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A Proof of Simultaneous Linearizationwith a Polylog EstimatebyTomoki KAWAHIRAPresented by Stanisªaw KWAPIE�
Summary. We give an alternative proof of simultaneous linearization reently shown byT. Ueda, whih onnets the Shröder equation and the Abel equation analytially. Infat, we generalize Ueda's original result so that we may apply it to the paraboli �xedpoints with multiple petals. As an appliation, we show a ontinuity result on linearizingoordinates in omplex dynamis.1. Introdution. Let us start with a worked out example to explainthe motivation to onsider the simultaneous linearization theorem.Cauli�owers. In the family of quadrati maps, the simplest paraboli�xed point is given by g(w) = w + w2 (whose Julia set is alled the auli-�ower). Now we onsider its perturbation of the form f(w) = λw + w2 with
λ ր 1. Aording to [Mi, �8 and �10℄, we have the following fat:Proposition 1.1 (Königs and Fatou oordinates). Let Kf and Kg bethe �lled Julia sets of f and g. Then we have the following :(1) There exists a unique holomorphi branhed overing map φf :K◦

f →Csatisfying the Shröder equation φf (f(w)) = λφf (w) and φf (0) =
φf (−λ/2) − 1 = 0. The map φf is univalent near w = 0.(2) There exists a unique holomorphi branhed overing map φg :K◦

g →Csatisfying the Abel equation φg(g(w)) = φg(w)+1 and φg(−1/2) = 0.The map φg is univalent on a disk |w + r| < r with small r > 0.Note that −λ/2 and −1/2 are the ritial points of f and g respetively.2000 Mathematis Subjet Classi�ation: 37F99, 30D05.Key words and phrases: simultaneous linearization, polylogarithm, paraboli �xedpoint. [43℄ © Instytut Matematyzny PAN, 2007
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Observation. Set w̃ = φf (w). Now the proposition above asserts thatthe ation of f |K◦

f
is semionjugate to w̃ 7→ λw̃ by φf . Consider the Möbiusmap

W = Sf (w̃) = λ(w̃ − 1)/(λ − 1)w̃that sends {0, 1, λ} to {∞, 0, 1} respetively. By taking onjugation by Sf ,the ation of w̃ 7→ λw̃ is viewed as W 7→ W/λ + 1. Set W = Φf (w) :=
Sf ◦ φf (w). Now we have

Φf (f(w)) = Φf (w)/λ + 1 and Φf (−λ/2) = 0.On the other hand, by setting W = Φg(w) := φg(w), we an view the ationof g|K◦

g
as W 7→ W + 1. Thus we have

Φg(g(w)) = Φg(w) + 1 and Φg(−1/2) = 0.If λ tends to 1, that is, f → g, the semionjugate ation in W -oordinateonverges uniformly on ompat sets. Now it would be natural for Φf to tendto Φg. However, as one an see by referring to the proof of the propositionin [Mi, �8 and �10℄, φf and φg are given in ompletely di�erent ways, andthus we annot onlude the onvergene Φf → Φg a priori.

Fig. 1. Semionjugation inside the �lled Julia sets of auli�owersBut there is another evidene that supports this observation. Figure 1shows the equipotential urves of φf and φg in the �lled Julia sets. We an�nd similar patterns and it seems that one onverges to the other. Atually,we have the following:
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Theorem 1.2. For any ompat set E ⊂ K◦

g ,(1) E ⊂ K◦
f for all f ≈ g;(2) Φf → Φg uniformly on E as f → g.Here f ≈ g means that f is su�iently lose to g, equivalently, λ issu�iently lose to 1. (See [Ka, Theorem 5.5℄ for a more general version ofthis proposition.) The proof of this theorem is given in Setion 5, by usingthe simultaneous linearization theorem.2. Simultaneous linearization. In this setion we state the simultane-ous linearization theorem. We �rst generalize the auli�ower setting above:Perturbation of parabolis. Let f be an analyti map de�ned on a neigh-borhood of 0 in Ĉ whih is tangent to identity at 0. That is, f near 0 is ofthe form

f(w) = w + Awm+1 + O(wm+2)where A 6= 0 and m ∈ N. By making a linear oordinate hange w 7→ A1/mw,we may assume that A = 1. In the theory of omplex dynamis suh germsappear when we onsider iteration of loal dynamis near paraboli periodipoints, and play very important roles. (See [Mi, �10℄ and [Sh℄ for example.)Now we onsider a perturbation fε → f of the form
fε(w) = Λεw(1 + wm + O(wm+1))with Λε → 1 as ε → 0. By taking branhed oordinate hanges z =

−Λm
ε /(mwm) and setting τε := Λ−m

ε , we have
fε(z) = τεz + 1 + O(|z|−1/m)

→ f0(z) = z + 1 + O(|z|−1/m)uniformly near w = ∞ on the Riemann sphere Ĉ. The simultaneous lin-earization theorem will give partially linearizing oordinates of fε that de-pend ontinuously on ε when τε → 1 non-tangentially to the unit irle.Let us formalize non-tangential aess to 1 in the omplex plane: AfterC. MMullen, for a variable τ ∈ C onverging to 1, we say τ → 1 radially(or more preisely, α-radially) if |arg(τ −1)| ≤ α for some �xed α ∈ [0, π/2).Ueda's modulus. Consider a ontinuous family {τε} of omplex numberswith ε ∈ [0, 1] suh that |τε| ≥ 1 and τε → 1 α-radially as ε → 0. Forsimpliity we assume that τε = 1 i� ε = 0. Set ℓε(z) := τεz + 1, whih is anisomorphism of the Riemann sphere Ĉ. If ε > 0, then bε := 1/(1 − τε) is arepelling �xed point of ℓε with ℓε(z) − bε = τε(z − bε). Thus the funtion
Nε(z) := |z − bε| − |bε|
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has the uniform inrease property

N(ℓε(z)) = |τε|N(z) +
|τε| − 1

|τε − 1|
≥ |τε|N(z) + cos α.Similarly, if ε = 0, the funtion

N0(z) := sup {Re(eiθz) : |θ| < α}also has the orresponding property
N0(ℓ0(z)) ≥ N0(z) + cosα.In both ases, set

Vε(R) := {z ∈ C : Nε(z) ≥ R}for R > 0. One an hek that Nε(z) ≤ |z| and
Vε(R) ⊂ B(R) := {z ∈ C : |z| ≥ R} for all ε ∈ [0, 1].We will establish:Theorem 2.1 (Simultaneous linearization). Let {fε : ε ∈ [0, 1]} be afamily of holomorphi maps on B(R) suh that as ε → 0 we have the uniformonvergene on ompat sets of the form

fε(z) = τεz + 1 + O(1/|z|σ)

→ f0(z) = z + 1 + O(1/|z|σ)for some σ ∈ (0, 1] and τε → 1 α-radially. If R ≫ 0, then:(1) For any ε ∈ [0, 1] there exists a holomorphi map uε : Vε(R) → Csuh that
uε(fε(z)) = τεuε(z) + 1.(2) For any ompat set K ontained in Vε(R) for all ε ∈ [0, 1], uε → u0uniformly on K.This theorem is a mild generalization of Ueda's theorem in [Ue1℄ thatdeals with the ase of σ = 1. (See also [Ue2℄.) This plays a ruial role toshow the ontinuity of tessellation of the �lled Julia set for hyperboli andparaboli quadrati maps. See [Ka℄. C. MMullen showed that there existquasionformal linearizations with muh wider domain of de�nition. In fat,

τε → 1 may be tangent to the unit irle (horoyli in his terminology). See[M, �8℄.Remark on the domain of onvergene. We an take suh a ompatsubset K as above in
Π(R) := C − {eθiz : Re z < R, |θ| ≤ α}

= {z ∈ C : Re(z − R′) ≥ |z − R′| sinα},whih is a losed setor at z = R′ = R/cos α > 0. In fat, for any R > 0 and
ε ∈ [0, 1], Π(R) is ontained in Vε(R). One an hek this as follows. The
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omplement of Vε(R) is ontained in {eθiz : Re z < R, θ = arg(−bε)}. Sine
|arg(−bε)| ≤ α, we have the laim.In the next setion we give a proof of Theorem 2.1 that is also an alter-native proof of Ueda's simultaneous linearization when σ = 1. His originalproof given in [Ue1℄ uses a tehnial di�erene equation whih makes theproof beautiful and the statement a little more detailed. Here we present asimpli�ed proof based on the argument of [Mi, Lemma 10.10℄ (its idea anbe traed bak at least to Leau's work on the Abel equation [L℄) and anestimate on polylogarithm funtions given in Setion 4.3. Proof of the theorem. Let us start with a ouple of lemmas. Set
δ := (cosα)/2 > 0. We �rst hek:Lemma 3.1. If R ≫ 0, there exists M > 0 suh that |fε(z)−(τεz+1)| ≤
M/|z|σ on B(R) and Nε(fε(z)) ≥ Nε(z) + δ on Vε(R) for any ε ∈ [0, 1].Proof. The �rst inequality and the existene of M are obvious. By re-plaing R by a larger one, we have |fε(z)− (τεz +1)| ≤ M/Rσ < δ on B(R).Then

Nε(fε(z)) ≥ Nε(ℓε(z)) − δ ≥ Nε(z) + δ.Let us �x suh an R ≫ 0. Then the lemma above implies that fε(Vε(R))
⊂ Vε(R). Moreover, sine Nε(z) ≤ |z|, we have(3.1) |fn

ε (z)| ≥ Nε(f
n
ε (z)) ≥ Nε(z) + nδ ≥ R + nδ → ∞.Thus Vε(R) is ontained in the basin of in�nity and uniformly attratedto ∞ in the spherial metri of Ĉ. In partiular, this onvergene to ∞ isuniform on Π(R) for any ε.Next we show a key lemma for the theorem:Lemma 3.2. There exists C > 0 suh that for any ε ∈ [0, 1] and z1, z2 ∈

B(2S) with S > R, we have
∣∣∣∣
fε(z2) − fε(z1)

z2 − z1
− τε

∣∣∣∣ ≤
C

S1+σ
.Proof. Set gε(z) := fε(z) − (τεz + 1). For any z ∈ B(2S) and w ∈

D(z, S) := {w : |w − z| < S}, we have |w| > S. This implies |gε(w)| ≤
M/|w|σ < M/Sσ and thus gε maps D(z, S) into D(0, M/Sσ). By the Cauhyintegral formula (or the Shwarz lemma), it follows that |g′ε(z)| ≤ (M/Sσ)/S
= M/S1+σ on B(2S).Let [z1, z2] denote the oriented line segment from z1 to z2. If [z1, z2] isontained in B(2S), the inequality easily follows from

|gε(z2) − gε(z1)| =
∣∣∣
\

[z1,z2]

g′ε(z) dz
∣∣∣ ≤

\
[z1,z2]

|g′ε(z)| |dz| ≤
M

S1+σ
|z2 − z1|
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with C := M . Otherwise we have to take a roundabout way to get theestimate. Consider a irle with diameter [z1, z2]. Then [z1, z2] divides theirle into two semiirles, and at least one of them is ontained in B(2S);denote it by {z1, z2}. Then
|gε(z2) − gε(z1)| =

∣∣∣
\

{z1,z2}

g′ε(z) dz
∣∣∣ ≤

\
{z1,z2}

|g′ε(z)| |dz| ≤
M

S1+σ
·
π

2
|z2 − z1|

and the lemma holds with C := Mπ/2 (> M) for any z1, z2 ∈ B(2S).Proof of Theorem 2.1. Set zn := fn
ε (z) for z ∈ Vε(2R). Note that |zn| ≥

Nε(zn) ≥ 2R + nδ by (3.1). Now we �x a ∈ Vε(2R) and de�ne φn,ε = φn :
Vε(2R) → C (n ≥ 0) by

φn(z) :=
zn − an

τn
ε

.For example, one an take suh an a in Π(2R) independently of ε. Then
∣∣∣∣
φn+1(z)

φn(z)
− 1

∣∣∣∣ =

∣∣∣∣
zn+1 − an+1

τε(zn − an)
− 1

∣∣∣∣ =
1

|τε|
·

∣∣∣∣
fε(zn) − fε(an)

zn − an
− τε

∣∣∣∣.We apply Lemma 3.2 with 2S = 2R + nδ. Sine zn, an ∈ Vε(2S) ⊂ B(2S),we have ∣∣∣∣
φn+1(z)

φn(z)
− 1

∣∣∣∣ ≤
C

|τε|(R + nδ/2)1+σ
≤

C ′

(n + 1)1+σ
,where C ′ = 21+σC/δ1+σ and we may assume R > δ/2. Now set P :=∏

n≥1(1 + C ′/n1+σ). Sine |φn+1(z)/φn(z)| ≤ 1 + C ′/(n + 1)1+σ, we have
|φn(z)| =

∣∣∣∣
φn(z)

φn−1(z)

∣∣∣∣ · · ·
∣∣∣∣
φ1(z)

φ0(z)

∣∣∣∣ · |φ0(z)| ≤ P |z − a|.Hene
|φn+1(z) − φn(z)| =

∣∣∣∣
φn+1(z)

φn(z)
− 1

∣∣∣∣ · |φn(z)| ≤
C ′P

(n + 1)1+σ
· |z − a|.This implies that φε = φ0 + (φ1 − φ0) + · · · = limφn onverges uniformlyon ompat subsets of Vε(2R) and for all ε ∈ [0, 1]. The univalene of φε isshown in the same way as [Mi, Lemma 10.10℄.Next we laim that φε(fε(z)) = τεφε(z)+Bε with Bε → 1 as ε → 0. Onean easily hek that φn(fε(z)) = τεφn+1(z) + Bn where

Bn =
an+1 − an

τn
ε

=
(τε − 1)an

τn
ε

+
1 + gε(an)

τn
ε

.When τε = 1, Bn tends to 1 sine
|gε(an)| ≤

M

|an|σ
≤

M

(2R + nδ)σ
≤

M

(nδ)σ
→ 0.
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When |τε| > 1, the last term of the formula for Bn above tends to 0. For
n ≥ 1, we have

an = τn
ε a +

τn
ε − 1

τε − 1
+

n−1∑

k=0

τn−1−k
ε gε(ak).Thus

(τε − 1)an

τn
ε

= (τε − 1)

(
a +

gε(a)

τε
+

n−1∑

k=1

gε(ak)

τk+1
ε

)
+ 1 −

1

τn
ε

.By the inequality on |gε(an)| above, we have
∣∣∣∣(τε−1)

n−1∑

k=1

gε(ak)

τk+1
ε

∣∣∣∣ ≤
M

δσ

|τε − 1|

|τε|

n−1∑

k=1

1

kσ|τε|k
≤

M

2δ1+σ

(
1−

1

|τε|

)
Liσ

(
1

|τε|

)

where we have used the inequality
|τε − 1| ≤

Re τε − 1

cosα
≤

|τε| − 1

2δthat omes from the radial onvergene. By Proposition 4.1 in the nextsetion, Bn onverges to some Bε. More preisely, if we set |τε| = eL, then
τε − 1 = O(L) and one an hek that Bε = 1 + O(Lσ/(1+σ)).Finally, uε(z) := φε(z)/Bε gives the desired holomorphi map (with Rin the statement replaed by 2R).
Remarks.

• When σ = 1, we have
∣∣∣∣
n−1∑

k=1

gε(ak)

τk+1
ε

∣∣∣∣ ≤
M

δ|τε|

n−1∑

k=1

1

k|τε|k
≤ −

M

δ
log

(
1 −

1

|τε|

)

and this implies that Bε = 1 + O(L|log L|) if we set |τε| = eL. This isonsistent with the result in [Ue1℄.
• By this proof, if {fε(z)} analytially depends on ε, then so do {Bε}and {uε(z)} for �xed a in Π(2R).
• It is not di�ult to hek that uε(z) = z(B−1

ε +o(1)) as z → ∞ within
Vε(R). (It is well-known that if f0(z) = z + 1 + a0/z + · · · then theFatou oordinate is of the form u0(z) = z − a0 log z + O(1). See [Sh℄.)4. An estimate on polylogarithm funtions. We de�ne the polylog-arithm funtion of exponent s ∈ C by

Lis(z) :=

∞∑

n=1

zn

ns
.
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This funtion makes sense when |z| < 1 and σ := Re s > 0 and it is aholomorphi funtion of z. In partiular, if Re s > 1 the funtion tends to
ζ(s) as z → 1 within the unit disk. In the following we onsider the behaviorof Lis(z) as z → 1 within the unit disk when 0 < σ ≤ 1. We laim:Proposition 4.1. Suppose 0 < Re s = σ ≤ 1 and z → 1 with |z| < 1.Set ε := 1 − |z|. Then there exists a uniform onstant C independent of ssuh that

|Lis(z)| ≤ Cε−1/(1+σ)as z → 1. In partiular ,
|(z − 1) Lis(z)| ≤ Cεσ/(1+σ) → 0as z → 1 − 0 along the real axis.Proof. Clearly |Lis(z)| ≤

∑∞
n=1 |z|

n/nσ so it is enough to onsider thesum
S :=

∞∑

n=1

1

nσ
· λn

where λ := |z| = 1 − ε. Let Sn be the nth partial sum. By the Hölderinequality, we have
Sn ≤

( n∑

k=1

1

kσp

)1/p( n∑

k=1

λkq
)1/q

for any p, q > 1 with 1/p + 1/q = 1. Now set p := 1/σ + 1 ≥ 2 (then
1 < q = 1 + σ ≤ 2). Sine σp = 1 + σ > 1, the �rst sum is uniformlybounded: n∑

k=1

1

kσp
≤ 1 +

∞\
1

1

x1+σ
dx = 1 +

1

σ
= p.On the other hand, for the seond sum, we still have 0 < λq < 1 and thus

n∑

k=1

λkq ≤
λq

1 − λq
=

1

qε
(1 + o(1)) ≤

2

qεwhen ε ≪ 1. Hene we have the following uniform bound:
Sn ≤ p1/p

(
2

qε

)1/q

≤ 2
p1/p

q1/q
ε−1/q.One an easily hek that 1 ≤ x1/x ≤ e1/e = 1.44467 . . . for x ≥ 1. Thus

S ≤ 2e1/eε−1/q = 2e1/eε−1/(1+σ)when ε ≪ 1, and we have the desired estimate with C = 2e1/e < 3. The lastinequality of the statement follows from
|(z − 1) Lis(z)| ≤ Cε1−1/q = Cε1/p = Cεσ/(1+σ).(Indeed, |(z − 1) Lis(z)| = O(εσ/(1+σ)) as z → 1 radially.)
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5. Appliation: Proof of Theorem 1.2. As an appliation of Theo-rem 2.1, we give a proof of Theorem 1.2. Though Theorem 1.2 only dealswith the simplest paraboli �xed point and its simplest perturbation, onean easily extend the result to general paraboli yles with multiple petalsand their �non-tangential� perturbations.Proof of Theorem 1.2. Consider the general expression fλ(w) = λw +w2with 0 < λ ≤ 1 (thus f1 = g). By looking at the ation of fλ in a newoordinate z = χλ(w) = −λ2/w, we have

χλ ◦ fλ ◦ χ−1
λ (z) = z/λ + 1 + O(1/z)near ∞. Now we an set τε := 1/λ = 1+ε and fε := χλ ◦fλ ◦χ−1

λ to have thesame setting as in Theorem 2.1. We view f and g as being parameterized by
λ or ε. (It is onvenient to use both parameterizations.) Note that Π(R) =
{Re z ≥ R} in this ase. By the same argument as in Lemma 3.1, we anhek that Re fε(z) ≥ Re z + 1/2 if z ∈ Π(R) and R ≫ 0. In partiular,
fε(Π(R)) ⊂ Π(R) for R ≫ 0.Let us show (1): For any ompat E ⊂ K◦

g and small r > 0, there exists
N ≫ 0 suh that gN (E) ⊂ Pr = {|w + r| ≤ r}. (For instane, one an deduethis from the existene of the Fatou oordinate.) By uniform onvergene, wehave fN (E) ⊂ Pr for all f ≈ g. To prove E ⊂ K◦

f , it is enough to show that
f(Pr) ⊂ Pr for all f ≈ g. Sine χλ(Pr) = Π(R) for some R ≫ 0, we have
fε(Π(R)) ⊂ Π(R) independently of ε. This is equivalent to fλ(Pr) ⊂ Pr ina di�erent oordinate. Thus we have (1).Next let us hek (2): Set Φε := Φf and Φ0 := Φg. Then Φε(fλ(w)) =
τεΦε(w) + 1. On the other hand, by simultaneous linearization, we haveuniform onvergene uε → u0 on Π(R) that satis�es uε(fε(z)) = τεuε(z)+1.By setting Ψε(w) := uε ◦χλ(w), we have Ψε → Ψ0 ompat uniformly on Pr,and Ψε(fλ(w)) = τεΨε(w) + 1.We need to adjust the images of the ritial orbits under Φε and Ψε. Sine
gn(−1/2) → 0 along the real axis, there is an M ≫ 0 suh that gM (−1/2) =:
a0 ∈ Pr. By uniform onvergene, we also have fM (−λ/2) =: aε ∈ Pr and
aε → a0 as ε → 0. Set bε := Ψε(aε) and cε := Φε(aε) for all ε ≥ 0. Set also
ℓε(W ) = τεW +1. Then cε = ℓM

ε (0) = τM−1
ε + · · ·+ τε +1 and cε → c0 = Mas ε → 0. When ε > 0, we hoose an a�ne map Tε that �xes 1/(1− τε) andsends bε to cε. When ε = 0, we de�ne T0 to be the translation by b0 − c0.Then one an hek that Tε → T0 ompat uniformly on the plane and

Φ̃ε := Tε ◦ Ψε satis�es Φ̃ε → Φ̃0 on any ompat subset of Pr. Moreover,
Φ̃ε still satis�es Φ̃ε(fλ(w)) = τεΦ̃ε(w)+1 and the images of the ritial orbitunder Φε and Φ̃ε agree. Finally, by uniqueness of φf and φg, one an hekthat Φε = Φ̃ε on Pr.
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Sine

Φf (w) = ℓ−N
ε ◦ Φ̃ε ◦ fN (w) → ℓ−N

0 ◦ Φ̃0 ◦ gN (w) = Φg(w)uniformly on E, we have (2).Aknowledgements. I would like to thank T. Ueda, F. Przytyki andthe referee for orrespondene. This researh is partially supported by In-amori Foundation and JSPS.
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