P_{i}\right)=\left(\Pi^{n}\right)_{i, j}$ for $n=1,2, \ldots$, by $[4,(3.6)]$ and by the definition of ν. Here $P_{i}=\{\omega \in \Omega: \omega(0)=i\}$. We will prove that $(\sigma . \nu, \mathcal{P})$ is not a q.m.p. To this end we show that there exists a Borel invariant set $E \subset \Omega$ of measure one such that (E, ν, σ) is positively nonsingular and $\nu\left(\sigma\left(P_{i} \cap E\right)\right)=1$ for $i=0, \ldots, k-1$. Combining this with the ergodic properties of (σ, ν) we get the desired conclusion. Let $\mathcal{P}_{0}^{n}=\bigvee_{i=0}^{n-1} \sigma^{-i} \mathcal{P}$. By the definition of ν_{0} and by (2) we get

Lemma 1. The process $\left(\sigma^{n}, \sigma^{i} \nu_{0}\right)$ is a Markov chain with vector \vec{q} :

$$
\vec{q}_{\left(x_{0}, \ldots, x_{n-1}\right)}=\mu\left(x_{0}, \ldots, x_{n-i}\right) \mu\left(x_{n-i+1}, \ldots, x_{n-1} \mid x_{n-i}\right)
$$

and the strictly positive matrix W :

$$
\begin{aligned}
& W_{\left(x_{0}, \ldots, x_{n-1}\right),\left(y_{0}, \ldots, y_{n-1}\right)} \\
& \quad=\mu\left(y_{0}, \ldots, y_{n-i} \mid x_{n-i}, \ldots, x_{n-1}\right) \mu\left(y_{n-i+1}, \ldots, y_{n-1} \mid y_{n-i}\right)
\end{aligned}
$$

for $i=2, \ldots, n$.
The case $i=1$ is considered in [3]. Here $\vec{q}_{\left(x_{0}, \ldots, x_{n-1}\right)}=\mu\left(x_{0}, \ldots, x_{n-1}\right)$ and

$$
W_{\left(x_{0}, \ldots, x_{n-1}\right),\left(y_{0}, \ldots, y_{n-1}\right)}=\mu\left(y_{0}, \ldots, y_{n-1} \mid x_{n-1}\right)
$$

By [6, Chapter 10] there exists an invariant set $\Omega^{\prime} \subset \Omega$ with $\nu\left(\Omega^{\prime}\right)=1$ such that $\sigma \mid \Omega^{\prime}$ is positive nonsingular. The Markov chains ($\sigma^{n}, \sigma^{i} \nu_{0}$) are ergodic, being aperiodic, for $i=1, \ldots, n$. Therefore the supports of $\sigma^{i} \nu_{0}$ are pairwise disjoint sets with respect to ν. Hence there exists a Borel set $E_{0} \subset \Omega^{\prime}$ such that $\sigma^{n}\left(E_{0}\right)=E_{0}=\sigma^{-n}\left(E_{0}\right), \nu_{0}\left(E_{0}\right)=1$, the sets $\sigma^{-i} E_{0}$ are pairwise disjoint and $\sigma^{i} \nu_{0}\left(\sigma^{i}\left(E_{0}\right)\right)=1$ for $i=1, \ldots, n$. Set $\mu_{i}=\sigma^{i} \nu_{0}$ and $E_{i}=\sigma^{i} E_{0}, i=0, \ldots, n-1$. Let $E=\bigcup_{i=0}^{n-1} E_{i}$. Then $\sigma^{-1} E=E$ and $\nu(E)=1$.

REmARK. (σ, ν) is not totally ergodic as $\sigma^{n}\left(E_{0}\right)=E_{0}$ and $\nu\left(E_{0}\right)=1 / n$.
Obviously (σ, ν) is positively nonsingular on E.
Lemma 2. The partition $\mathcal{P}_{E}=\left\{P_{i} \cap E\right\}_{i=0}^{k-1}$ of E is a Markovian generator for (σ, ν). Moreover, $\nu\left(\sigma\left(P_{i} \cap E\right)\right)=1$ for $i=0, \ldots, k-1$.

Proof. It suffices to show that $\nu\left(\sigma\left(P_{j} \cap E\right)\right)=1$ for $j=0, \ldots, k-1$. By the definition of ν,

$$
\nu\left(\sigma\left(P_{j} \cap E\right)\right)=\frac{1}{n} \sum_{i=1}^{n} \mu_{i}\left(\sigma\left(P_{j} \cap E_{i-1}\right)\right) .
$$

By (2) and Lemma $1, \mu_{i}\left(\sigma^{n}\left(\left[x_{1}, \ldots, x_{n-1}, j\right] \cap E_{i}\right)\right)=1$ for every block $\left[x_{1}, \ldots, x_{n-1}\right]$. Hence the inclusion

$$
\sigma^{n-1}\left(\left[x_{1}, \ldots, x_{n-1}, j\right] \cap E_{i}\right) \subset P_{j} \cap E_{(i+n-1) \bmod n}=P_{j} \cap E_{i-1}
$$

implies $\mu_{i}\left(\sigma\left(P_{j} \cap E_{i-1}\right)\right)=1$. Hence $\mu_{i}\left(\sigma\left(P_{j} \cap E_{i-1}\right)\right)=1$ for $i=1, \ldots, n$. This finishes the proof.

Theorem 3. The process $\left(\sigma, \nu, \mathcal{P}_{E}\right)$ is not a q.m.p.
Proof. By the construction (σ, ν) is ergodic but not weakly mixing. The previous observations imply $\sigma \mid E$ is positively nonsingular and \mathcal{P} is a Markovian generator for (σ, ν). Let \mathcal{P}_{σ} denote the smallest field which contains $\left\{\sigma\left(P_{i} \cap E\right)\right\}_{i=0}^{k-1}$. By Lemma $2, \mathcal{P}_{\sigma}=\{\emptyset, \Omega\}$. Assume that $\left(\sigma, \nu, \mathcal{P}_{E}\right)$ is a q.m.p. Then, by [4, Lemma 2], all eigenfunctions of σ are \mathcal{P}_{σ}-measurable, which implies that (σ, ν) is weakly mixing. This contradicts our assumption.

References

[1] J. Aaronson and M. Denker, Local limit theorems for Gibbs-Markov maps, Stoch. Dyn. 1 (2001), 193-237.
[2] J. Aaronson, M. Denker, O. Sarig and R. Zweimüller, Aperiodicity of cocycles and conditional local limit theorems, ibid. 4 (2004), 31-62.
[3] M. Courbage and D. Hamdan, An ergodic Markov chain is not determined by its two-dimensional marginal laws, Statist. Probab. Lett. 37 (1998), 35-40.
[4] Z. S. Kowalski, Quasi-Markovian transformations, Ergodic Theory Dynam. Systems 17 (1997), 885-897.
[5] T. Morita, Deterministic version lemmas in ergodic theory of random dynamical systems, Hiroshima Math. J. 18 (1988), 15-29.
[6] W. Parry, Entropy and Generators in Ergodic Theory, Benjamin, New York, 1969.
[7] I. Shiokawa, Ergodic properties of piecewise linear transformations, Proc. Japan Acad. 46 (1970), 1122-1125.
[8] K. M. Wilkinson, Ergodic properties of a class of piecewise linear transformations, Z. Wahrsch. Verw. Gebiete 31 (1975), 303-328.

Zbigniew S. Kowalski
Institute of Mathematics and Informatics
Wrocław University of Technology
Wybrzeże St. Wyspiańskiego 27
50-370 Wrocław, Poland
E-mail: kowalski@pwr.wroc.pl

Received July 20, 2006;
received in final form February 23, 2007

[^0]: 2000 Mathematics Subject Classification: Primary 37A05; Secondary 60J10.
 Key words and phrases: skew product, Markov chain, quasi-Markovian process. Research supported by grant MENII 1 P03A 021 29, Poland.

