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Some Remarks on Funtionals withthe Tensorization PropertybyPaweª WOLFFPresented by Stanisªaw KWAPIE�
Summary. We investigate the subadditivity property (also known as the tensorizationproperty) of ϕ-entropy funtionals and their iterations. In partiular we show that theonly iterated ϕ-entropies with the tensorization property are iterated varianes. This isa omplement to the result due to Lataªa and Oleszkiewiz on haraterization of thestandard ϕ-entropies with the tensorization property.1. Introdution. An important feature of some funtional inequalitiesfor probability measures is the tensorization property (sometimes alled theprodut property): if the inequality holds for eah measure µ1, µ2, . . . then italso holds for the produt measure µ1⊗µ2⊗· · · . In this paper we fous on thetensorization property of entropy-energy inequalities, well-known examplesof whih are the logarithmi Sobolev inequality and Poinaré inequality.By the ϕ-entropy funtional we mean the funtional Eϕ(Z) − ϕ(EZ).For ϕ(x) = x log x we get the lassial entropy funtional, for ϕ(x) = x2 weget the variane, and for ϕ(x) = xp, p ∈ (1, 2], the so-alled p-variane. Thefamily of entropy-energy inequalities orresponding to the p-variane, whihinterpolate between the logarithmi Sobolev and Poinaré inequalities, wasintrodued by Bekner [1℄ in the ontext of Gaussian measure on R

n andHaar measure on the sphere Sn−1. A more abstrat treatment of this familyof inequalities (in the ontext of arbitrary probability measures) was givenby Lataªa and Oleszkiewiz [3℄. One of the results in that paper states that if
ϕ : (0,∞) → R belongs to the lass Φ, that is, ϕ is either a�ne or onvex with2000 Mathematis Subjet Classi�ation: Primary 60E15; Seondary 28A35, 52A40.Key words and phrases: produt measure, onvex funtional, entropy, non-negativity,tensorization property.Researh partially supported by MEiN Grant 1 PO3A 012 29.[279℄ © Instytut Matematyzny PAN, 2007
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1/ϕ′′ onave, then the ϕ-entropy funtional has the tensorization property,i.e. for any random variable Z de�ned on any produt spae Ω1 × Ω2,

Eϕ(Z) − ϕ(EZ) ≤ E[(E1ϕ(Z) − ϕ(E1Z)) + (E2ϕ(Z) − ϕ(E2Z))],or, equivalently,
Ψ2(Z) = Eϕ(Z) − E1ϕ(E2Z) − E2ϕ(E1Z) + ϕ(EZ) ≥ 0.(The solution of a similar haraterization problem, onerning hyperon-trativity with some more general funtionals instead of Lp norms, was givenby Oleszkiewiz [6℄). In fat, the paper [3℄ ontains a rigorous proof only ofthe statement that if ϕ ∈ Φ then the ϕ-entropy funtional

Ψ1(Z) = Eϕ(Z) − ϕ(EZ) is onvex.Later on, in [2℄ it was suggested that the onvexity of Ψ1 might not implythe non-negativity of Ψ2 straightforwardly. Therefore in order to obtain thelatter, a variational formula for Ψ2 was used (established by Bobkov for somepartiular funtions ϕ; see [4, Setion 4℄). However, this formula stronglyrelies on the analyti onditions that ϕ satis�es (namely, that ϕ ∈ Φ).In order to make the piture lear, we shall provide a diret argument thatthe onvexity of Ψ1 is equivalent to the non-negativity of Ψ2 (Proposition 1).We also give the proof of the onverse part of the haraterization result(Theorem 1): if the ϕ-entropy has the tensorization property (in other words,
ϕ belongs to the lass C2) then ϕ ∈ Φ. Finally, Theorem 2 addresses thequestion posed at the end of [3℄, onerning a haraterization of the higher�tensorization lasses� Cn for n > 2.2. Notation and de�nitions. Throughout the paper, d and n stand forpositive integers, U denotes an open, onvex subset of R

d and ϕ : U → R is aontinuous funtion. By (Ω,F, P), (Ωk,Fk, Pk), et. we shall denote proba-bility spaes. In the ase of the produt spae (Ω,F, P) =
⊗n

k=1(Ωk,Fk, Pk),for K ⊂ {1, . . . , n}, EK stands for the expetation with respet to the prod-ut measure ⊗
k∈K Pk. For k ∈ {1, . . . , n} we shall write Ek instead of E{k}.For V ⊆ R
d, when writing Z : (Ω,F, P) → V , we mean that Z is arandom variable taking values in R

d and P (Z ∈ V ) = 1.For �xed U ⊆ R
d, ϕ : U → R and �xed (Ω,F, P) =

⊗n
k=1(Ωk,Fk, Pk)we shall onsider the funtional Ψn ating on random variables Z de�ned on

(Ω,F, P) with P (Z ∈ V ) = 1 for some ompat, onvex set V ⊂ U , andde�ned by(1) Ψn(Z) =
∑

K⊆{1,...,n}

(−1)|K|EKcϕ(EKZ).The de�nition of the main objet we investigate in this paper originatesin [3℄:
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Definition 1. We say that ϕ ∈ Cn(U) i� the funtional Ψn is non-negative for any (Ω,F, P) =

⊗n
k=1(Ωk,Fk, Pk), i.e. for every ompat, on-vex set V ⊂ U and every Z : (Ω,F, P) → V ,
Ψn(Z) ≥ 0.Remark 1. It is obvious that Cn(U) is a onvex one.Remark 2. By slight abuse of notation, we an also de�ne the funtional

Ψn indutively, as iterations of the ϕ-entropy funtional Eϕ(Z) − ϕ(EZ),namely(2) Ψn(Z) = EnΨn−1(Z) − Ψn−1(EnZ).(By Ψn−1(Z) we mean the appliation of Ψn−1 onditionally with the nthprodut oordinate �xed, whereas in Ψn−1(EnZ) we onsider EnZ as a ran-dom variable de�ned on the produt of all probability spaes exept the
nth). Now, it an be seen that the non-negativity of Ψn is tightly onnetedwith the onvexity of Ψn−1. A preise statement appears in Proposition 1(equivalene of (i) and (ii′)).Remark 3. The funtional Ψn an be extended to a funtional Ψ̃n atingon a larger lass of random variables whose values are not restrited almostsurely to some ompat subset of U . However, some integrability assumptionsshould be added to ensure that the right hand side of (1) is well-de�ned. Itwould be natural to assume that ϕ is onvex, E|Z| < ∞ (| · | stands forEulidean norm in R

d) and E|ϕ(Z)| < ∞. Then Jensen's inequality impliesthat for eah K ⊆ {1, . . . , n},
aEKZ + b ≤ ϕ(EKZ) ≤ EKϕ(Z) a.s.for some a, b ∈ R. Sine the lower and upper bounds are integrable withrespet to EKc , eah term in the sum (1) is well-de�ned and �nite. As weshall see, in the ontext of the lasses Cn(U), the assumption that ϕ isonvex is not restritive at all. Moreover, an easy trunation argument willshow that the non-negativity of Ψ̃n is a onsequene of the non-negativity of

Ψn (see Proposition 1, equivalene of (i) and (iii)).Example 1. Jensen's inequality implies that C1(U) ontains exatly theonvex funtions on U .Example 2. The lass C2((0,∞)) is exatly the lass of funtions ϕ forwhih the subadditive ϕ-entropies are widely onsidered. The most impor-tant examples are ϕ(x) = xp for p ∈ (1, 2] and ϕ(x) = x log(x). In theintrodution we mentioned that Φ ⊆ C2((0,∞)). In fat, we shall show thatthese two lasses are equal (see Theorem 1).
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3. Properties of the lasses Cn. We start with a proposition givingsome equivalent variants of the de�nition of the lass Cn. The disrete ubes

{−1, 1}n
λ onsidered below are the n-fold produts of the two-point probabil-ity spae {−1, 1} endowed with the measure λδ1 +(1−λ)δ−1; if λ is omittedthen it means that we take λ = 1/2.Proposition 1. The following assertions are equivalent :(i) ϕ ∈ Cn(U),(ii) for every random variable Z : {−1, 1}n → U we have Ψn(Z) ≥ 0,(ii′) for every pair of random variables Z1, Z2 : {−1, 1}n−1 → U ,

1

2
Ψn−1(Z1) +

1

2
Ψn−1(Z2) ≥ Ψn−1

(
Z1 + Z2

2

)
,(iii) ϕ is onvex and for every (Ω,F, P) =

⊗n
k=1(Ωk,Fk, Pk) and ev-ery random variable Z : (Ω,F, P) → U suh that E|Z| < ∞ and

E|ϕ(Z)| < ∞ we have Ψ̃n(Z) ≥ 0.In the proof we shall use the following lemmas:Lemma 1. Let V be a ompat , onvex subset of R
d and (Ω,F, P)

= (Ω1,F1, P1) ⊗ (Ω2,F2, P2) be a produt probability spae. For every Z :

(Ω,F, P) → V and every ε > 0 there exists Z̃ : (Ω,F, P) → V suh that
Z̃ =

M∑

i=1

N∑

j=1

aij1Ai×Bj
,

where aij ∈ V and (Ai)
M
i=1, (Bj)

N
j=1 are measurable, �nite partitions of

(Ω1,F1, P1) and (Ω2,F2, P2) (respetively), and P (|Z̃ − Z| ≥ ε) < ε.Proof. We take any ε > 0 and any �nite overing of V by (open) balls
Ui = B(ai, ε) (i = 1, . . . , L) suh that ai ∈ V . Then we take disjoint andmeasurable (with respet to F1 ⊗ F2) sets Ci = Z−1(Ui \

⋃
j<i Uj). Nowwe shall represent eah Ci as a union of �nitely many measurable produtsets A × B in suh a way that the measure of the symmetri di�erene ofthis union and Ci is small. Sine P1 ⊗ P2 is the produt measure, we an�nd ountably many sets Ai,j ∈ F1 and Bi,j ∈ F2 (j = 1, 2, . . .) suh that

Ci ⊆
⋃∞

j=1(Ai,j × Bi,j) and
P (Ci) + ε/L2 >

∞∑

j=1

P1(Ai,j)P2(Bi,j).If we take mi suh that the tail of the above series for j > mi is less than
ε/L2 and put C̃i =

⋃mi

j=1(Ai,j × Bi,j), then
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P (Ci \ C̃i) ≤ P

( ⋃

j>mi

(Ai,j × Bi,j)
)

< ε/L2,(3)

P (C̃i \ Ci) ≤ P
( ∞⋃

j=1

(Ai,j × Bi,j)
)
− P (Ci) < ε/L2.(4)

We set
Di = C̃i \

⋃

i′ 6=i

C̃i′ for i = 1, . . . , L.Obviously, the Di are pairwise disjoint and eah of them is a �nite union ofmeasurable produt sets. Putting D0 = Ω \ ∑L
i=1 Di (whih is also a �niteunion of produt sets) and hoosing an arbitrary a0 ∈ V , we see that Z̃ =∑L

i=0 ai1Di
has the desired form (to see this, take a joint subdivision of Ω1and Ω2 generated by all (�nitely many) produt sets from D0, D1, . . . , DL).To �nish the proof we show that P (|Z̃ −Z| ≥ ε) < ε. For eah i we have

{|Z̃ − Z| ≥ ε} ∩ Ci ⊆ Ci \ Di = (Ci \ C̃i) ∪
⋃

i′ 6=i

(Ci ∩ C̃i′)

⊆ (Ci \ C̃i) ∪
⋃

i′ 6=i

(C̃i′ \ Ci′),

sine Ci ∩ C̃i′ = (C̃i′ \ Ci′) ∩ Ci ⊆ C̃i′ \ Ci′ . Therefore for eah i = 1, . . . , L,(3) and (4) yield
P ({|Z̃ − Z| ≥ ε} ∩ Ci) ≤ P (Ci \ C̃i) +

∑

i′ 6=i

P (C̃i′ \ Ci′) < ε/L.

Lemma 2. Let V be a ompat , onvex subset of R
d and ϕ : V → R bea ontinuous funtion. If the sequene Zk : (Ω1,F1, P1) ⊗ (Ω2,F2, P2) → Vonverges in probability to Z then E1ϕ(E2Zk) → E1ϕ(E2Z).Proof. Let R > 0 satisfy V ⊆ B(0, R). We take any ε > 0 and k suhthat P (|Zk −Z| ≥ ε) < ε. Consider the measurable sets A = {|Zk −Z| ≥ ε}

⊆ Ω1×Ω2 and Aω1
= {ω2 : (ω1, ω2) ∈ A} ⊆ Ω2 for eah ω1 ∈ Ω1. By Fubini'stheorem we get

ε > E1A =
\

Ω1

P2(Aω1
) P1(dω1) ≥

√
εP1(B),where B = {ω1 : P2(Aω1

) ≥ √
ε} is a measurable subset of Ω1, whih yields

P1(B) <
√

ε. Now we write
|E1ϕ(E2Zk)−E1ϕ(E2Z)| ≤

\
B

|ϕ(E2Zk(ω1, ·) − ϕ(E2Z(ω1, ·)|P1(dω1)

+
\

Ω1\B

|ϕ(E2Zk(ω1, ·)−ϕ(E2Z(ω1, ·)|P1(dω1),
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and the �rst term on the right hand side an be estimated by 2P1(B) supV |ϕ|
< 2

√
ε supV |ϕ|. For ω1 /∈ B,

|E2Zk(ω1, ·) − E2Z(ω1, ·)| ≤ E2(‖Zk‖∞ + ‖Z‖∞)1Aω1
+ εE21Ω2\Aω1

< 2R
√

ε + ε,and the uniform ontinuity of f yields
|E1ϕ(E2Zk) − E1ϕ(E2Z)| < 2

√
ε sup

V
|ϕ| + δ(2R

√
ε + ε) → 0 as ε → 0,where δ(ε) is the modulus of ontinuity of ϕ.Proof of Proposition 1. The impliations (i)⇒(ii), (iii)⇒(i), (iii)⇒(ii)and (ii)⇔(ii′) are obvious. The proof of the impliation (i)⇒(iii) is postponeduntil after the proof of Proposition 2. Now we prove (ii)⇒(i). It su�es toshow that for any �xed ompat, onvex V ⊂ U and any �xed (Ωk,Fk, Pk)(for k = 1, . . . , n − 1),

(5) Ψn(Z) ≥ 0 for every Z :

n−1⊗

k=1

(Ωk,Fk, Pk) ⊗ {−1, 1} → V

⇒ Ψn(Z) ≥ 0 for every (Ωn,Fn, Pn) and Z :

n⊗

k=1

(Ωk,Fk, Pk) → V,

whih means that the onvexity of Ψn−1 (even just 1/2-onvexity) impliesthe non-negativity of Ψn. Applying this argument n times we get (i).First note that the impliation (5) holds for (Ωn,Fn, Pn) = {−1, 1}λ with
λ ∈ (0, 1). Indeed, the hypothesis of (5) states that for any pair of randomvariables Z1, Z2 :

⊗n−1
k=1(Ωk,Fk, Pk) → V ,(6) λΨn−1(Z1) + (1 − λ)Ψn−1(Z2) ≥ Ψn−1(λZ1 + (1 − λ)Z2)for λ = 1/2, hene also for any λ = ji2

−i (0 < ji < 2i). Letting λi → λ weget (6) for any λ ∈ [0, 1], beause Xi := λiZ1 +(1−λi)Z2 → λZ1 +(1−λ)Z2

=: X a.s., so EKXi → EKX a.s. (the sequene (Xi) is bounded a.s.) andalso EKcϕ(EKXi) → EKcϕ(EKX) (ϕ is ontinuous and bounded on V ).Now we show that (Ωn,Fn, Pn) an be an arbitrary probability spae.Fix any Z :
⊗n

k=1(Ωk,Fk, Pk) → V . Lemma 1 implies that for any ε > 0 wemay take Z̃ :
⊗n

k=1(Ωk,Fk, Pk) → V suh that P (|Z̃ − Z| ≥ ε) < ε and
Z̃(ω′, ωn) =

N∑

j=1

Z̃j(ω
′)1Bj

(ωn),

where Z̃j :
⊗n−1

k=1(Ωk,Fk, Pk) → V , ω′ ∈ ∏n−1
k=1 Ωk, (Bj)

N
j=1 is a �nite, mea-surable partition of (Ωn,Fn, Pn), and ωn ∈ Ωn. Then applying (6) N − 1
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times we get

EnΨn−1(Z̃) =

N∑

j=1

Pn(Bj)Ψn−1(Z̃j) ≥ Ψn−1

( N∑

j=1

Pn(Bj)Ψn−1(Z̃j)
)

= Ψn−1(EnZ̃),hene, due to (2), Ψn(Z̃) ≥ 0. Lemma 2 implies that |EKcϕ(EKZ̃) −
EKcϕ(EKZ)| is small for eah K ⊆ {1, . . . , n}, hene letting ε → 0 weobtain Ψn(Z) ≥ 0.Proposition 2. Cn+1(U) ⊆ Cn(U).Proof. Let ϕ ∈ Cn+1(U). By Proposition 1 it is su�ient to show that
Ψn(Z) ≥ 0 for any Z de�ned on Ω = {−1, 1}n taking values in U . De�ne Zon the (n + 1)-fold produt {−1, 1}n × Ω by

Z(ε1, . . . , εn, ε) = Z(ε1ε1, . . . , εnεn),where εk ∈ {−1, 1} and ε = (ε1, . . . , εn) ∈ Ω. Sine ϕ ∈ Cn+1(U), we have
Ψn+1(Z) = En+1Ψn(Z) − Ψn(En+1Z) ≥ 0. But Ψn(Z(·, ε)) does not dependon the hoie of ε and is equal to Ψn(Z). Similarly En+1Z(ε1, . . . , εn, ·) doesnot depend on εk and is equal to EZ, so we obtain Ψn+1(Z) = Ψn(Z).Now we an �nish the proof of Proposition 1:Proof of Proposition 1, (i)⇒(iii). Fix any ϕ ∈ Cn(U), (Ω,F, P) =⊗n

k=1(Ωk,Fk, Pk) and Z : (Ω,F, P) → U suh that E|Z| < ∞ and
E|ϕ(Z)| < ∞. Proposition 2 implies that ϕ ∈ C1(U), i.e. ϕ is onvex.Take any inreasing sequene of ompat, onvex subsets Vi ⊂ U suh that⋃

i Vi = U , and �x v0 ∈ V1. Then we de�ne
Zi = Z1Z∈Vi

+ v01Z /∈Vi
,whih onverges to Z a.s. We shall prove that(7) EKcϕ(EKZi) → EKcϕ(EKZ),whih obviously implies that Ψn(Zi) → Ψ̃n(Z). Sine |Zi| ≤ |Z| + |v0| and

EK |Z| < ∞ a.s., Lebesgue's dominated onvergene theorem implies that
EKZi → EKZ a.s. and by ontinuity of ϕ also ϕ(EKZi) → ϕ(EKZ) a.s.The onvexity of ϕ yields

aEKZi + b ≤ ϕ(EKZi) ≤ EKϕ(Zi)for some a, b ∈ R. Sine EKϕ(Zi) ≤ EK |ϕ(Z)| + ϕ(v0) and |aEKZi + b|
≤ |a|(EK |Z| + |v0|) + |b| and both upper bounds are integrable with re-spet to EKc , Lebesgue's theorem applied one again gives EKcϕ(EKZi) →
EKcϕ(EKZ).From now on, we shall write Ψn, even if we really mean the extension Ψ̃n.
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We should mention that e.g. in the ase of the lass C2((0,∞)) one mayhave Ψ2(Z) ≥ 0 not only for Z > 0 a.s., but also for Z having an atomat 0, as long as ϕ an be extended ontinuously to [0,∞) (f. Example 2).Generally, we an state the followingRemark 4. If ϕ : U → R extends ontinuously to ϕ : U → R, then

ϕ ∈ Cn(U) implies that Ψn(Z) ≥ 0 for every random variable Z de�ned onan n-fold produt spae and taking values in U and satisfying E|Z| < ∞and E|ϕ(Z)| < ∞. (More preisely, Ψn here is a natural extension of thefuntional (1).) Indeed, sine ϕ ∈ C1(U), ϕ is also onvex. Fixing v0 ∈ Uand de�ning Zε = Z1{Z /∈∂U} + ((1 − ε)Z + εv0)1{Z∈∂U} for ε ∈ (0, 1) weobtain random variables Zε with values in U onverging to Z a.s. The proofthat Ψn(Zε) → Ψn(Z) as ε → 0 is the same as in the ase of (7).Theorem 1. Let U = (a, b) ⊆ R be an open interval (possibly with
a = −∞ or b = ∞) and let ϕ : U → R be a ontinuous funtion. Then
ϕ ∈ C2(U) i� ϕ is an a�ne funtion or ϕ is twie di�erentiable with ϕ′′ > 0and 1/ϕ′′ is onave.Proof. The �if� part appears in [3℄ (in fat, for a = 0 and b = ∞, butit also works for any a < b). More preisely, it was proved there that Ψ1 isonvex. But this means that assertion (ii′) from Proposition 1 is satis�ed,and so also is (i).We now show the onverse impliation. First assume that ϕ ∈ C2(U)∩C2.In this ase we follow the idea of [3, Lemma 3℄. Consider F : U × U → Rde�ned by

F (x, y) =
ϕ(x) + ϕ(y)

2
− ϕ

(
x + y

2

)
.If a random variable Z : {−1, 1} → U attains two values x and y then

Ψ1(Z) = F (x, y). Therefore Proposition 1 ((i)⇒(ii′)) implies that F is on-vex. Sine F is C2, D2F is non-negative de�nite. Thus
∂2F

∂x2
(x, y) =

1

2
ϕ′′(x) − 1

4
ϕ′′

(
x + y

2

)
≥ 0.Sine ϕ ∈ C2(U) ⊆ C1(U), we have ϕ′′ ≥ 0 and the above easily im-plies that if ϕ′′(x0) = 0 for some x0 ∈ U , then also ϕ′′(x) = 0 for x ∈

((a + x0)/2, (b + x0)/2). Applying this argument indutively we get ϕ′′ ≡ 0,i.e. ϕ is a�ne. So further we assume ϕ′′ > 0. The non-negativity of D2Fimplies that
∂2F

∂x2

∂2F

∂y2
≥ ∂2F

∂x∂yand one easily heks that this is equivalent to the onavity of 1/ϕ′′ on-sidered at the points x, y and (x + y)/2.
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Now we show that the assumption ϕ ∈ C2(U) implies that ϕ ∈ C2. For

ε > 0 let U ε = (a + ε, b − ε) and de�ne ϕε : U ε → R as the onvolution
ϕε = ϕ ∗ ηε, where ηε ≥ 0 is a smooth approximation of δ0 with supp(ηε) ⊆
(−ε, ε). Sine C2(U) is a onvex one, ϕε ∈ C2(U

ε).Sine ϕε is smooth, the �rst part of the proof implies that ϕε is eithera�ne, or has a stritly positive seond derivative with 1/ϕ′′
ε onave. Then itis easy to see that ϕ′′

ε is a onvex funtion. Indeed, the a�ne ase is obvious,and if ϕ′′
ε > 0 then the onavity of 1/ϕ′′

ε onsidered at the points x, y and
(x + y)/2 gives

ϕ′′
ε

(
x + y

2

)
≤ 2ϕ′′

ε(x)ϕ′′
ε(y)

ϕ′′
ε(x) + ϕ′′

ε(y)
≤ ϕ′′

ε(x) + ϕ′′
ε(y)

2
.Therefore ϕ′′

ε ≥ 0 and for some x0 ∈ R, ϕ′′
ε is non-inreasing on (−∞, x0]∩Uand non-dereasing on [x0,∞)∩U , so ϕ′

ε is a non-dereasing, onave-onvexfuntion.First we show that ϕ ∈ C1. Sine ϕ ∈ C2(U) ⊆ C1(U), ϕ is onvex, so itis well-known that ϕ has a �rst derivative on a set Dϕ with NDϕ = U \ Dϕountable (so NDϕ is of zero Lebesgue measure and Dϕ is dense in U).Moreover, ϕ′ is ontinuous at all points of Dϕ and ϕ is loally Lipshitz.Therefore Lebesgue's dominated onvergene theorem yields
ϕ′

ε(x) = lim
h→0

\ϕ(x − y + h) − ϕ(x − y)

h
ηε(y) dy(8)

= (ϕ′ ∗ ηε)(x) for x ∈ U ε(ϕ′ is de�ned a.e.). Taking ε → 0, by ontinuity of ϕ′ in Dϕ,(9) lim
ε→0

ϕ′
ε(x) = ϕ′(x) for x ∈ Dϕ.Now �x any dereasing sequene εk → 0 (k = 0, 1, . . .) and think of ε0 assmall. Below we onsider the ϕεk

de�ned on one domain U ε0 . The fun-tions ϕ′
εk

are non-dereasing and onave-onvex and they pointwise on-verge on the dense set U ε0 ∩ Dϕ. This implies that they are also uniformlyequiontinuous on any ompat interval [a0, b0] ⊂ U ε0 . Indeed, taking any
ai, bi ∈ U ε0 ∩ Dϕ (i = 1, 2) suh that a1 < a2 ≤ a0 and b0 ≤ b1 < b2, we seethat for su�iently large k the Lipshitz onstant of ϕ′

εk
is less than

max

(
ϕ′(a2) − ϕ′(a1) + 1

a2 − a1
,
ϕ′(b2) − ϕ′(b1) + 1

b2 − b1

)
.Therefore the Arzelà�Asoli theorem implies that there exists a subsequene

εkl
suh that ϕ′

εkl
onverges uniformly on [a0, b0] to some ontinuous funtion,whih has to be the derivative of ϕ. Letting ε0 → 0 and a0 → a, b0 → b weget ϕ ∈ C1. Moreover, ϕ′ is also a non-dereasing, onave-onvex funtion.The proof that ϕ ∈ C2 is similar. The equality (8) gives ϕ′′

ε = (ϕ′∗ηε)
′ and(9) applied for ϕ′ instead of ϕ (this is justi�ed sine ϕ′ is a onave-onvex
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funtion and all the fats onerning the derivative of ϕ′ and the set Dϕ′hold true as in the ase of a onvex funtion) yields

ϕ′′
ε(x) = (ϕ′ ∗ ηε)

′(x) → ϕ′′(x) for x ∈ Dϕ′ .Now using the fat that ϕ′′
ε is onvex, a similar argument shows that theonvex funtions ϕ′′

εk
are uniformly equiontinuous on ompat intervals. Asa onsequene, some subsequene ϕ′′

εkl
is uniformly onvergent on ompatintervals to some ontinuous funtion, whih has to be the derivative of ϕ′.Theorem 2. Let U ⊆ R

d be an open, onvex set. Then for all n ≥ 3,
Cn(U) = {ϕ : U → R | ϕ(x) = Q(x) + v∗(x) + c},where Q is a non-negative de�nite quadrati form on R

d, v is a linear fun-tional on R
d and c ∈ R.Proof. The inlusion ⊇ is easy. Sine the expetation ommutes with v∗,we an assume ϕ(x) = Q(x). Moreover, we an take U = R

d, beause if
ϕ ∈ Cn(U) and U ′ ⊆ U then ϕ|U ′ ∈ Cn(U ′).We show that if ϕ(x) = Q(x) is a quadrati form then(10) Ψn(Z) = Ψn(Z − EnZ).Indeed, denote by Q(x, y) the bilinear form assoiated with Q(x); then (2)yields
Ψn(Z − EnZ) = EnΨn−1(Z − EnZ) − Ψn−1(0)

= En

∑

K⊆{1,...,n−1}

(−1)|K|EKcQ(EK(Z − EnZ))

=
∑

K⊆{1,...,n−1}

(−1)|K|EKcEn(Q(EKZ)−2Q(EKZ, EK∪{n}Z)+Q(EK∪{n}Z))

=
∑

K⊆{1,...,n−1}

(−1)|K|EKc(EnQ(EKZ) − 2Q(EnEKZ, EK∪{n}Z)

+ Q(EK∪{n}Z))

=
∑

K⊆{1,...,n−1}

(−1)|K|(EKc∪{n}Q(EKZ) − Q(EK∪{n}Z)) = Ψn(Z).

Now, by indution on n, we prove that Ψn ≥ 0, i.e. Q ∈ Cn(Rd). Obviously,
Ψ1 ≥ 0. Then the formulas (10) and (2) imply that

Ψn(Z) = Ψn(Z − EnZ) = EnΨn−1(Z − EnZ) − Ψn−1(0) ≥ 0,sine by the indution hypothesis Ψn−1(Z − EnZ) ≥ 0 a.s.The inlusion ⊆ is more triky. First, Proposition 2 allows us to onsiderthe ase n = 3 only. The argument presented below is due to K. Oleszkiewizand is reprodued here with his kind permission. (The author's argument
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was a bit more ompliated and was not so general�it worked e.g. for U =
(0,∞) ⊆ R but not for �nite intervals).First, assume that ϕ ∈ C3(U) is (C∞) smooth. We de�ne X : {−1, 1}3

→ R by
X(ε1, ε2, ε3) =

{
3 if |ε1 + ε2 + ε3| = 3,
−1 otherwise.Fix a ∈ U and v ∈ R

d. For ε ∈ R, we de�ne Zε = a+vεX. If |ε| is su�ientlysmall, Zε has values in U . The hypothesis implies that Ψ3(Zε) ≥ 0. On theother hand, if we put f(x) = ϕ(a + vx) for x from some open intervalontaining 0, we obtain
Ψ3(Zε) =

∑

K⊆{1,2,3}

(−1)|K|EKcf(εEKX)(11)

=
1

4
f(3ε) − 3

2
f(ε) + 2f(0) − 3

4
f(−ε).Notie that the right hand side vanishes if we take 1, x or x2 as f(x), andis equal to 6 for f(x) = x3. Sine f is smooth, applying Taylor's expansion

f(x) = f(0) + f ′(0)x + 1
2f ′′(0)x2 + 1

6f ′′′(0)x3 + o(x3) to (11) we obtain
lim
ε→0

Ψ3(Zε)

ε3
= f ′′′(0).Sine Ψ3(Zε)/ε3 ≥ 0 for ε > 0 and Ψ3(Zε)/ε3 ≤ 0 for ε < 0, we obtain

f ′′′(0) = 0, hene D3
v,v,vϕ(a) = 0 for any v ∈ R

d and a ∈ U , so D3ϕ ≡ 0.An elementary reasoning shows that ϕ is of the desired form�we leave thedetails to the reader. (A similar result dealing with funtions on an in�nite-dimensional vetor spae was given e.g. in [5℄. That result says that if a fun-tion restrited to any line is a one-variable polynomial of degree at most k,then the whole funtion is a polynomial of degree at most k.)The general ase (without assuming ϕ to be smooth) follows easily fromthe above. For ε > 0, we de�ne
U ε = {x ∈ U : B(x, ε) ⊆ U}.Clearly, U ε is an open, onvex subset of U . De�ne ϕε : U ε → R as theonvolution ϕε = ϕ ∗ ηε, where ηε ≥ 0 is a smooth approximation of δ0 withsupp(ηε) ⊆ B(0, ε). Sine C3(U) is a onvex one, ϕε ∈ C3(U

ε) and so ϕε isa �quadrati funtion�. Passing to the limit we onlude that so also is ϕ.The following proposition states what the �tensorization property� forthe lasses Cn(U) means.Proposition 3. Let ϕ ∈ Cn+1(U) (n ≥ 1). Let µ0
k and µ1

k for k =
1, . . . , n be probability measures. Then for any Z :

⊗n
k=1(µ

0
k ⊗µ1

k) → U suh
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that E|Z| < ∞ and E|ϕ(Z)| < ∞ we have

Ψn(Z) ≤ E
∑

A⊆{1,...,n}

ΨA
n (Z),

where ΨA
n (Z) means the funtional Ψn applied to Z onsidered as a randomvariable de�ned on the produt ⊗n

k=1 µ
IA(k)
k with all oordinates ω

1−IA(k)
k�xed.Proof. We shall prove that for Z : (µ0

1⊗µ1
1)⊗µ2⊗· · ·⊗µn → U (satisfyingappropriate integrability onditions) one has

Ψn(Z) ≤ E(Ψ0
n(Z) + Ψ1

n(Z)),where Ψ0
n(Z) means Ψn applied to Z onsidered as a random variable de�nedon the produt µ0

1 ⊗ µ2 ⊗ · · · ⊗ µn with ω1
1 �xed (and similarly for Ψ1

n(Z)).Labelling the produt oordinates ω0
1, ω

1
1 , ω2, . . . , ωn as 10, 11, 2, . . . , n respe-tively we have

Ψn(Z) =
∑

K⊂{10,11,2,...,n}
|K∩{10,11}|6=1

(−1)|K|EKcϕ(EKZ),

EΨ0
n(Z) =

∑

K⊂{10,2,...,n}

(−1)|K|E{11}∪Kcϕ(EKZ),

EΨ1
n(Z) =

∑

K⊂{11,2,...,n}

(−1)|K|E{10}∪Kcϕ(EKZ),

and we easily hek that EΨ0
n(Z) + EΨ1

n(Z) − Ψn(Z) = Ψn+1(Z).Now observe that it su�es to apply the above argument reursively.Aknowledgments. I would like to thank Prof. Krzysztof Oleszkiewizfor introduing me to the subjet and all the inspiring suggestions inludinghis elegant arguments reprodued in the proof of Theorem 2. I am alsoindebted to Prof. Stanisªaw Kwapie« for several omments whih allowedme to improve the text of this paper.
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