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GENERAL TOPOLOGY

On the Lifshits Constant for HyperspaesbyK. LE�NIAKPresented by Czesªaw BESSAGA
Summary. The Lifshits theorem states that any k-uniformly Lipshitz map with abounded orbit on a omplete metri spae X has a �xed point provided k < κ(X) where
κ(X) is the so-alled Lifshits onstant of X. For many spaes we have κ(X) > 1. It isinteresting whether we an use the Lifshits theorem in the theory of iterated funtionsystems. Therefore we investigate the value of the Lifshits onstant for several lasses ofhyperspaes.1. Preliminaries. The standard method for showing that an iteratedfuntion system admits a unique invariant set makes use of the Banahontration priniple applied to the hyperspae (see [Hu℄). But this methodfails for nonontrative systems. Therefore one looks for other �xed pointpriniples ([H℄, [Ha℄, [E℄, [LM℄, [L1℄, [O℄). In [AG℄ the authors propose to usethe Lifshits �xed point theorem for this purpose. This leads to the problemof alulation of the Lifshits onstant for hyperspaes. In this artile weinvestigate the Lifshits onstant for several lasses of hyperspaes, improvingand extending our earlier results from [L2℄.Let (X, d) be a metri spae. We denote by D(x, r) the losed r-ball withenter at x, and by diamA the diameter of A ⊂ X. Let c ≥ 1. We shall saythat balls are c-regular in X if
(1) ∀k < c∃η, α ∈ (0, 1)∀x, y ∈ X ∀r > 0 [d(x, y) ≥ (1− η)r ⇒ ∃z ∈ X

D(x, (1 + η)r) ∩D(y, k(1 + η)r) ⊂ D(z, αr)].Set
κ(X) = sup{c ≥ 1 : balls are c-regular}.2000 Mathematis Subjet Classi�ation: 54B20, 51K99, 46B20.Key words and phrases: Lifshits onstant, hyperspae, Hausdor� metri, Pompeiumetri, ℓp-produt, ψ-produt.Partially supported by the Niolaus Copernius University (grant no. 467-M).[155℄ © Instytut Matematyzny PAN, 2007
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Then κ(X) is alled the Lifshits onstant (or the Lifshits harateristi) ofX.Below we reall the Lifshits theorem.Theorem 1. Let (X, d) be a omplete metri spae. Let f : X → X bea k-uniformly Lipshitz map:

∀x, y ∈ X ∀n ∈ N d[ fn(x), fn(y) ] ≤ kd(x, y),where k < κ(X) and fn stands for the n-fold omposition. If there exists x0suh that the orbit {fn(x0) : n ∈ N} is bounded , then f has a �xed point.This theorem is nontrivial beause for many spaes we have κ(X) > 1;e.g. if X is a Hilbert spae then κ(X) =
√

2. More details on the Lifshitsonstant an be found in [GK℄, [AT℄, [LF℄. Some interesting modi�ations ofthis geometri onstant are given in [WW℄.For the rest of the paper the following tehnial lemma will play a ruialrole.Lemma 1. Let (X, d) be a metri spae and let p1, p2, q1, q2 ∈ X havethe following distanes: d(p1, p2) = d(qi, pj) = r, i, j = 1, 2, d(q1, q2) = 2r.Then κ(X) = 1.Proof. Put in (1) η = 0, k = 1, x = p1, y = p2. If D(p1, r) ∩ D(p2, r)
⊂ D(z, αr) for some z ∈ X, α ∈ (0, 1), then diam[D(p1, r) ∩ D(p2, r)]
≤ diamD(z, αr) ≤ 2αr < 2r. On the other hand, sine q1, q2 ∈ D(p1, r)
∩D(p2, r), we get diam[D(p1, r) ∩D(p2, r)] ≥ 2r. This ontradition showsthat balls are never c-regular for any hoie of c > k ≥ 1.2. Hyperspaes with Hausdor� and Pompeiu metris. We denoteby F2(X) the family of all nonempty subsets ofX with at most two elements,
Fb(X) the family of all nonempty losed bounded subsets of X, Fc(X) thefamily of all nonempty losed bounded onneted subsets of X, Fk(X) thefamily of all nonempty losed bounded onvex subsets of X, K(X) the familyof all nonempty ompat subsets of X, Kc(X) the family of all nonemptyompat onneted subsets ofX, and Kk(X) the family of all nonempty om-pat onvex subsets of X. The family F2(X) is also referred to as the 2-foldsymmetri produt of X. A topologized family of sets is alled a hyperspae.Let A,B ⊂ X. The exess of the set A over B is

e(A,B) = sup
a∈A

inf
b∈B

d(a, b).The Hausdor� distane between A and B is
dH(A,B) = max{e(A,B), e(B,A)},and the Pompeiu distane is
dP(A,B) = e(A,B) + e(B,A).
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Reall that Fb(X) equipped with either dH or dP is a metri spae. Thegeometri theory of hyperspaes is presented in [IN℄.Theorem 2. Let X be a metri spae ontaining at least three points
x0, x1, x2 whih satisfy 0 < d(x0, x1) = d(x1, x2) = 1

2
d(x0, x2). Then

κ(F2(X), dH) = 1 = κ(F2(X), dP).Proof. Set r = d(x0, x1). In the ase of the Hausdor� metri dH take
P1 = {x1}, P2 = {x1, x2}, Q1 = {x0, x2}, Q2 = {x2}. Then

e(P1, P2) = 0, e(P2, P1) = r; e(Q1, Q2) = 2r, e(Q2, Q1) = 0;

e(Q1, P1) = r = e(P1, Q1); e(P2, Q2) = r, e(Q2, P2) = 0;

e(Q1, P2) = r = e(P2, Q1); e(Q2, P1) = r = e(P1, Q2).Therefore we an use Lemma 1.In the ase of the Pompeiu metri dP by taking P1 = {x1}, P2 =
{x0, x1, x2}, Q1 = {x0, x1}, Q2 = {x1, x2} we get

e(P1, P2) = 0, e(P2, P1) = r; e(Q1, Q2) = r = e(Q2, Q1);

e(Q1, P1) = r, e(P1, Q1) = 0; e(P2, Q2) = r, e(Q2, P2) = 0;

e(Q1, P2) = 0, e(P2, Q1) = r; e(Q2, P1) = r, e(P1, Q2) = 0.Again Lemma 1 applies.The above also holds true for K(X) whih is larger than F2(X).Theorem 3. Eah of the following hyperspaes of a normed spae Xhas Lifshits onstant 1: Fb(X), Fc(X), K(X), Kc(X), Kk(X) when endowedwith dH or dP.Proof. Fix 0 < r < 1/3 and some vetor v with ‖v‖ = 1. Put
P1 = {tv : t ∈ [r, 1]}, P2 = {tv : t ∈ [r, 1 − r]},
Q1 = {tv : t ∈ [0, 1]}, Q2 = {tv : t ∈ [2r, 1 − r]}.Then we have

{

e(P1, P2) = r, e(Q1, Q2) = 2r,

e(P1, Q2) = e(P2, Q2) = e(Q1, P1) = e(Q1, P2) = r,
(2)and 0 for the reverse exesses. Thus (regardless of the metri in the hyper-spae) the assumptions of Lemma 1 are ful�lled and the assertion follows.We remark that the proof of the above result given in [L2℄ for K(X),
Kc(X) and Kk(X) relied on the ompatness of the unit ball in the normedspae.3. Other metrizations. Instead of the Hausdor� or Pompeiu metri wenow onsider some of their variations. First, by analogy with the ℓp-produt,
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we de�ne the following distane between A,B ⊂ X:

dMp(A,B) = (e(A,B)p + e(B,A)p)1/p ,where p ∈ [1,∞). Of ourse dM1 = dP.Theorem 4. Eah of the hyperspaes Fb(X), Fc(X), K(X), Kc(X),
Kk(X) of a normed spae X endowed with dMp has Lifshits onstant 1.Proof. The argument for Theorem 3 an be repeated here. Indeed,

Q2 ⊂ P2 ⊂ P1 ⊂ Q1(3)for the sets de�ned there, so one only has to observe that
dMp(A,B) = dH(A,B)(4)whenever A ⊂ B ⊂ X.Theorem 5. Let (X, d) be a metri spae ontaining four points x0, x1,

x2, x3 whih satisfy d(xi, xi+1) = r, i = 0, 1, 2, d(xi, xi+2) = 2r, i = 0, 1,
d(x0, x3) = 3r for some r > 0. Then κ(F2(X), dMp) = 1 = κ(K(X), dMp).Proof. Put Q1 = {x0, x1, x2, x3}, Q2 = {x2, x3}, P1 = {x1, x2, x3}, P2 =
{x1, x2}. Then (2) and (3) hold for our sets. Hene by (4) we obtain thesame onlusion as in Theorem 3.The above argument is also valid for dH, but involves slightly strongergeometri assumptions on X than those in Theorem 2.Now, as suggested by [KST℄, we introdue the ψ-distane between
A,B ⊂ X as

dψ(A,B) = ψ(e(A,B), e(B,A)),where ψ : [0,∞) × [0,∞) → [0,∞) is any funtion making dψ a metri in
Fb(X). In partiular ψ(α, β) = (αp + βp)1/p gives dψ = dMp .If ψ(α, 0) = α = ψ(0, α), then the reasoning from Theorem 4 is also validfor dψ. Therefore hyperspaes metrized with dψ turn out to have Lifshitsonstant 1.Let A,B ⊂ X. The spread of the set A over B is

s(A,B) = inf{sup
a∈A

d(a, f(a)) : f : A→ B is ontinuous}.The Borsuk distane of ontinuity between A and B is
dB(A,B) = max{s(A,B), s(B,A)}.One an desribe the exess funtional e in an analogous way to s, namelyby omitting the requirement of ontinuity. In partiular s(A,B) ≥ e(B,A)and dB ≥ dH. More details on the Borsuk metri an be found e.g. in [B1℄,[B2℄, [G℄ and [M℄ (the last two works are devoted to the appliations of theBorsuk metri in the �xed point theory of multivalued mappings).
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Sine dB oinides with dH on the family of �nite sets, we immediatelysee that under the hypotheses of either Theorem 2 or 5, κ(F2(X), dB) = 1

= κ(K(X), dB).Let X be a normed spae and v ∈ X a vetor with ‖v‖ = 1. We put
I = {tv : t ∈ [a1, a2]}, J = {tv : t ∈ [b1, b2]},where a1 < a2 and b1 < b2 are reals. Then, as is well known, dH(I, J) =

max{|a1 − b1|, |a2 − b2|}. Moreover,
dB(I, J) = dH(I, J).(5)To see this, simply take the a�ne map f : I → J given by

f(tv) = (αt+ β) · v, α =
b2 − b1
a2 − a1

, β = b1 − αa1and alulate
s(I, J) ≤ sup

a∈I
‖a− f(a)‖ = max{|a1 − b1|, |a2 − b2|}.Finally, by (5) and the proof of Theorem 3, we �nd that κ(Kc(X), dB) =

1 = κ(Kk(X), dB).4. Final remarks. The following question (asked by L. Górniewiz andJ. Andres) arises: Are there any �natural� hyperspaes with the Lifshits on-stant stritly greater than 1? As we argued at the beginning, suh spaesould be interesting for �xed point theory, espeially the theory of iteratedfuntion systems. We do not know a satisfatory answer to this question. Ofourse the family of singletons F1(X) = {{x} : x ∈ X} under any of themetris above onsidered here is isometri to X, so κ(F1(X)) = κ(X). Weprovide an example of a hyperspae di�erent from F1(X).
Example. Let ε > 0 and H = {[a, a+ ε] ⊂ [0, 1] : a ∈ [0, 1 − ε]}. Then

κ(H, dH) = 2. Indeed, H is isometri to [0, 1 − ε] and κ([0, 1 − ε]) = 2.
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