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Topologial Pressure for One-DimensionalHolomorphi Dynamial SystemsbyKatrin GELFERT and Christian WOLFPresented by Stanisªaw KWAPIE�
Summary. For a lass of one-dimensional holomorphi maps f of the Riemann sphere weprove that for a wide lass of potentials ϕ the topologial pressure is entirely determined bythe values of ϕ on the repelling periodi points of f . This is a version of a lassial resultof Bowen for hyperboli di�eomorphisms in the holomorphi non-uniformly hyperbolisetting.1. Introdution. In this paper we study the topologial pressure Ptop(ϕ)
= Ptop(f, ϕ) of a ontinuous potential ϕ with respet to a one-dimensionalholomorphi dynamial system f . To simplify the exposition we disuss in theintrodution exlusively the ase when f is a rational map of the Riemannsphere and present our more general results later on. Let f : C → C bea rational map of degree d ≥ 2, and let J denote the Julia set of f , i.e.the losure of the repelling periodi points of f (see [2℄ for details). We areinterested in the topologial pressure with respet to the dynamial system
f |J .We denote by Pern(f) the �xed points of fn in J and by Per(f) =
⋃

n Pern(f) the periodi points of f in J . Moreover, let Perrep(f) ⊂ Per(f)denote the set of repelling periodi points of f . Given α > 0, 0 < c ≤ 1, and
n ∈ N we de�ne
(1) Pern(α, c) = {z ∈ Pern(f) : |(fk)′(f i(z))| ≥ c exp(kα)for all k ∈ N and 0 ≤ i ≤ n − 1}.2000 Mathematis Subjet Classi�ation: 37F10, 37D25, 37D35, 28D20.Key words and phrases: topologial pressure, rational maps, holomorphi dynamis,repelling periodi points, invariant measures.The researh of K.G. was supported by the grant EU SPADE2. She is grateful toIMPAN for the hospitality. [53℄ © Instytut Matematyzny PAN, 2007
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Thus, if α ≥ α′, c ≥ c′, then(2) Pern(α, c) ⊂ Pern(α′, c′)and

Perrep(f) =
⋃

α>0

⋃

c>0

∞
⋃

n=1

Pern(α, c).Let M denote the set of all f -invariant Borel probability measures on
J endowed with the weak∗ topology. This makes M into a ompat onvexspae. Moreover, let ME ⊂ M be the subset of ergodi measures. For µ ∈ MEwe de�ne the Lyapunov exponent of µ by(3) χ(µ) =

\
log |f ′| dµ.It follows from Birkho�'s ergodi theorem that the pointwise Lyapunov ex-ponent at z, whih is de�ned by(4) χ(z) = lim

n→∞

1

n
log |(fn)′(z)|,exists for µ-a.e. z ∈ J and oinides (whenever it exists) with χ(µ). Wesay that a measure µ is hyperboli if χ(µ) > 0. We denote by hµ(f) themeasure-theoreti entropy of f with respet to µ (see for example [15℄ forthe de�nition). Moreover, we denote by Ptop(ϕ) the topologial pressure of

ϕ with respet to f (see Setion 2.2 for the de�nition). For ϕ ∈ C(J, R) wede�ne(5) α(ϕ) = sup{χ(µ) : µ ∈ ME ∩ ES(ϕ)},where ES(ϕ) denotes the set of equilibrium states of ϕ, i.e. of measures
µ ∈ M satisfying Ptop(ϕ) = hµ(f) +

T
ϕdµ (1). We note that it followsfrom a general result of Newhouse [10℄ (or alternatively from a theorem ofLyubih [9℄ or from Freire et al. [5℄ in the ase of rational maps) that for all

ϕ ∈ C(J, R) we have ES(ϕ) ∩ ME 6= ∅. Our main goal in this paper is toprove the following result (for a more general ase of not neessarily rationalmaps see Theorem 2 below):Theorem 1. Let f : C → C be a rational map of and let ϕ ∈ C(J, R) bea Hölder ontinuous potential.(a) If α(ϕ) > 0 then for all 0 < α < α(ϕ) we have(6) Ptop(ϕ) = lim
c→0

lim sup
n→∞

1

n
log

(

∑

z∈Pern(α,c)

exp
(

n−1
∑

k=0

ϕ(fk(z))
))

.

(1) Note that the supremum in (5) is in fat a maximum. This follows from the fatthat ES(ϕ) is a non-empty ompat onvex set whose extremal points are preisely theergodi measures.
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(b) If (6) is true for some α > 0 then there exists an ergodi equilibriumstate µ of ϕ with χ(µ) ≥ α.We note that Theorem 1 generalizes a well-known result of Bowen for Ax-iom A di�eomorphisms to the ase of holomorphi non-uniformly expandingdynamial systems. For a related result in the ase of non-uniformly hyper-boli di�eomorphisms we refer to [6℄.We brie�y mention work where related assumptions on the potentialshave been used. Note that the prerequisite of Theorem 1 is satis�ed if

Ptop(ϕ) > maxz∈J ϕ(z) and in partiular if maxz∈J ϕ(z) − minz∈J ϕ(z) <

htop(f |J) are satis�ed, whih are (muh stronger than α(ϕ) > 0) open on-ditions in the C0 topology. The latter ondition has been mentioned �rstin [7℄ in the ontext of pieewise monotoni maps of the unit interval and ofa bounded variation potential ϕ to guarantee the existene and good ergodiproperties of equilibrium states for ϕ, using a spetral gap approah. In [4℄,it is shown that for a rational map of degree ≥ 2 on the Riemann spherefor a Hölder ontinuous potential ϕ satisfying Ptop(ϕ) > supϕ, there is aunique equilibrium state for ϕ. Analogous results are obtained for a lassof non-uniformly expanding loal di�eomorphisms and Hölder ontinuouspotentials satisfying suh a low osillation ondition (see [1℄ and referenestherein).Przytyki et al. [12℄ onsider a pressure of the potential −t log|f ′| whihis de�ned as in (6) exept that they use all periodi points rather thanonly points in Pern(α, c). They prove the equality between this pressureand various other types of pressures in the ase of rational maps satisfyingan additional hypothesis that not too many periodi orbits with Lyapunovexponent lose to 1 move lose together (whih is satis�ed if f is a topologialCollet�Ekmann map or, equivalently, if f is uniformly expanding on periodiorbits). It would be interesting to know under whih onditions their pressureoinides with the pressure in (6).This paper is organized as follows. In Setion 2 we introdue a lass ofone-dimensional holomorphi (not neessarily rational) dynamial systemsand disuss various notions of topologial pressure. In Setion 3 we prove ourmain result showing that for this lass of systems the topologial pressure isentirely determined by the values of the potential on the repelling periodipoints.
2. Preliminaries2.1. A lass of one-dimensional holomorphi dynamial systems. Let

X ⊂ C be ompat and let f : X → X be ontinuous. We say that f ∈ A(X)if there is an open neighborhood U of X suh that f extends to a holomorphi
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map on U and for every z ∈ U \ X,
(7) either z leaves U under iteration of f,or lim inf

n→∞

1

n
log|(fn)′(z)| = 0.Without further mention we will always use a spei� set U assoiated with

X and f and we will also denote the extension of f to U by f . We note that inthe partiular ase when f is a rational map on C with Julia set J , a normalfamily argument shows that f ∈ A(J). For f ∈ A(X) we will ontinue touse the notation from Setion 1 (e.g. Per(f), Perrep(f), Pern(α, c), M, ME,
χ(µ), χ(z), α(ϕ), et.) for f |X.Let now U ⊂ C be open and f : U → C be holomorphi. We say that
f is expanding on a ompat f -invariant set Λ ⊂ U if there exist onstants
c > 0 and β > 1 suh that

|(fn)′(z)| ≥ cβnfor all n ∈ N and all z ∈ Λ. We note that for f ∈ A(X) every invariantexpanding set Λ ⊂ U is ontained in X. This follows from (7).2.2. Various pressures. We �rst reall the de�nition of the lassial topo-logial pressure. Let (X, d) be a ompat metri spae and let f : X → Xbe a ontinuous map. For n ∈ N we de�ne a new metri dn on X by
dn(z, y) = maxk=0,...,n−1 d(fk(z), fk(y)). A set {zi : i ∈ I} ⊂ X is alled
(n, ε)-separated (with respet to f) if dn(zi, zj) > ε for all zi, zj with zi 6= zj.For all ε > 0 and n ∈ N �x a maximal (with respet to the inlusion)
(n, ε)-separated set Fn(ε). The topologial pressure (with respet to f |X) isa map Ptop(f |X, ·) : C(X, R) → R de�ned by(8) Ptop(f |X, ϕ) = lim

ε→0
lim sup

n→∞

1

n
log

(

∑

z∈Fn(ε)

expSnϕ(z)
)

,where(9) Snϕ(z) =

n−1
∑

k=0

ϕ(fk(z)).The topologial entropy of f is de�ned by htop(f |X) = Ptop(f |X, 0). Forsimpliity we write Ptop(ϕ) if there is no onfusion about f and X. Notethat the de�nition of Ptop(ϕ) does not depend on the hoie of the sets
Fn(ε) (see [15℄). The topologial pressure satis�es the following variationalpriniple:(10) Ptop(ϕ) = sup

ν∈M

(

hν(f) +
\
Λ

ϕdν
)

.Furthermore, the supremum in (10) an be taken only over all ν ∈ ME.We denote by ES(ϕ) the set of equilibrium states for ϕ, that is, of measures
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attaining the supremum in (10). We note that in general ES(ϕ) may beempty; however, if f ∈ A(X), then ES(ϕ) ontains at least one (ergodi)measure. This follows from a result of Newhouse [10℄.Next we introdue a pressure-like quantity by using the values of ϕ onthe periodi points in X. Let ϕ ∈ C(X, R) and let 0 < α, 0 < c ≤ 1. Wede�ne

QP(ϕ, α, c, n) =
∑

z∈Pern(α,c)

expSnϕ(z)

if Pern(α, c) 6= ∅, and
QP(ϕ, α, c, n) = exp(nmin

z∈X
ϕ(z))otherwise. Furthermore, we de�ne

PP(ϕ, α, c) = lim sup
n→∞

1

n
log QP(ϕ, α, c, n).It follows from the de�nition that if Pern(α, c) 6= ∅ for some n ∈ N then thisis true for in�nitely many n ∈ N. Therefore, in the ase when Pern(α, c) 6= ∅for some n ∈ N then PP(ϕ, α, c) is entirely determined by the values of ϕ on

⋃

n∈N
Pern(α, c).3. Pressure equals periodi point pressure. In this setion we showfor f ∈ A(X) and a rather general lass of potentials that the topologialpressure is entirely determined by the values of the potential on the repellingperiodi points. More preisely, we prove the following theorem.Theorem 2. Let f ∈ A(X) and let ϕ ∈ C(X, R) be a Hölder ontinuouspotential with α(ϕ) > 0.(a) If α(ϕ) > 0 then for all 0 < α < α(ϕ) we have(11) Ptop(ϕ) = lim

c→0
lim sup

n→∞

1

n
log

(

∑

z∈Pern(α,c)

exp
(

n−1
∑

k=0

ϕ(fk(z))
))

.

(b) If (11) is true for some α > 0 then there exists an ergodi equilibriumstate µ of ϕ with χ(µ) ≥ α.
Rremark. Note that Theorem 2 immediately implies Theorem 1.We delay the proof of Theorem 2 for a while and �rst prove some pre-liminary results.Lemma 1. Let f ∈ A(X) and let Λ be an invariant set on whih f isexpanding. Let ϕ ∈ C(Λ, R) be a Hölder ontinuous potential. Then(12) lim sup

n→∞

1

n
log

(

∑

z∈Pern(f |Λ)

expSnϕ(z)
)

≤ Ptop(f |Λ, ϕ).
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In partiular , if f |Λ is topologially mixing , then we have equality in (12),and the limit superior is in fat a limit.Proof. Sine f |Λ is expanding it is expansive. Given any expansivityonstant δ, for every n ∈ N and every 0 < ε ≤ δ the set Pern(f |Λ) is
(n, ε)-separated. Now, inequality (12) follows from the fat that the de�-nition (8) an be replaed by the supremum taken over all (n, ε)-separatedsets (see [15℄). For the proof of the seond statement we refer to [14, Chapter7℄. Remark 1. The identity in (12) holds in the more general ase of topo-logially mixing expanding maps (see [14, Chapter 7℄). In partiular, if Λ is arepeller of a di�erentiable map f suh that f |Λ is onjugate to a (one-sided)irreduible aperiodi subshift of �nite type then (12) is an identity.Proposition 1. Let f ∈ A(X) and let ϕ ∈ C(X, R) be a ontinuouspotential. Then for all µ ∈ ME with χ(µ) > 0 and for all 0 < α < χ(µ) wehave(13) hµ(f) +

\
ϕdµ ≤ lim

c→0
PP(ϕ, α, c).Proof. Consider µ ∈ ME with χ(µ) > 0, and �x 0 < α < χ(µ). Sine

χ(µ) > 0, ondition (7) implies that supp(µ) ⊂ X and thus the left hand sideof (13) is well-de�ned. It is a onsequene of Katok's theory [8℄ in its versionfor holomorphi endomorphisms developed by Przytyki and Urba«ski ([13,Chapter 9℄, see also [11℄) that there exists a sequene of measures µn ∈ MEsupported on expanding sets Xn ⊂ X suh that(14) hµ(f) +
\
ϕdµ ≤ lim inf

n→∞
Ptop(f |Xn, ϕ)and µn → µ with respet to the weak∗ topology. Moreover, for eah n ∈ Nthere exist m = m(n) ∈ N and s = s(n) ∈ N suh that fm|Xn is onjugateto the full shift on s symbols. For every 0 < ε < χ(µ)− α there is a number

n = n(ε) ∈ N suh that(15) hµ(f) +
\
ϕdµ − ε ≤ Ptop(f |Xn, ϕ).Moreover, there exists a number c0 = c0(n, ε) with 0 < c0(n) ≤ 1 suh thatfor every periodi point z ∈ Xn and every k ∈ N we have(16) c−1

0 ek(χ(µ)−ε) ≤ |(fk)′(z)| ≤ c0e
k(χ(µ)+ε).Note that (16) is a onsequene of the onstrution of the sets Xn in [13,Chapter 9.6℄. This implies that(17) Perk(f) ∩ Xn ⊂ Perk(α, c0)for all k ∈ N. Let m, s ∈ N be suh that fm|Xn is topologially onjugateto the full shift on s symbols. Sine mPtop(f |Xn, ϕ) = Ptop(f

m|Xn, Smϕ)
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(see [15, Theorem 9.8℄), we an onlude that

hµ(f) +
\
ϕdµ − ε ≤

1

m
Ptop(f

m|Xn, Smϕ).Reall that Smϕ(z) =
∑m−1

i=0 ϕ(f i(z)). It now follows from Remark 1 and anelementary alulation that(18) hµ(f) +
\
ϕdµ − ε

≤
1

m
lim

k→∞

1

k
log

(

∑

z∈Permk(f)∩Xn

exp
(

k−1
∑

i=0

Smϕ(f im(z))
))

≤ lim
k→∞

1

k
log

(

∑

z∈Perk(f)∩Xn

expSkϕ(z)
)

.

Combining (17) and (18) yields
hµ(f) +

\
ϕdµ − ε ≤ lim sup

k→∞

1

k
log

∑

z∈Perk(α,c0)

expSkϕ(z).

Reall that by (2) the map c 7→ PP(ϕ, α, c) is non-dereasing as c → 0+.Sine ε > 0 is arbitrary the proof is omplete.We an now give the proof of Theorem 2.Proof of Theorem 2. Let 0 < α and 0 < c ≤ 1 be suh that Pern(α, c) 6= ∅for some n ∈ N. We �rst prove that(19) PP(ϕ, α, c) ≤ sup
ν

{

hν(f) +
\
Λ

ϕdν
}

≤ Ptop(ϕ),where the supremum is taken over all ν ∈ ME with α ≤ χ(ν). Note that thesupremum in (19) is not taken over the empty set. The right hand inequalityin (19) is a onsequene of the variational priniple.In order to prove the left hand inequality in (19) we de�ne
Λ = Λα,c :=

∞
⋃

n=1

Pern(α, c).It follows from a ontinuity argument that f is repelling on Λ. Furthermore,for every n ≥ 1 with Pern(α, c) 6= ∅ we have(20) Pern(f) ∩ Λ = Pern(α, c).Therefore, Lemma 1 implies that(21) PP(ϕ, α, c) ≤ Ptop(f |Λ, ϕ).It follows from the variational priniple that for every ε > 0 there is a µ ∈ ME
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whih is supported in Λ suh that(22) Ptop(f |Λ, ϕ) − ε ≤ hµ(f) +

\
ϕdµ ≤ Ptop(f |Λ, ϕ).Sine µ is ergodi we have χ(z) = χ(µ) for µ-almost every z ∈ Λ. It nowfollows from the ontinuity of z 7→ |f ′(z)| and the de�nition of Pern(α, c)that α ≤ χ(z) for all z ∈ Λ. We onlude that α ≤ χ(µ). Therefore, the lefthand inequality in (19) follows from (21) and (22).Next, we prove that(23) Ptop(ϕ) ≤ lim

c→0
PP(ϕ, α, c).Let 0 < α < α(ϕ) and 0 < ε < α(ϕ) − α. It follows from the de�nition of

α(ϕ) (see (5)) that there exist µ ∈ ME with χ(µ) > α(ϕ) − ε > α suh that(24) Ptop(ϕ) = hµ(f) +
\
ϕdµ.Therefore, Proposition 1 implies(25) hµ(f) +

\
ϕdµ ≤ lim

c→0
PP(ϕ, α, c).Sine ε an be hosen arbitrarily small, (24) and (25) imply (23).Finally, we prove (b). Let α > 0 be suh that (11) holds. For n ≥ 1 and

c > 0 with Pern(α, c) 6= ∅ we de�ne the measure σn = σn(α, c, ϕ) ∈ M by(26) σn =
1

∑

z∈Pern(α,c) exp(Snϕ(z))

∑

z∈Pern(α,c)

exp(Snϕ(z))δz,

where δz denotes the Dira measure supported at z. Note that every measure
σn = σn(α, c, ϕ) de�ned in (26) is in the onvex hull of the set {δz : z ∈
Pern(α, c)}. Consider a subsequene (σnk

)k onverging to some measure
µα,c = µα,c(ϕ) ∈ M in the weak∗ topology. It follows that χ(µα,c) ≥ α.Note that f is expanding on Λα,c =

⋃∞
n=1 Pern(α, c). Thus, there exists anexpansivity onstant δ = δ(α, c) for f |Λα,c. In partiular, for every n ∈ Nand every 0 < ε ≤ δ the set Pern(α, c) is (n, ε)-separated. As in the proof of[15, Theorem 9.10℄ it follows that(27) lim sup

n→∞

1

n
log

∑

x∈Pern(α,c)

exp(Snϕ(x)) ≤ hµα,c(f) +
\
X

ϕdµα,c.

By onstrution, we have(28) Ptop(ϕ) = lim
c→0

(

hµα,c(f) +
\
X

ϕdµα,c

)

.As c dereases to zero, there exists a subsequene (µα,ck
)k onverging tosome measure µ = µ(ϕ) ∈ M in the weak∗ topology. Using the upper semi-
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ontinuity of the entropy map and (28), we onlude that

lim
ck→0

(

hµα,ck
(f) +

\
X

ϕdµα,ck

)

= hµ(f) +
\
X

ϕdµ = Ptop(ϕ).It remains to show that χ(µ) ≥ α. This is trivial in ase the sets Λα,ck
do notaumulate at ritial points. To handle the ase that the sets Λα,ck

possiblyaumulate at a ritial point γ ∈ X we onsider a dereasing sequene (ri)iof positive numbers onverging to 0 and a dereasing sequene of funtions
(φi)i in C(X, R) suh that:(i) φi ≥ log |f ′| and φi(z) = log |f ′(z)| for all z ∈ X \ B(γ, ri).(ii) φi(γ) ≤ −i.In partiular, φi onverges pointwise to log |f ′|. Fix i ∈ N. Sine µα,ck

on-verges to µ in the weak∗ topology, we onlude that(29) \
X

φi dµ = lim
k→∞

\
X

φidµα,ck
≥ lim inf

k→∞
χ(µα,ck

) ≥ α.It now follows from (3) and the monotone onvergene theorem that
χ(µ) = lim

i→∞

\
X

φi dµ ≥ α.One an hoose µ to be ergodi by using an ergodi deomposition argument.The ase when the sets Λα,ck
aumulate at �nitely many ritial points anbe treated entirely analogously.

Remark. We note that in the proof of Theorem 2 we have used similartehniques to those in our paper [6℄ in the ase of C2-di�eomorphisms, aswell as ideas from [3℄ where the topologial entropy (i.e. ϕ = 0) of surfaedi�eomorphisms is studied.
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