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Fibrations in the Categoryof Absolute Neighborhood RetratsbyTakahisa MIYATAPresented by Czesªaw BESSAGA
Summary. The ategory Top of topologial spaes and ontinuous maps has the stru-tures of a �bration ategory and a o�bration ategory in the sense of Baues, where �bra-tion = Hurewiz �bration, o�bration = the usual o�bration, and weak equivalene =homotopy equivalene. Conentrating on �brations, we onsider the problem: given a fullsubategory C of Top, is the �bration struture of Top restrited to C a �bration ategory?In this paper we take the speial ase where C is the full subategory ANR of Top whoseobjets are absolute neighborhood retrats. The main result is that ANR has the strutureof a �bration ategory if �bration = map having a property that is slightly stronger thanthe usual homotopy lifting property, and weak equivalene = homotopy equivalene.

1. Introdution. The best known approah to axiomati homotopy the-ory is Quillen's model ategory [3℄. Baues [1℄ introdued the notions of a�bration ategory and a o�bration ategory. Those notions make the on-strutions of homotopy theory available in more ontexts by simply weaken-ing the assumptions and onentrating on either �brations or o�brations.The ategory Top of topologial spaes and ontinuous maps is the bestknown example of a �bration ategory and a o�bration ategory. Typialstrutures of the �bration ategory and the o�bration ategory onsist ofHurewiz �brations, the usual o�brations, and homotopy equivalenes (see[1, Theorem 5.1, p. 34; Theorem 5.2, p. 35℄, for example).Conentrating on the struture of a �bration ategory for Top, we on-sider the following problem: given a full subategory C of Top, is the �brationstruture of Top restrited to C a �bration ategory?2000 Mathematis Subjet Classi�ation: 54C55, 55U35, 55P30.Key words and phrases: ANR, �bration ategory, strong homotopy lifting property.[145℄ © Instytut Matematyzny PAN, 2007
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We observe that if C is a full subategory of Top whih has the followingproperties: (i) X,Y ∈ C ⇒ X×Y ∈ C; (ii) X ∈ C ⇒ XI ∈ C; (iii) X ∈ C, and

A ⊆ X is losed ⇒ A ∈ C, then the �bration struture of Top restrited to Cis a �bration ategory. Here, I = [0, 1]. For example, the full subategory Mof Top whose objets are metri spaes satis�es those properties.In this paper we take the speial ase where C is the full subategory ANRof Top whose objets are absolute neighborhood retrats (ANR's). ANR's areuseful in many areas of topology. For example, shape theory is in some sensean extension of the usual homotopy theory restrited to ANR [2℄. Thus itis a natural question whether the restrition to ANR has the struture of a�bration ategory.We observe that ANR fails to have property (iii), so it is not automatithat the restrition of the �bration struture on Top to ANR is a �brationategory. In this paper we show that it beomes a �bration ategory if wetake for �brations maps having a property that is slightly stronger than theusual homotopy lifting property.A map p : E → B is said to have the strong homotopy lifting property(SHLP) with respet to a spae X provided if h : X → E and H : X×I → Bare maps suh that
ph = H0,there is a map H̃ : X × I → E suh that

h = H̃0, pH̃ = H,and whenever H is onstant on x× I, H̃ is onstant on x× I.
E

p

��

X × 0
hoo

⊆

��
B X × I

Hoo

H̃

bbF
F

F
F

F

If a Hurewiz �bration has the unique path lifting property, it has the SHLPwith respet to every spae (see [4, Theorem 5, p. 68℄).The following are the main results of the paper:
Theorem A. ANR is a �bration ategory if �bration = map having theSHLP with respet to every spae, and weak equivalene = homotopy equiv-alene.
Theorem B. The full subategory M of Top whose objets are metrispaes is a �bration ategory if �bration = map having the SHLP with respetto every spae, and weak equivalene = homotopy equivalene.A �bration ategory is a ategory F with the struture (F , �b, we) whihsatis�es axioms (F1)�(F4) below. Here �b and we are lasses of morphisms,
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alled �brations and weak equivalenes, respetively. For more details, thereader is referred to [1℄.(F1) Composition axiom. The isomorphisms in F are weak equivalenesand �brations. For any morphisms f : X → Y and g : Y → Z, ifany two of f , g, and gf are weak equivalenes, so is the third. Theomposition of �brations is a �bration.(F2) Pull-bak axiom. For any 2-sink B g

→ Y
f
← X in F with f being a�bration, there is a pull-bak diagram in F

E

f̄

��

g // X

f

��
B

g // Ywhere f is a �bration. Moreover, if f (resp., g) is a weak equivalene,so is f (resp., g).(F3) Fatorization axiom. Eah morphism f : X → Y admits a fator-ization
X

f //

g

��

Y

A

h

>>
}}}}}}}where g is a weak equivalene and h is a �bration.(F4) Axiom on o�brant models. Eah objet X in F admits a trivial�bration (i.e., a morphism whih is both a �bration and a weakequivalene) RX → X where RX is a o�brant in F . An objet Ris a o�brant if eah trivial �bration f : Q→ R admits a morphism

s : R→ Q suh that fs = 1R.A o�bration ategory is a ategory F with the struture (F , of, we),where of and we are lasses of morphisms in F , alled o�brations and weakequivalenes, respetively, and it satis�es the ondition that the oppositeategory C = Fop is a �bration ategory, where the struture of C is given by
• fop is a �bration in C i� f is a o�bration in F ,
• fop is a weak equivalene in C i� f is a weak equivalene in F .Throughout the paper, spae means topologial spae, and map meansontinuous map.For any spae X with a metri d, for any ε > 0, and for any x ∈ X, let

Bε(x) = {y ∈ X : d(x, y) < ε}. For any open overing V of a spae Y , twopoints y, y′ of Y are V-near, denoted (y, y′) < V, provided y, y′ ∈ V for some
V ∈ V, and two maps f, g : X → Y are V-near, denoted (f, g) < V, provided
f(x) and g(x) are V-near for eah x ∈ X. For any open overing U of a spae
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X and for any subset A of X, let st(A,U) =

⋃

{U ∈ U : U ∩ A 6= ∅}, andlet stU be the open overing {st(U,U) : U ∈ U} of X. For any overings Uand V of a spae X, U is a re�nement of V, denoted U < V, provided foreah U ∈ U there exists V ∈ V suh that U ⊆ V .Let X be a spae with a metri d. For any path α : I → X, the diameter
|α| of α is de�ned as the diameter of the image of α, i.e.,

|α| = sup{d(α(t), α(t′)) : t, t′ ∈ I}.Then the funtion XI → R≥0 : α 7→ |α| is ontinuous, and |α| = 0 i� α is aonstant path.2. Proof of Theorem ATheorem 2.1. Every map f : A→ B between ANR's is the ompositionof a homotopy equivalene q : A → E and a map p : E → B having theSHLP with respet to every spae, where E is an ANR.Proof. Let B be embedded in a onvex subset K of a normed linearspae. Then there exist an open neighborhood N of B in K and a retration
r : N → B. Let W be the set of open balls W in K suh that W ⊆ N , andlet V = {W ∩ B : W ∈ W}. Set E = {(x, ω) ∈ A × BI : (f(x), ω(0)) < V}.Note that E is an ANR sine it is an open subset of the ANR A×BI . De�nea map ̺ : E → BI by̺

(x, ω)(t) = r((1− t)f(x) + tω(0)).Then for eah (x, ω) ∈ E, ̺(x, ω) is a path from f(x) to ω(0) in B. Themap f fators into the omposition of q : A→ E and p : E → B de�ned by
q(x) = (x, ef(x)) for x ∈ X and p(x, ω) = ω(1) for (x, ω) ∈ E, respetively.Here for any y0 ∈ B, ey0

denotes the onstant map I → B : ey0
(t) = y0.Now, q is a homotopy equivalene. Indeed, if pA : E → A is the restritionof the projetion map of A×BI onto A, then pAq = 1A, and qpA ≃ 1E , withthe homotopy H : E × I → E,

H((x, ω), t) =

{

(x, e̺(x,ω)(2t)), 0 ≤ t ≤ 1/2,

(x, ω2t−1), 1/2 ≤ t ≤ 1.Here, for eah t ∈ I, the path ωt : I → B is de�ned by ωt(s) = ω(st) for
s ∈ I.It remains to show that p has the SHLP with respet to every spae X.Suppose that we are given a ommutative diagram

E

p

��

X × 0
ϕoo

⊆

��
B X × I

Ψ

bbF
F

F
F

F
Φoo
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Write ϕ(x) = (ϕ1(x), ϕ2(x)) ∈ A×B

I . Then the diagram an be ompletedby the map Ψ : X × I → E, Ψ(x, t) = (Ψ1(x, t), Ψ2(x, t)) ∈ A × B
I , de�nedas follows. Let Ψ1(x, t) = ϕ1(x). For eah (x, t) ∈ X × I with |ϕ2(x)| 6= 0 or

|Φt(x)| 6= 0, set
µ(x, t) =

|ϕ2(x)|

|ϕ2(x)|+ |Φt(x)|
, ν(x, t) =

|Φt(x)|

|ϕ2(x)|+ |Φt(x)|
.Here, for eah (x, t) ∈ X × I, Φt(x) ∈ B

I is de�ned by
Φt(x)(u) = Φ(x, tu) for u ∈ I.Then for eah (x, t) ∈ X × I, de�ne the path Ψ2(x, t) by setting, for eah

u ∈ I,

Ψ2(x, t)(u) =































































ϕ2(x)

(

u

µ(x, t)

)

(0 ≤ u ≤ µ(x, t))

Φt(x)

(

u− µ(x, t)

ν(x, t)

)

(µ(x, t) < u ≤ 1)







































if |ϕ2(x)| 6= 0 and |Φt(x)| 6= 0,

Φt(x)(u) if |ϕ2(x)| = 0 and |Φt(x)| 6= 0,

ϕ2(x)(u) if |Φt(x)| = 0.If Φ is onstant on x× I, then |Φt(x)| = 0 for t ∈ I, so by the de�nition, Ψ isonstant on x×I. It remains to show that Ψ is ontinuous. Fix (x, t) ∈ X×I,and let ε > 0. Take ξ > 0 with 0 < ξ < min{1, ε} suh that if |u − u′| < ξ(u, u′ ∈ I), then
d(ϕ2(x)(u), ϕ2(x)(u

′)) < ε/3,(2.1)
d(Φt(x)(u), Φt(x)(u

′)) < ε/3.(2.2)Also take δ1 > 0 suh that if d(x, x′) < δ1 (x′ ∈ X) and |t− t′| < δ1 (t′ ∈ I),then
d(ϕ2(x), ϕ2(x

′)) < ε/3,(2.3)
d(Φt(x), Φt′(x

′)) < ε/3.(2.4)Choose ξ′ > 0 with the following properties:
ξ′ < ξ/2,(2.5)
ξ′ <

1

8
min

{

1

µ(x, t)
ξ,
ν(x, t)

µ(x, t)2
ξ

} if |ϕ2(x)| 6= 0 and |Φt(x)| 6= 0.(2.6)
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In turn, hoose ξ′′ > 0 with the following properties:

ξ′′ < ξ′,(2.7)
ξ′′ <

|ϕ2(x)|

4
ξ′ if |ϕ2(x)| 6= 0,(2.8)

ξ′′ <
|Φt(x)|

4
ξ′ if |Φt(x)| 6= 0,(2.9)

ξ′′ < min

{

|ϕ2(x)|
2

4|Φt(x)|
ξ′,
|Φt(x)|

2

4|ϕ2(x)|
ξ′

} if |ϕ2(x)| 6= 0 and |Φt(x)| 6= 0.(2.10)Note that the funtions X → R≥0 : x 7→ |ϕ2(x)| and X× I → R≥0 : (x, t) 7→
|Φt(x)| are ontinuous. So, there is δ2 > 0 suh that if d(x, x′) < δ2 (x′ ∈ X)and |t− t′| < δ2 (t′ ∈ I), then

| |ϕ2(x)| − |ϕ2(x
′)| | < ξ′′,(2.11)

| |Φt(x)| − |Φt′(x
′)| | < ξ′′.(2.12)Using (2.7)�(2.12), we �nd that whenever d(x, x′) < δ2 (x′ ∈ X) and |t−t′| <

δ2 (t′ ∈ I), then
∣

∣

∣

∣

1

µ(x, t)
−

1

µ(x′, t′)

∣

∣

∣

∣

< ξ′ if |ϕ2(x)| 6= 0,(2.13)
∣

∣

∣

∣

1

ν(x, t)
−

1

ν(x′, t′)

∣

∣

∣

∣

< ξ′ if |Φt(x)| 6= 0.(2.14)Let δ = min{δ1, δ2}, and suppose that (x′, t′) ∈ X × I satis�es d(x, x′) < δand |t− t′| < δ. We wish to show(2.15) d(Ψ2(x, t)(u), Ψ2(x
′, t′)(u)) < ε for any u ∈ I.

Case 1: |ϕ2(x)| 6= 0 and |Φt(x)| 6= 0. Without loss of generality, we anassume |ϕ2(x
′)| 6= 0 and |Φt′(x

′)| 6= 0.(1) If 0 ≤ u ≤ µ(x′, t′) < µ(x, t) or 0 ≤ u ≤ µ(x, t) < µ(x′, t′), then by(2.1), (2.3) and (2.13),
d

(

ϕ2(x)

(

u

µ(x, t)

)

, ϕ2(x
′)

(

u

µ(x′, t′)

))

≤ d

(

ϕ2(x)

(

u

µ(x, t)

)

, ϕ2(x)

(

u

µ(x′, t′)

))

+ d

(

ϕ2(x)

(

u

µ(x′, t′)

)

, ϕ2(x
′)

(

u

µ(x′, t′)

))

< ε.
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(2) If µ(x′, t′) < u ≤ µ(x, t), then by (2.1), (2.2), (2.4), (2.6), and (2.13),

d

(

ϕ2(x)

(

u

µ(x, t)

)

, Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

≤ d

(

ϕ2(x)

(

u

µ(x, t)

)

, ϕ2(x)(1)

)

+ d

(

Φt(x)(0), Φt(x)

(

u− µ(x′, t′)

ν(x′, t′)

))

+ d

(

Φt(x)

(

u− µ(x′, t′)

ν(x′, t′)

)

, Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

< ε.

(3) If µ(x, t) < u ≤ µ(x′, t′), then by (2.1)�(2.3), (2.6), and (2.13),
d

(

Φt(x)

(

u− µ(x, t)

ν(x, t)

)

, ϕ2(x
′)

(

u

µ(x′, t′)

))

≤ d

(

Φt(x)

(

u−µ(x, t)

ν(x, t)

)

, Φt(x)(0)

)

+d

(

ϕ2(x)(1), ϕ2(x)

(

u

µ(x′, t′)

))

+ d

(

ϕ2(x)

(

u

µ(x′, t′)

)

, ϕ2(x
′)

(

u

µ(x′, t′)

))

< ε.

(4) If µ(x′, t′) < µ(x, t) < u ≤ 1 or µ(x, t) < µ(x′, t′) < u ≤ 1, then by(2.2), (2.4), (2.6), (2.13), and (2.14),
d

(

Φt(x)

(

u− µ(x, t)

ν(x, t)

)

, Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

≤ d

(

Φt(x)

(

u− µ(x, t)

ν(x, t)

)

, Φt(x)

(

u− µ(x′, t′)

ν(x′, t′)

))

+ d

(

Φt(x)

(

u− µ(x,′ t′)

ν(x′, t′)

)

, Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

< ε.

Case 2: |ϕ2(x)| = 0 and |Φt(x)| 6= 0.(1) If 0 ≤ u ≤ µ(x′, t′), then by (2.4), (2.9), (2.11), and (2.12),
d

(

Φt(x)(u), ϕ2(x
′)

(

u

µ(x′, t′)

))

≤ d(Φt(x)(u), Φt(x)(0)) + d(Φt(x)(0), Φt′(x
′)(0))

+ d

(

ϕ2(x
′)(1), ϕ2(x

′)

(

u

µ(x′, t′)

))

< ε.
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(2) If µ(x′, t′) < u ≤ 1, then by (2.2), (2.4), (2.9), (2.11), and (2.12),

d

(

Φt(x)(u), Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

≤ d

(

Φt(x)(u), Φt(x)

(

u− µ(x′, t′)

ν(x′, t′)

))

+ d

(

Φt(x)

(

u− µ(x′, t′)

ν(x′, t′)

)

, Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

< ε.

Case 3: |ϕ2(x)| 6= 0 and |Φt(x)| = 0.(1) If 0 ≤ u ≤ µ(x′, t′), then by (2.1), (2.3) and (2.13),
d

(

ϕ2(x)(u), ϕ2(x
′)

(

u

µ(x′, t′)

))

≤ d

(

ϕ2(x)(u), ϕ2(x)

(

u

µ(x′, t′)

))

+ d

(

ϕ2(x)

(

u

µ(x′, t′)

)

, ϕ2(x
′)

(

u

µ(x′, t′)

))

< ε.(2) If µ(x′, t′) < u ≤ 1, then by (2.1), (2.3) (2.8), (2.11), and (2.12),
d

(

ϕ2(x)(u), Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

≤ d(ϕ2(x)(u), ϕ2(x)(1)) + d(ϕ2(x)(1), ϕ2(x
′)(1))

+ d

(

Φt′(x
′)(0), Φt′(x

′)

(

u− µ(x′, t′)

ν(x′, t′)

))

< ε.

Case 4: |ϕ2(x)| = 0 and |Φt(x)| = 0.(1) If 0 ≤ u ≤ µ(x′, t′), then by (2.3),
d

(

ϕ2(x)(0), ϕ2(x
′)

(

u

µ(x′, t′)

))

≤ d

(

ϕ(x)

(

u

µ(x′, t′)

)

, ϕ(x′)

(

u

µ(x′, t′)

))

< ε.(2) If µ(x′, t′) < u ≤ 1, then by (2.4) and (2.12),
d

(

ϕ2(x)(0), Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

≤ d(Φt(x)(1), Φt′(x
′)(1))

+ d

(

Φt′(x
′)(1), Φt′(x

′)

(

u− µ(x′, t′)

ν(x′, t′)

))

< ε.Theorem 2.2. For any pull-bak diagram
X

p
��

g // A

p
��

Y
g // B
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if p has the SHLP with respet to every spae, and if A, B, and Y are ANR's,then X is an ANR.Proof. Suppose that f : C → X is a map from a losed subset C of aspae Z into X. We wish to show that f has an extension over some openneighborhood U of C.Let V be an open overing of B so that any two V-near maps ϕ, ψ : W →
B admit a homotopy H : W × I → B whih onnets them and is onstanton x×I whenever ϕ(x) = ψ(x), and let V ′ be an open overing of B suh that
stV ′ < V. Sine A and Y are ANR's, the maps gf : C → A and pf : C → Yextend to maps f ′1 : U ′ → A and f ′2 : U ′ → Y for some open neighbor-hood U ′ of C. Let U = f ′−1

1 p−1V ′ ∧ f ′−1
2 g−1V ′, and let U = st(C,U). If

f1 : U → A and f2 : U → Y are the restritions of f ′1 and f ′2, respe-tively, then (pf1, gf2) < V. Indeed, for eah x ∈ U , there exist c ∈ C and
V1, V2 ∈ V

′ suh that both x and c belong to f−1
1 p−1(V1) ∧ f

−1
2 g−1(V2).Then pf1(c) = gf2(c) ∈ V1 ∩ V2 6= ∅, pf1(x) ∈ V1, and gf2(x) ∈ V2,whih implies that pf1(x), gf2(x) ∈ V1 ∪ V2 ⊆ V for some V ∈ V as re-quired. By the hoie of V, pf1 ≃ gf2. Sine p has the SHLP, there is a map

f ′′1 : U → A suh that f ′′1 ≃ f1, pf ′′1 = gf2, and f ′′1 (x) = f1(x) whenever
pf1(x) = gf2(x) for x ∈ U . The maps f ′′1 and f2 de�ne a map f̃ : U → Xsuh that gf̃ = f ′′1 and pf̃ = f2. Moreover, if x ∈ C, then pf1(x) = gf2(x),so f ′′1 (x) = f1(x), and hene f̃ is an extension of f . This proves that X isan ANR.Theorem 2.3. For eah 2-sink Y g

→ B
p
← A in ANR with f having theSHLP with respet to every spae, there is a pull-bak diagram

X

p

��

g // A

p

��
Y

g // Bin ANR with p having the SHLP with respet to every spae. Moreover , if p(resp., g) is a homotopy equivalene, so is p (resp., g).Proof. The existene of the pull-bak diagram follows from Theorem 2.2.That p has the SHLP with respet to every spae easily follows. The seondassertion follows from the ase of Top.
Theorem A. ANR is a �bration ategory if �bration = map having theSHLP with respet to every spae, and weak equivalene = homotopy equiv-alene.Proof. (F2) and (F3) follow from Theorems 2.3 and 2.2, respetively.(F1) and (F4) follow from those properties for Top.
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3. Proof of Theorem BTheorem 3.1. Every map f : A → B between metri spaes is theomposition of a homotopy equivalene q : A → E and a map p : E → Bhaving the SHLP with respet to every spae, where E is some metri spae.Proof. Let E = {(x, ω) ∈ A × BI : f(x) = ω(0)}. Then E is a metrispae. The map f fators into the omposition of q : A→ E and p : E → Bwhih are de�ned as in the proof of Theorem 2.1. Then q is a homotopyequivalene. Indeed, if pA : E → A is the restrition of the projetion mapof A × BI onto A, then pAp = 1A, and ppA ≃ 1E with the homotopy

H : E× I → E, H((x, ω), t) = (x, ωt). That p has the SHLP with respet toany spae X is proven similarly to Theorem 2.1.
Theorem B. The full subategory M of Top whose objets are metrispaes is a �bration ategory if �bration = map having the SHLP with respetto every spae, and weak equivalene = homotopy equivalene.Proof. (F2) easily follows, and (F3) follows from Theorem 3.1. (F1) and(F4) follow from those properties for Top.
Remark. We observe that the Ekmann�Hilton duality breaks downwhen taking subategories. Top has the strutures of a �bration ategoryand a o�bration ategory, but the restrition of the o�bration struture toM is not a o�bration ategory, while the restrition of the �bration strutureto M is a �bration ategory.
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