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In�nite Iterated Funtion Systems Dependingon a ParameterbyLudwik JAKSZTASPresented by Stanisªaw KWAPIE�
Summary. This paper is motivated by the problem of dependene of the Hausdor� di-mension of the Julia�Lavaurs sets J0,σ for the map f0(z) = z2 + 1/4 on the parameter σ.Using homographies, we imitate the onstrution of the iterated funtion system (IFS)whose limit set is a subset of J0,σ, given by Urba«ski and Zinsmeister. The losure of thelimit set of our IFS {φn,k

σ,α} is the losure of some family of irles, and if the parameter
σ varies, then the behavior of the limit set is similar to the behavior of J0,σ. The param-eter α determines the diameter of the largest irle, and therefore the diameters of otherirles.We prove that for all parameters α exept possibly for a set without aumulationpoints, for all appropriate t > 1 the sum of the tth powers of the diameters of the imagesof the largest irle under the maps of the IFS depends on the parameter σ. This is the�rst step to verifying the onjetured dependene of the pressure and Hausdor� dimensionon σ for our model and for J0,σ.1. Introdution. This paper is devoted to onstrution of some in�niteonformal iterated funtion system (IFS, see [4℄ and Setion 3) whih onsistsof restritions, to a domain X, of homographies depending on two parameters(σ and α). The motivation for writing this paper has been an open problemof dependene of the Hausdor� dimension of the Julia�Lavaurs sets on theparameter for f0(z) = z2 + 1/4 (see Setion 2, with no tehnial onnetionwith the rest of the paper).
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The domain X of our IFS is a subset of the losed disk B(1/2, 1/2). Wewill use the homographies

f(z) =
z

iz + 1
=

1

i + 1/z
,(1.1)

s(z) = 1 − z,(1.2)whih are automorphisms of B(1/2, 1/2) and do not depend on parameters,and(1.3) gσ,α(z) =
z(

1−α
α + iσ

)
z + 1

, σ ∈ R, α ∈ (0, 1).We have gσ,α(B(1/2, 1/2)) ⊂ B(1/2, 1/2), but the IFS will be de�ned onlyfor α ∈ (0, 1/2] and in this ase gσ,α(B(1/2, 1/2)) ⊂ B(1/4, 1/4).Notie that in the oordinates 1/z the map f is translation by i, while
gσ,α is translation by (1 − α)/α + iσ.The family of maps φn,k

σ,α : X → X, whih will form the IFS, is de�ned asfollows:(1.4) φn,k
σ,α = gn

σ,α ◦ fk ◦ sif n ≥ 1, k ∈ Z or n = 0, k ≤ −3, and(1.5) φn,k
σ,α = gn

σ,α ◦ fk ◦ s ◦ fif n = 0, k ≥ 2. The set of pairs (n, k) for whih φn,k
σ,α is de�ned is denotedby I.The losure of the limit set of the IFS (we add only ountably manypoints) is the losure of a ertain family of irles. The parameter α is thediameter of the largest irle ontained in the losure of the limit set, namely

S(α/2, α/2), and therefore ontrols the diameters of other irles. The pa-rameter σ in�uenes the position of some families of irles (analogy withthe Julia�Lavaurs sets).Choosing an arbitrary point x ∈ X and t > 0 we an onsider thepressure P (t) with the use of the derivative of φn,k
σ,α (see (3.2)). Then therelevant Hausdor� dimension is t0 suh that P (t0) = 0.If the homograpies φn,k

σ,α are replaed by onformal a�ne funtions map-ping S(α/2, α/2) onto the image of S(α/2, α/2) under φn,k
σ,α, then the deriva-tives of the a�ne funtions are quotients of the diameters of suitable irles.If the IFS obtained in this way satis�es onditions from Setion 3, then theHausdor� dimension of its limit set depends on the value of the sum of the

tth powers of these quotients, as a funtion of t (the dimension t0 is then azero of the logarithm of this sum). We will prove that this sum really de-pends on σ, for all parameters α exept possibly for α's from a set withoutaumulation points, whih gives us in this ideal situation the dependeneof the Hausdor� dimension on σ.
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Fig. 1. CirlesWe have not been able to verify the OSC ondition. Without OSC, t0 isalled the similarity dimension, so we prove that the similarity dimension inthe a�ne ase is not onstant.This is a part of the author's PhD thesis written under the supervisionof Professor Feliks Przytyki.
2. Analogy with the Julia�Lavaurs sets. For a polynomial f wede�ne the �lled-in Julia set K(f) as the set of points that do not esape toin�nity under iteration of f . The boundary of K(f) is alled the Julia setof f . Let us onsider the set of polynomials of the form fε(z) = z2 +1/4+ ε.We obtain the funtion ε 7→ J(fε) with values in the set K(C) of ompatsubsets of C, equipped with the Hausdor� metri. We will also onsider thefuntion ε 7→ d(1/4 + ε), where d(1/4 + ε) denotes the Hausdor� dimen-sion of J(fε). It follows from [1℄ and [5℄ that the funtions ε 7→ J(fε) and

ε 7→ d(1/4 + ε) are ontinuous and real-analyti respetively on the set ofparameters ε for whih fε is hyperboli.Now let ε ∈ R
+ ∪ {0}. If ε ∈ R

+ then fε is hyperboli, and J(fε) ishomeomorphi to the Cantor set. The funtion f0 is not hyperboli sine
f0(1/2) = 1/2, and f ′

0(1/2) = 1. It is interesting to study the behaviour of
J(fε) when ε ց 0 (see [1℄). We know that the funtion ε 7→ J(fε) is not right-ontinuous at zero. The possible limits of J(fε) in K(C) whih our afterpassing to a subsequene are alled Julia�Lavaurs sets . These sets depend
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on the parameter σ ∈ R and are denoted by J0,σ, with J0,σ = J0,σ′ if andonly if σ − σ′ ∈ Z.The Julia�Lavaurs sets an also be de�ned as the losures of J(f0) andthe union of all preimages of J(f0) under g−n

σ , for some speial map gσ :
IntK(f0) → C (Lavaurs map, see [1℄). For all σ ∈ R we have J(f0) ⊂ J0,σ ⊂
K(f0) (beause g−1

σ (IntK(f0)) ⊂ IntK(f0)). The map gσ has in�nite degreeon IntK(f0), and σ (mod1) is relevant to the Lavaurs map between Ealleylinders. Furthermore, using f0, gσ and symmetry with respet to zero (thesets J0,σ, just like J0, are symmetrial with respet to zero), we an obtaina subset of J0,σ as the losure of the limit set of some in�nite onformal IFS(see [6℄ and [2℄). The images of this subset under the ation of the iteratesof f0 over the set J0,σ (beginning with the seond iteration).The funtion ε 7→ d(1/4 + ε) is not ontinuous at zero either (see [2℄).If we hoose a sequene of parameters εn so as to obtain onvergene of
J(fεn) in the Hausdor� metri to J0,σ for some σ (preisely −π√

εn
(mod 1)

→ σ), then we also obtain onvergene of the Hausdor� dimension of J(fεn)to the Hausdor� dimension of J0,σ. It is a famous problem whether theHausdor� dimension of J0,σ depends on the parameter σ, and whether thelimit limεց0 d(1/4 + ε) exists.This problem has been a motivation for this paper; we will study simplersets, though obtained in a similar way. Beause we are interested in theHausdor� dimension, we will imitate the onstrution of the IFS generating asubset of J0,σ, and the funtions used there will be replaed by homographies(1.1)�(1.3). The losure of the limit set (whih will be denoted by Cσ,α) isa subset of B(1/2, 1/2). Then the symmetry with respet to 0 is replaedby the symmetry s with respet to 1/2, f0 is replaed by f , and instead of
g−1
σ we take gσ,α. Notie that similarly to the ase of f0 and gσ in [1℄, wehave

gσ,α ◦ f = f ◦ gσ,α = gσ+1,α.The parameter σ plays a similar role to that in the ase of Julia�Lavaurs sets,while α is an additonal parameter whih ontrols the diameters of irles.In the ase of Julia�Lavaurs sets the losure of the limit set is a sub-set of J0,σ, and the whole set may be obtained by taking its images underiterates of f0. In our ase, if we take the union of the images of Cσ,α un-der fk (it is enough to take k = 0, . . . , 5), we may obtain the sets C̃σ,α.The set J0,σ is the losure of the union of the preimages of J(f0) under
g−n
σ . The sets C̃σ,α an be de�ned in a similar way: C̃σ,α is the losure ofthe union of the images of S(1/2, 1/2) under all ompositions of the maps

fk, gn
σ,α and s, where k ∈ Z, n ∈ N (in the ase of Julia�Lavaurs sets,onsidering f0 and symmetry with respet to zero does not add anythingnew).
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3. Conformal IFS. In this setion, following [4℄, we de�ne an IFS andstate some important onditions.Let I be a ountable set with at least two elements, and let X ⊂ R

d forsome d ≥ 1. Let S = {φi : X → X}i∈I be a set of injetive ontrations forwhih there exists 0 < s < 1 suh that(3.1) |φi(x) − φi(y)| ≤ s|x − y|for all x, y ∈ X and i ∈ I. Any suh family S is alled an Iterated FuntionSystem (IFS).If ω ∈ In then ω = (ω1, ldots, ωn) and φω will be de�ned as follows:
φω = φω1

◦ · · · ◦ φωn .The limit set of the system S is the only set JS whih satis�es
JS =

⋃

i∈I

φi(JS).

We say that the system S satis�es the Open Set Condition (OSC) ifthere exists a non-empty open set U ⊂ X (in the topology of X) suh that
φi(U) ⊂ U for all i ∈ I and φi(U) ∩ φj(U) = ∅ for i, j distint.Later on we will limit our onsiderations to the ase d = 2 (X ⊂ R

2).An IFS onsisting of onformal maps will be alled onformal . The fol-lowing onditions are also important (see [4℄):(1) X is a ompat, onneted subset of R
2, and OSC is satis�ed for

U = IntRd(X).(2) There exist α, l > 0 suh that for every x ∈ ∂X there exists an openone inluded in Int(X) with vertex x, altitude l, and entral angle α.(3) There exists an open onneted set V with X ⊂ V ⊂ R
2 suh thateah φi onformally extends onto V . Then Dφj(x) and also Dφω(x)are similarities; their saling oe�ients are denoted by |φ′

j(x)| and
|φ′

ω(x)|.(4) Bounded Distortion Property (BDP): There exists a onstant K ≥ 1suh that |φ′
ω(x)| ≤ K|φ′

ω(y)| for all n ∈ N, ω ∈ In and x, y ∈ V .For t > 0 we may de�ne a number P (t) alled the topologial pressure ofthe parameter t by(3.2) P (t) = lim
n→∞

1

n
log

∑

ω∈In

|φ′
ω(x)|t,and the limit does not depend on x ∈ X. On the set where it is �nite, thefuntion P (t) is ontinuous, stritly dereasing to −∞ and onvex.Let hS denotes the Hausdor� dimension of JS .
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Theorem 3.1 ([4℄). For a system S whih satis�es the above onditions,we have

hS = inf{t ≥ 0 : P (t) < 0}.Corollary 3.2 ([4℄). Under the above assumptions , if the system Sonsists of a�ne onformal maps, then P (t) = log
∑

i∈I |φ′
ω(x)|t, and

hS = inf
{
t ≥ 0 :

∑

i∈I

|φ′
i(x)| < 1

}
.If there exists t for whih 0 < P (t) < ∞ then the system is alled stronglyregular.4. Constrution. In this setion we onstrut a set X ⊂ B(1/2, 1/2),and maps φn,k

σ,α : X → X. In the next setion we will prove that these mapsform an IFS.The map I(z) = 1/z (alled inversion) maps B(1/2, 1/2) onto the half-plane {z : Re(z) ≥ 1} together with the point at in�nity. In many ases itwill be useful to onsider the half-plane rather than the disk.In order to de�ne X we �rst desribe a set Y ⊂ {z : Re(z) ≥ 1} (thesame for all α ∈ (0, 1/2] and σ ∈ R), and take X = I(Y ). We will alsoonsider maps onjugated to f , gσ,α, s by I, whih help us to prove someproperties of the IFS.The map f is onjugate to translation by i, while gσ,α is onjugate totranslation by (1 − α)/α + iσ. Set(4.1) Fn,k
σ,α := gn

σ,α ◦ fk,where n ∈ N (we assume that 0 ∈ N), k ∈ Z. Then Fn,k
σ,α is onjugate to(4.2) Tn,k

σ,α (z) := z +
1 − α

α
n + ik + iσn = (I ◦ Fn,k

σ,α ◦ I)(z).Next, the map s is onjugated by I to(4.3) Ĩ(z) := I ◦ s ◦ I(z) = 1 +
1

z − 1
= 1 + I(z − 1).Hene Ĩ is I onjugated by translation by one.Now we give a onstrution whih will be used for the de�nition of Y .The half-plane {z : Re(z) ≥ 1} with the point at in�nity will be denotedby H.Let losed disks B1, B2, B3 ⊂ H have pairwise empty interiors, be pair-wise tangent, and tangent to ∂H (as disks we take sets {z : Re(z) ≥ C}

∪ {∞}). For any suh B1, B2 and B3 we onstrut a uniquely determinedsequene of disks Bn, n ≥ 1. If n > 3 and we have hosen B1, . . . , Bn−1, let
Bn be the disk whih is tangent to Bn−2, Bn−1, ∂H, and is disjoint from



In�nite Iterated Funtion Systems 111

3

4
2

1

Fig. 2. Tangent disks and the urve γthe interiors of all disks previously hosen. In this way we get a sequene ofdisks tending to a point b ∈ ∂H .We also de�ne a urve γB whih separates the disks with even indies fromthose with odd indies. First we take the ar of the boundary B2 betweenthe points of tangeny with B1 and B3 (we take the omponent without thepoint of tangeny with B4). Next, for n ≥ 2 we take the part of the boundaryof Bn between the points of tangeny with Bn−1 and Bn+1 (ontaining thepoint of tangeny with Bn+2). After taking the losure, we obtain a urvejoining the point of tangeny of B1 and B2 to a point b ∈ ∂H.Now we are able to de�ne the set Y ⊂ H.The set Y is losed, Y ∩ C is unbounded, in partiular ontains thehalf-plane {z : Re(z) ≥ 2}. The boundary of Y ontains the interval withendpoints 2+i, 2−2i, and two half-lines inluded in {z : Re(z) = 1}. In orderto de�ne the endpoints of these lines and the urves joining these points to
2 + i and 2 − 2i, we will use the above onstrution.Let us apply the onstrution to the following disks:
(4.4) B1 = {z ∈ C : Re(z) ≥ 2} ∪ {∞},

B2 = B(3/2 + i, 1/2),

B3 = B(3/2 + 2i, 1/2).We get the sequene Bn for n ≥ 1, the point b ∈ {z : Re(z) = 1} and theurve γB joining the tangeny point of B1 and B2, namely 2 + i, to thepoint b (note that B4 = B(9/8 + 3i/2, 1/8)).Let us take a seond family of disks,
(4.5) D1 = B(3/2 − i, 1/2),

D2 = {z ∈ C : Re(z) ≥ 2} ∪ {∞},
D3 = B(3/2 − 2i, 1/2).
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Fig. 3. The sets X and YWe obtain the sequene Dn for n ≥ 1, the point d ∈ {z : Re(z) = 1}, andthe urve γD joining the point of tangeny of D1 and D2, namely 2 − i, tothe point d. In partiular γD ontains the interval with endpoints 2 − i and
2 − 2i (note that D4 = B(3/2 − 3i, 1/2), D5 = B(9/8 + 5i/2, 1/8)).The union of γB, γD and the interval between 2 + i and 2 − i is a urvejoining b and d, whih lies on the line {z : Re(z) = 1}. The rest of theboundary of Y onsists of the half-lines {z : Re(z) = 1 ∧ Im(z) ≥ b},
{z : Re(z) = 1 ∧ Im(z) ≤ d} and the point at in�nity.For the set X, we take I(Y ).

5. The properties of {φn,k
σ,α}(n,k)∈I . In this setion we prove that thefamily {φn,k

σ,α}(n,k)∈I de�ned by (1.4) and (1.5) for σ ∈ R, α ∈ (0, 1/2] formsan IFS and has the properties from Setion 3. We also obtain some informa-tion about the limit set.The main task is to verify OSC, and prove that the funtions {φn,k
σ,α}(n,k)∈Ide�ned on X have values in X. To see this we will onsider the maps whih
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are onjugated to {φn,k

σ,α}(n,k)∈I by I. By (4.1)�(4.3) we get(5.1) I ◦ φn,k
σ,α ◦ I = I ◦ gn

σ,α ◦ fk ◦ s ◦ I = Tn,k
σ,α ◦ Ĩif n ≥ 1, k ∈ Z or n = 0, k ≤ −3, and(5.2) I ◦ φn,k

σ,α ◦ I = I ◦ gn
σ,α ◦ fk ◦ s ◦ f ◦ I = Tn,k

σ,α ◦ Ĩ ◦ Tiif n = 0, k ≥ 2, where Ti denotes translation by i.Beause X = I(Y ), in order to prove that the maps φn,k
σ,α have valuesin X, it is enough to demonstrate that(5.3) (Tn,k

σ,α ◦ Ĩ)(Y ) ⊂ Y (or (Tn,k
σ,α ◦ Ĩ)(Ti(Y )) ⊂ Y ).In order to get OSC it is su�ient to prove that if U = IntY then(5.4) (Tn,k

σ,α ◦ Ĩ)(U) ∩ (Tn′,k′

σ,α ◦ Ĩ)(U) = ∅ (or replae U by Ti(U)),for distint pairs (n, k), (n′, k′) ∈ I.Let us see what the image of Y = I(X) under Ĩ, and under Ĩ ◦ Ti, lookslike. Notie that the sets Ĩ(Y ) and (Ĩ ◦Ti)(Y ) are symmetrial, beause thetranslation Ti maps Y onto a set symmetri with respet to the real axis.The boundary of Ĩ(Y ) is a Jordan urve, ontaining the interval withendpoints Ĩ(b), Ĩ(d), and the image of the interval between 2+ i, 2− i whihis an ar with endpoints 3/2−i/2, 3/2+i/2 (with 2 inluded). The remainingomponents are the images of γB and γD whih will be onsiderd now.The map Ĩ preserves H, and as it maps disks onto disks, we get thefollowingRemark 5.1. The onstruted sequene of disks whih are tangentto ∂H , and the separating urve, are invariant under Ĩ.The images of B1, B2 and B3 (see (4.4)) are
Ĩ(B1) = B(3/2, 1/2),

Ĩ(B2) = B(3/2 − i, 1/2),

Ĩ(B3) = B(9/8 − i/2, 1/8),whereas the images of D1, D2, D3 (see (4.5)) are
Ĩ(D1) = B(3/2 + i, 1/2),

Ĩ(D2) = B(3/2, 1/2),

Ĩ(D3) = B(9/8 + i/2, 1/8).Comparing Ĩ(Bn) with Ĩ(Dn), and Ĩ(Dn) with Dn, using Remark 5.1 wegetRemark 5.2. For every n ≥ 1, the images of Bn and Dn di�er bytranslation by i. It follows that the urves Ĩ(γB) and Ĩ(γD) (joining Ĩ(b) to
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3/2− i/2 and Ĩ(d) to 3/2 + i/2 respetively) also di�er by translation by i,in partiular(5.5) Ĩ(d) − Ĩ(b) = i.Remark 5.3. For every n ≥ 1, the disk Ĩ(Dn) translated by −3i is equalto Dn+2, and therefore the urve Ĩ(γD) translated by −3i is inluded in γD,so we also get(5.6) Ĩ(d) − 3i = d.Using Remark 5.2 we onlude that the urve Ĩ(γD) is the intersetionof the boundaries of the sets Ĩ(Y ) and Ti(Ĩ(Y )), whih are Jordan domains.Beause the remaining parts of the boundaries are disjoint, we onlude thatupon translation by di�erent multiples of i, the interiors of Ĩ(Y ) are disjoint.By symmetry, also the interiors of Ĩ(Ti(Y )) are disjoint after making di�erenttranslations, whih gives (5.4) in the ase n = n′.To obtain (5.4) in the general ase, note that beause Y is disjointfrom B(1, 1) (see Figure 3), and is inluded in H, we have Ĩ(Y ) ⊂ B(1, 1)∩H,so in partiular(5.7) Ĩ(Y ) ⊂ {z ∈ C : 1 ≤ Re(z) ≤ 2, −1 ≤ Im(z) ≤ 1}.So, if n 6= n′ the images of Int Ĩ(Y ) under Tn,k

σ,α = (1 − α)n/α + ik + iσnare disjoint provided that (1 − α)/α ≥ 1, whih is satis�ed for α ∈ (0, 1/2].Thus, we get the open set ondition for α ∈ (0, 1/2].Now we prove that the maps φn,k
σ,α de�ned on X have values in X (on-dition (5.3)). For n ≥ 1, (5.3) is satis�ed beause (Tn,k

σ,α ◦ Ĩ)(Y ) is ontainedin the half-plane {z : Re(z) ≥ 1 + n(1 − α)/α}, hene for α ∈ (0, 1/2] and
n ≥ 1 also in the half-plane {z : Re(z) ≥ 2} ⊂ Y . For n = 0, it is enough toverify the ases of k = −3 and k = 2.For n = 0 and k = −3 by Remark 5.3 the urve T 0,−3

σ,α (Ĩ(γD)) (translationby −3i) is inluded in γD, hene in the boundary of Y . Beause the remainingpart of the boundary of Ĩ(Y ) after translation by −3i is also inluded in Y ,we get(5.8) (T 0,−3
σ,α ◦ Ĩ)(Y ) ⊂ Y,proving (5.3) for n = 0, k = −3.Let n = 0, k = 2. Beause of the symmetry of the sets Y , Ti(Y ) and

Ĩ(Y ), Ĩ(Ti(Y )) we get, by (5.8),
(T 0,2+1

σ,α ◦ Ĩ)(Ti(Y )) ⊂ Ti(Y ), so (T 0,2
σ,α ◦ Ĩ ◦ Ti)(Y ) ⊂ Y,whih gives (5.3) in this ase. Note that b is mapped under T 0,2

σ,α ◦ Ĩ ◦Ti ontoitself, so we get an equality similar to (5.6),(5.9) (T 0,2
σ,α ◦ Ĩ ◦ Ti)(b) = Ĩ(b + i) + 2i = b.
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Now we prove (3.1), whih means that the maps φn,k

σ,α are ontrationswith the same onstant. If φn,k
σ,α is de�ned by (1.4), it is enough to onsider

Fn,k
σ,α on the set s(X) beause s is an isometry. By (4.2), Fn,k

σ,α is onjugatedto Tn,k
σ,α by I, and the modulus of the derivative of I depends only on thedistane from zero. Thus, it is su�ient to see that the distane from zeroof every point in (I ◦ s)(X) inreases under translation by Tn,k

σ,α more than
C times, for some C ≥ 1. This is indeed true, beause by (4.3), (I ◦ s)(X) =

(Ĩ ◦ I)(X) = Ĩ(Y ), and it is enough to use (5.7).If φn,k
σ,α is given by (1.5), then the previous argument does not work be-ause of the omposition with f . But in this ase it is enough to onsiderthe map φ0,2

σ,α. We have
φ0,2

σ,α(z) =
(i − 1)z + 1

−(2 + i)z + 2i + 1
.One an verify that the modulus of the derivative is greater than or equalto one in the disk B

(
1+2i
2+i , 1√

5

). Moreover, this disk is disjoint from the half-plane {z : Re(z) ≤ 1/2} whih ontains X. Hene the maps φn,k
σ,α are ontra-tions with the same onstant, and from the above onsiderations it followsthat they are ontrations on some neighborhood of X.Now only onditions (1)�(4) from Setion 3 remain to be veri�ed. Con-dition (1) follows by onstrution, and the OSC ondition for U = IntRd(X)has already been heked. Condition (2) follows from the fat that the quo-tients of the diameters of the onseutive disks whih were used to onstrut

∂X are uniformly bounded. Condition (3) is satis�ed beause the maps φn,k
σ,αare homographies. In order to prove (4) note that the derivatives of om-positions of φn,k

σ,α vanish only at the preimages of in�nity. The maps φn,k
σ,αare ontrations on some neighborhood of X, so on that neighborhood thederivatives do not vanish, and hene using a version of the Koebe distortiontheorem (see [3℄), we obtain (4).Corollary 5.4. The family of maps φn,k

σ,α : X → X forms a onformalIFS whih satis�es the onditions from Setion 3.The losure of the limit set of the IFS will be denoted by Cσ,α. Note thatthe losure di�ers from the limit set by a ountable set of points whih arepreimages of in�nity under ompositions of φn,k
σ,α. It follows that the Hausdor�dimensions of the limit set and of its losure are equal.Let

l = {z : Re(z) = 1 ∧ Im(z) ≥ b} ∪ {z : Re(z) = 1 ∧ Im(z) ≤ d} ∪ {∞}.Beause d and b are �xed points of T 0,−3
σ,α ◦ Ĩ and T 0,2

σ,α ◦ Ĩ ◦ Ti respetively,
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by (5.5) we get

⋃

k≤−3

(T 0,k
σ,α ◦ Ĩ)(l) ∪

⋃

k≥2

(T 0,k
σ,α ◦ Ĩ ◦ Ti)(l) = l \ {∞}.After onjugation by I, we have

⋃

(0,k)∈I

φ0,k
σ,α(I(l)) = I(l).

Thus l ∈ Y , and so I(l) ⊂ X. We getCorollary 5.5. The set I(l) is ontained in Cσ,α.Using (5.5) for �xed n ≥ 1, we obtain
⋃

k∈Z

(Tn,k
σ,α ◦ Ĩ)(l) =

{
z ∈ C : Re(z) = 1 + n

1 − α

α

}
,and so after applying I, beause I(l) ⊂ Cσ,α, we haveCorollary 5.6. The irle S

( α/2
α+n(1−α) ,

α/2
α+n(1−α)

), whih is the losureof I
({

z ∈ C : Re(z) = 1 + n1−α
α

}), is ontained in Cσ,α.Taking n = 1 we get the irle S(α/2, α/2) of diameter α. It is thelargest irle ontained in Cσ,α. In further onsiderations the images of thedisk B(α/2, α/2) under φn,k
σ,α will be important. These images will be alledthe level-one disks, and denoted

Bn,k
σ,α := φn,k

σ,α(B(α/2, α/2)).Let us now onsider the points b and d. Set b = 1 + iyb and d = 1 − iyd.Beause Ĩ ats on the line {z : Re z = 1} as minus inversion, by (5.6)and (5.9) we get respetively
− 1

−yd
− 3 = −yd and − 1

yb + 1
+ 3 = yb.Beause |yd| > 1 and |yb| > 1, we onlude that

yd =
3 +

√
5

2
and yb =

1 +
√

5

2
.The points b and d an also be desribed, in a natural way, via

yd = 3 − 1

3 − 1

3 − · · ·

, yb = 2 − 1

3 − 1

3 − · · ·

.

6. The sum of tth powers of quotients of diameters. In thissetion we obtain a formula for the diameters of level-one disks and on-sider the sum of the tth powers of their quotients.
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For α ∈ (1/2, 1), OSC obviously fails, so the setting does not have a leargeometri interpretation. Nevertheless the alulation below an be arriedout for all α ∈ (0, 1). Moreover, onsidering α lose to one helps us draw aonlusion for α ∈ (0, 1/2].Set

β :=
α

1 − α
.This yields a one-to-one orrespondene between α ∈ (0, 1) and β ∈ (0,∞)(α = β

β+1), so we may use α and β alternatively.Now we will give a formula for the diameters of level-one disks. The disk
B(α/2, α/2) is f -invariant, so we may onsider both ases (1.4) and (1.5)together. The image of B(α/2, α/2) under s is B(1−α/2, α/2), after inversionit is B(1 + β/2, β/2); �nally after making translations Tn,k

σ,α for n, k ∈ I, weobtain the family of disks
B

(
1 +

β

2
+

n

β
+ i(k + σn),

β

2

)
,whose images under inversion are the level-one disks Bn,k

σ,α.Notie that the diameter of B(z, r), where |z| = R, after inversion is
1

R − r
− 1

R + r
=

2r

R2 − r2
,provided that R > r. For the disks Bn,k

σ,α we have
R2 =

(
1 +

β

2
+

n

β

)2

+ (k + σn)2 and r =
β

2
.Hene

diam(Bn,k
σ,α) =

β
(
1 + n

β

)2
+ 2

(
1 + n

β

)β
2 + β2

4 + (k + σn)2 − β2

4

(6.1)

=
β

(
1 + n

β

)2
+ β

(
1 + n

β

)
+ (k + σn)2

.

The sum of the tth powers of the quotients of the diameters of Bn,k
σ,α and

B(α/2, α/2) will be denoted by
Qσ,α(t) :=

∑

(n,k)∈I

(
diam(Bn,k

σ,α)

α

)t

=
∑

(n,k)∈I

(
diam(Bn,k

σ,α)
β + 1

β

)t

.

Let
Pσ,α(t) := log Qσ,α(t).If the IFS onsisted of a�ne maps, Pσ,α(t) would be the topologial pressure.
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For �xed α ∈ (0, 1) (as well β), there exist onstants C1, C2 > 0 suhthat

C1(
1 + β

2 + n
β

)2
+ (k + σn)2

<
diam(Bn,k

σ,α)

α
<

C2(
1 + β

2 + n
β

)2
+ (k + σn)2

.

Hene we an estimate the terms of the sum Qσ,α(t), from above and below,by inverses, to the power t, of the distane from zero of points belonging tosome lattie. We get the followingRemark 6.1. Qσ,α(t) is �nite for t > 1; furthermore, Qσ,α(t) tends toin�nity as t ց 1, whih gives the strong regularity of IFS.If we inrease the exponent t suitably, we ould pass to the limit with
Q̃σ,α(t) as β → ∞ (α ր 1). Let us de�ne a useful funtion Q̃σ,α as follows:

Q̃σ,α(t) := Qσ,α

(
1

1 − α
t

)
= Qσ,α((β + 1)t).Proposition 6.2. For all t > 0 and σ ∈ R the limit

lim
β→∞

Q̃σ,α(t) =: Q̃σ(t)exists , and(6.2) Q̃σ(t) =
∑

(n,k)∈I

e−t(n+(k+σn)2).

Proof. We see from (6.1) that Q̃σ,α(t) is the sum of the following terms:
(6.3)

(
diam(Bn,k

σ,α)

α

)(β+1)t

=

(
β + 1

(1 + n
β )2 + β(1 + n

β ) + (k + σn)2

)(β+1)t

=

(
1 +

n + (k + σn)2

β + 1
+

2n

β(β + 1)
+

n2

β2(β + 1)

)−(β+1)t

.Thus
lim

β→∞

(
diam(Bn,k

σ,α)

α

)(β+1)t

= e−t(n+(k+σn)2),so the terms of Qσ,α(t) tend to respetive terms of (6.2). Hene, in order toprove the onvergene of Q̃σ,α(t) as β → ∞, it is su�ient to show that forall t > 0,
(6.4) lim

β→∞

∑

(n,k)∈I

(
diam(Bn,k

σ,α)

α

)(β+1)t

=
∑

(n,k)∈I

lim
β→∞

(
diam(Bn,k

σ,α)

α

)(β+1)t

.

Fix β0. Using (6.3), for β > β0 eah term of the sum Qσ,α(t) an be estimated
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from above by

(
1 +

n + (k + σn)2

β + 1

)−(β+1)t

<

(
1 +

n + (k + σn)2

β0 + 1

)−(β0+1)t

.Beause of onvergene of terms, to get (6.4), it is enough to prove that forall t > 0 there exists β0 suh that(6.5) ∑

(n,k)∈I

(
1 +

n + (k + σn)2

β0 + 1

)−(β0+1)t

< ∞.

For �xed β0 and (n, k) ∈ I, we have
(

1 +
n + (k + σn)2

β0 + 1

)−(β0+1)t

=

(
β0 + 1

β0 + 1 + n + (k + σn)2

)(β0+1)t

<

(
β0 + 1

n + (k + σn)

)(β0+1)t

< (β0 + 1)(β0+1)t

(
1√

n2 + (k + σn)2

)(β0+1)t

.Choosing β0 so that (β0 + 1)t > 2 yields (6.5).7. *Property. If f ∈ L1(R) and Var(f) < ∞, then we an de�ne aperiodi funtion Sf : R → R as follows:
Sf (σ) =

∑

k∈Z

f(k + σ).

We say that f has the ∗property if the funtion Sf is onstant. In thatase we have Sf (σ) =
T
R

f(x) dx.Lemma 7.1. If f, g ∈ L1(R) and Var(f), Var(g) < ∞, then
Sf⋆g = f ⋆ Sg = g ⋆ Sf ,and it follows that if f or g has the ∗property , then so does f ⋆ g.Proof. Let us prove the �rst equality:

Sf⋆g(σ) =
∑

k∈Z

(f ⋆ g)(k + σ) =
∑

k∈Z

\
R

f(t)g(k + σ − t) dt

=
\
R

f(t)
∑

k∈Z

g(k + σ − t) dt =
\
R

f(t)Sg(σ − t) dt = (f ⋆ Sg)(σ).The seond equality omes from the ommutativity of onvolution:
f ⋆ Sg = Sf⋆g = Sg⋆f = g ⋆ Sf .The last assertion follows from the fat that onvolution with a onstantfuntion is onstant.
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For m, ̺ ∈ R, ̺ 6= 0, let gm,̺ denote the normal probability distributionfuntion,

gm,̺ =
1√
2π ̺

e−(x−m)2/2̺2

.Remark 7.2. It is well known that onvolution of two suh distributionsis still a normal probability distribution,
gm,̺ ⋆ gm̃,˜̺ = gm+m̃,̺+˜̺.Lemma 7.3. No distribution gm,̺ has the ∗property.Proof. We may assume that m = 0, and g0,̺ will be denoted by g̺. Notiethat for ̺ ≤ 1/

√
2π we have

Sg̺(0) > g̺(0) =
1√
2π ̺

≥ 1 =
\
R

g̺ dx,

so that g̺ does not have the ∗property, beause Sg̺(0) 6=
T
R

g̺ dx.For ̺ > 1/
√

2π we argue by ontradition. Assume that g˜̺ has the
∗property for some ˜̺. Considering onvolution of g˜̺ and g̺ for ̺ > 0, andusing Remark 7.2 and Lemma 7.1, we get the ∗property for g̺ for all ̺ ≥ ˜̺.We may treat Sg̺(σ) as a real-analyti funtion of ̺ and σ. The ∗propertyof g̺ for ̺ ≥ ˜̺means that for ̺ ≥ ˜̺ the values of Sg̺(σ) do not depend on σ.But, thanks to analytiity, for ˜̺ > ̺ > 0 the values of Sg̺(σ) also do notdepend on σ, whih gives the ∗property for ̺ ≤ 1/

√
2π, a ontradition.Remark 7.4. One an give a di�erent proof using Fourier series andFourier transform.8. The dependene on the parameterCorollary 8.1. For any �xed t, the limit funtion Q̃σ(t) is not onstantwith respet to σ.Proof. Let Gt(x) = e−tx2 . Then

Q̃σ(t) =
∑

(n,k)∈I

e−t(n+(k+σn)2) =
∑

(0,k)∈I

e−tk2

+
∑

n≥1

e−tnSGt
(σn).

The �rst sum does not depend on σ, so we may only onsider the seond.The funtion SGt
(σ) is even (beause Gt is even) and by Lemma 7.3we know that it is not onstant. Beause SGt

(σ) is analyti, we onludethat it attains an extremum at zero. Let s (even) be the order of the �rstnon-vanishing derivative at zero. The funtions SGt
(σn) for n ≥ 1 attain thesame extremum at zero as SGt

(σ), so the derivatives of order s are also the�rst non-vanishing ones, and have the same sign.
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We may di�erentiate the sum(8.1) ∑

n≥1

e−tnSGt
(σn)term by term, so the derivatives up to order s − 1 all vanish at zero. Be-ause the oe�ients e−tn are positive, the derivative of order s is not zero,whih means that (8.1) attains an extremum at σ = 0, and so Q̃σ(t) is notonstant.Theorem 8.2. For every c > 0, the equation Qσ,α(t) = c (Pσ,α(t) =

log c) de�nes uniquely a funtion tc(σ, α). For �xed c > 0, the set of param-eters α for whih the values of tc(σ, α) do not depend on σ (whih may beempty) has no aumulation points in (0, 1].Proof. The funtion Q̃σ,α(t) = Qσ,α

(
1

1−αt
)

= Qσ,α((β + 1)t) may beonsidered as an analyti funtion of three variables σ, α, t de�ned on theset σ ∈ R, (β + 1)t > 1, t > 0. Moreover Q̃σ,α extends as a ontinuousfuntion to the set α = 1 (β = ∞), t > 0, σ ∈ R.If we �x σ ∈ R and α ∈ (0, 1], then Q̃σ,α is a stritly dereasing funtionof t and attains all values greater than zero. Hene by the impliit funtiontheorem, the equation Q̃σ,α = c de�nes a funtion t̃c(α, σ) for α ∈ (0, 1),
σ ∈ R. Moreover, t̃c(α, σ) extends to the set α = 1.Beause Q̃σ is not onstant for any t, we an �nd two parameters σ1, σ2so that t̃c(α, σ1) and t̃c(α, σ2) are distint analyti funtions of α. Then theset of solutions of t̃c(α, σ1)− t̃c(α, σ2) = 0 annot have aumulation points,so the value of t̃c(α, σ) may be independent of σ at most for parameters froma set of α ∈ (0, 1] without aumulation points.The funtion tc(α, σ) = t̃c(α, σ)/(β + 1) is a solution of Qσ,α(t) = c, thusthe proof is �nished.Remark 8.3. The homographies φn,k

σ,α ould be replaed by a�ne onfor-mal funtions, mapping B(α/2, α/2) onto the level-one disks. Unfortunately,it is not lear whether (and for whih parameters α) the open set ondition(OSC) is satis�ed, and whether the fundamental domain is mapped into it-self. The latter in fat an be ensured by inreasing the fundamental domain.If we knew it, we would draw the onlusion that the Hausdor� dimensionof the limit set does not depend on σ at most for parameters α from a setwithout aumulation points.Indeed, for suh an a�ne IFS the funtion Pσ,α(t) = log Qσ,α(t) wouldbe the topologial pressure. Therefore the Hausdor� dimension would be thesolution of the equation Qσ,α(t) = 1. By Theorem 8.2 the funtion t1(σ, α)whih is the solution of this equation does not depend on σ at most for α'sfrom a set without aumulation points.
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