MATHEMATICAL LOGIC AND FOUNDATIONS

On the Compactness and Countable Compactness of $2^{\mathbb{R}}$ in ZF

by

Kyriakos KEREMEDIS, Evangelos FELOUZIS and Eleftherios TACHTSIS

Presented by Czesław BESSAGA

Summary. In the framework of ZF (Zermelo–Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements " $2^{\mathbb{R}}$ is countably compact" and " $2^{\mathbb{R}}$ is compact".

1. Notation and terminology

1. Let X be a non-empty set. 2^X will denote the Tychonoff product of the discrete space $2 = \{0, 1\}$. Likewise, $\mathcal{B}^X = \{[p] : p \in \operatorname{Fn}(X, 2)\}$, where $\operatorname{Fn}(X, 2)$ is the set of all finite partial functions from X into 2 and

$$[p] = \{ f \in 2^X : p \subset f \},\$$

will denote the standard clopen (= simultaneously closed and open) base for the topology on 2^X . If $A \subset X$, and $p \in \operatorname{Fn}(A, 2)$, then $[p]_A = \{f \in 2^A : p \subset f\}$. If $Y \subset 2^X$, then $\mathcal{B}^X|_Y = \{O \cap Y : O \in \mathcal{B}^X\}$. A non-empty collection $\mathcal{H} \subset \mathcal{P}(X) \setminus \{\emptyset\}$ has the finite intersection property, FIP for abbreviation, if $\forall \mathcal{Q} \in [\mathcal{H}]^{<\omega}, \bigcap \mathcal{Q} \neq \emptyset$.

- 2. Let (X, T) be a topological space.
 - (a) X is said to be *compact* if every open cover of X has a finite subcover. Equivalently, X is compact iff for every family \mathcal{G} of closed subsets of X having the FIP, $\bigcap \mathcal{G} \neq \emptyset$.

²⁰⁰⁰ Mathematics Subject Classification: 03E25, 54A35, 54B10, 54D20, 54D30.

Key words and phrases: axiom of choice, weak axioms of choice, Tychonoff products, compact spaces, countably compact spaces, Lindelöf spaces, Boolean algebras, filters, ultrafilters.

- (b) X is said to be *countably compact* if every countable open cover of X has a finite subcover. Equivalently, X is countably compact iff for every countable family \mathcal{G} of closed subsets of X having the FIP, $\bigcap \mathcal{G} \neq \emptyset$.
- (c) X is said to be *Lindelöf* if every open cover of X has a countable subcover.
- (d) Let $\mathcal{E} \subset \mathcal{P}(X) \setminus \{\emptyset\}$. A non-empty collection $\mathcal{F} \subset \mathcal{E}$ is an \mathcal{E} -filter iff
 - (i) if $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$,
 - (ii) if $F \in \mathcal{F}$, $F' \in \mathcal{E}$ and $F \subset F'$, then $F' \in \mathcal{F}$.

In particular, if \mathcal{E} is the collection of all non-empty closed (respectively, clopen, open) sets of X, then we say that \mathcal{F} is a *closed* (respectively, *clopen*, *open*) filter. If $\mathcal{E} = \mathcal{P}(X) \setminus \{\emptyset\}$ then an \mathcal{E} -filter is called simply a filter on X. An \mathcal{E} -filter \mathcal{F} is free if $\bigcap \mathcal{F} = \emptyset$. An \mathcal{E} -filter \mathcal{F} is an \mathcal{E} -ultrafilter if for every \mathcal{E} -filter \mathcal{G} with $\mathcal{F} \subset \mathcal{G}$ we have $\mathcal{F} = \mathcal{G}$.

- 3. If A and B are any sets, then $|A| \leq |B|$ means that there exists a one-to-one function $f: A \to B$, and |A| = |B| means that there exists a bijection $f: A \to B$.
- AC(ℝ) (Form 79 in [1]): Every family of non-empty subsets of ℝ has a choice function.
- 5. $CAC(\mathbb{R})$ (Form 94 in [1]): $AC(\mathbb{R})$ restricted to countable families.
- 6. $\operatorname{TP}(2^{\mathbb{R}})$: The Tychonoff product $2^{\mathbb{R}}$ is compact.
- 7. TPC $(2^{\mathbb{R}})$: The Tychonoff product $2^{\mathbb{R}}$ is countably compact.
- 8. $\Pr_X(2^{\mathbb{R}})$: If G is a closed subset of $2^{\mathbb{R}}$ then $\{g|_X : g \in G\}$ is a closed subspace of 2^X .
- 9. $\operatorname{Pr}(2^{\mathbb{R}})$: For all $X \subset \mathbb{R}$, $\operatorname{Pr}_X(2^{\mathbb{R}})$.
- 10. BPI(ω) (Form 225 in [1]): Every proper filter of $\mathcal{P}(\omega)$ can be extended to an ultrafilter.

2. Introduction and some preliminary results. The Tychonoff product of \aleph_0 copies of the two-element set $2 = \{0, 1\}$ with the discrete topology, i.e., the Cantor cube $\mathcal{K}_{\omega} = 2^{\aleph_0}$, is a universal space in the sense that every zero-dimensional, separable, metrizable space embeds into it. Likewise, the Cantor cube $\mathcal{K}_{\mathbb{R}} = 2^{\mathbb{R}}$ of weight \mathbb{R} is a universal space for the class \mathcal{S} of all zero-dimensional spaces of weight $\leq |\mathbb{R}|$. It is well-known that \mathcal{K}_{ω} in ZF, and $\mathcal{K}_{\mathbb{R}}$ in ZFC, are compact spaces. In ZF, however, $\mathcal{K}_{\mathbb{R}}$ need not be compact. Indeed, in [4] we have shown:

THEOREM 1 ([4]). The following statements are equivalent in ZF:

(i) In a Boolean algebra \mathcal{B} of size $\leq |\mathbb{R}|$ every filter can be extended to an ultrafilter.

- (ii) BPI(ω).
- (iii) For every separable compact T_2 space (X,T) the product $X^{\mathbb{R}}$ is compact.
- (iv) The product $[0,1]^{\mathbb{R}}$ is compact.
- (v) Tychonoff products of finite subspaces of \mathbb{R} are compact.
- (vi) $\mathcal{K}_{\mathbb{R}}$ is compact.

Since in Feferman's model (Model $\mathcal{M}2$ in [1]), ω has no free ultrafilters, it follows that " $\mathcal{K}_{\mathbb{R}}$ is compact" fails to hold in $\mathcal{M}2$, and consequently it is not a theorem of ZF. At this point one may ask whether the weaker statement " $\mathcal{K}_{\mathbb{R}}$ is countably compact" is a theorem of ZF. The answer is again no (Theorem 7).

In this paper we shall continue the research of [4] and find equivalent conditions under which " $\mathcal{K}_{\mathbb{R}}$ is compact" or " $\mathcal{K}_{\mathbb{R}}$ is countably compact".

THEOREM 2 ([5, Theorem 16.4(c)]). A product of Hausdorff spaces with at least two points each is separable iff each factor is separable and there are $\leq |\mathbb{R}|$ factors. In particular, if (X,T) is a separable Hausdorff space then, in ZF, the product $X^{\mathbb{R}}$ is separable.

PROPOSITION 3. (ZF) If |X| = |Y|, then the Tychonoff products 2^X and 2^Y are homeomorphic.

Proof. Let $h: X \to Y$ be a bijection. Then $H: 2^X \to 2^Y$ given by $H(f)(x) = f(h^{-1}(x))$ is easily seen to be a bijection. Since H([(x,i)]) = [(h(x),i)] for all $i \in 2$ and $x \in X$, it follows that H maps a basic open set of 2^X to a basic of set of 2^Y . Thus, 2^X and 2^Y are homeomorphic as required.

THEOREM 4 ([3]). (ZF) For any well-ordered cardinal \aleph , the Tychonoff product 2^{\aleph} is compact.

THEOREM 5 ([2], Cantor-Bernstein theorem). (ZF) If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

3. Main results

THEOREM 6. In ZF, TPC($2^{\mathbb{R}}$) implies that every family $\mathcal{A} = \{A_n : n \in \omega\}$ of non-empty finite subsets of $\mathcal{P}(\mathbb{R})$ such that $\bigcup \mathcal{A}$ is disjoint, has a choice function.

Proof. This can be proved just as Theorem 2 in [3]. \blacksquare

THEOREM 7. TPC $(2^{\mathbb{R}})$ is not provable in ZF.

Proof. In the second Cohen model (model $\mathcal{M}7$ in [1]) there exists a countable family $\mathcal{A} = \{A_n : n \in \omega\}$ of two-element subsets of $\mathcal{P}(\mathbb{R})$ which admits no choice function in the model. Therefore, we may assume without loss of generality that for all $n \in \omega$, if $A_n = \{X, Y\}$, then $X \setminus Y \neq \emptyset$ and $Y \setminus X \neq \emptyset$. Since $|\mathbb{R} \times \omega| = |\mathbb{R}|$, we may view the family $\mathcal{B} = \{B_n : n \in \omega\}$, where

$$B_n = \Big\{ \Big(\Big(\bigcup A_n\Big) \setminus X \Big) \times \{n\} : X \in A_n \Big\},\$$

as a family of two-element subsets of $\mathcal{P}(\mathbb{R})$ such that $\bigcup \mathcal{B}$ is disjoint. It follows that \mathcal{B} has no choice function in $\mathcal{M}7$, hence by Theorem 6, $\operatorname{TPC}(2^{\mathbb{R}})$ fails to hold in $\mathcal{M}7$.

Clearly, for every $t \in \mathbb{R}$, the canonical projection of $2^{\mathbb{R}}$ on the *t*-th coordinate is a closed map. However, the statement $\Pr_X(2^{\mathbb{R}})$ need not be provable in ZF. In particular, we show in Theorem 8 below that $\operatorname{TPC}(2^{\mathbb{R}})$ and $\Pr_{\omega}(2^{\mathbb{R}})$ are equivalent.

THEOREM 8. The following statements are equivalent in ZF:

- (i) TPC($2^{\mathbb{R}}$).
- (ii) Let G be a closed subset of $2^{\mathbb{R}}$. Then every countable family $\mathcal{F} \subset \mathcal{B}^{\mathbb{R}}|_{G}$ with the FIP has a non-empty intersection.
- (iii) For every countably infinite subset X of \mathbb{R} , $\Pr_X(2^{\mathbb{R}})$.

Proof. (i) \rightarrow (ii). This is straightforward.

(ii) \rightarrow (iii). Let X be a countable subset of \mathbb{R} and let G be a closed subset of $2^{\mathbb{R}}$. Without loss of generality assume that $X = \omega$. Suppose that $G_{\omega} = \{g|_{\omega} : g \in G\}$ is not closed in 2^{ω} , so let $f \in \overline{G}_{\omega} \setminus G_{\omega}$. For every $n \in \omega \setminus \{0\}$, let $f_n = f|_{\{0,1,\dots,n-1\}}$. We set $V_n = [f_n] \cap G$ and $\mathcal{F} = \{V_n : n \in \omega \setminus \{0\}\}$. Clearly $V_n \neq \emptyset$ for all $n \in \omega \setminus \{0\}$ and \mathcal{F} has the FIP. By hypothesis there exists $g \in \bigcap \mathcal{F}$. But then $f = g|_{\omega} \in G_{\omega}$, which is a contradiction.

(iii) \rightarrow (i). Suppose that $2^{\mathbb{R}}$ is not countably compact and let $\mathcal{G} = \{G_n : n \in \omega \setminus \{0\}\}$ be a descending family of closed subsets of $2^{\mathbb{R}}$ having empty intersection. It is straightforward to verify that $G = \{g_n \in 2^{\omega} : n \in \omega\}$ is a closed subset of 2^{ω} , where for every $n \in \omega \setminus \{0\}$, g_n is the characteristic function of $A_n = \{n\}$, and g_0 is the characteristic function of the empty set. Since $|\mathbb{R}| = |\mathbb{R} \setminus \omega|$ we may assume without loss of generality that \mathcal{G} is a family of closed subsets of $2^{\mathbb{R}\setminus\omega}$. For every $n \in \omega \setminus \{0\}$ put

$$B_n = \{ f \in 2^{\mathbb{R}} : (f|_{\omega} = g_n) \land (f|_{\mathbb{R}\setminus\omega} \in G_n) \}.$$

CLAIM. The set $H = \bigcup \{B_n : n \in \omega \setminus \{0\}\}$ is a closed subspace of $2^{\mathbb{R}}$.

Proof of claim. Fix $f \in H^c$. We consider the following cases:

(a) $f|_{\omega} = g_n$ for some $n \in \omega \setminus \{0\}$. Then $f|_{\mathbb{R}\setminus\omega} \in G_n^c$. Let $p \in \operatorname{Fn}(\mathbb{R}\setminus\omega, 2)$ be such that $f|_{\mathbb{R}\setminus\omega} \in [p]_{\mathbb{R}\setminus\omega} \subset G_n^c$. Clearly, [q], where $q = p \cup \{(n,1)\}$, is a neighborhood of f avoiding H.

(b) $f|_{\omega} \neq g_n$ for all $n \in \omega$. Since G is a closed subset of 2^{ω} it follows that there exists a $p \in \operatorname{Fn}(\omega, 2)$ such that $f|_{\omega} \in [p]_{\omega} \subset G^c$. Then $f \in [p] \subset H^c$. (c) $f|_{\omega} = g_0$. Since $\bigcap \mathcal{G} = \emptyset$ it follows that $f|_{\mathbb{R}\setminus\omega} \in G_n^c$ for some $n \in \omega$. Then $[\{(i,0): i \leq n\} \cup p]$, where $p \in \operatorname{Fn}(\mathbb{R} \setminus \omega, 2)$ and $f|_{\mathbb{R}\setminus\omega} \in [p]_{\mathbb{R}\setminus\omega} \subset G_n^c$, is clearly a neighborhood of f avoiding H.

Thus, H is closed in $2^{\mathbb{R}}$ as required.

Clearly, the projection of H to 2^{ω} is $G \setminus \{g_0\}$, which is not closed in 2^{ω} . This contradiction finishes the proof.

THEOREM 9. (ZF) Each of the following statements implies the one beneath it:

- (i) TPC $(2^{\mathbb{R}})$.
- (ii) $2^{\mathbb{R}}$ has no countably infinite closed relatively discrete subsets.
- (iii) Every countable clopen cover of $2^{\mathbb{R}}$ has a finite subcover. (Equivalently, every countable descending family of clopen subsets of $2^{\mathbb{R}}$ has a non-empty intersection).
- (iv) Every countable family of clopen subsets of $2^{\mathbb{R}}$ having the FIP can be extended to a clopen ultrafilter.

Proof. (i) \rightarrow (ii). This is straightforward.

(ii) \rightarrow (iii). Let $\mathcal{G} = \{G_n : n \in \omega\}$ be a descending family of clopen subsets of $2^{\mathbb{R}}$. Assume that $\bigcap \mathcal{G} = \emptyset$. Let $D = \{d_m : m \in \omega\}$ be a countable dense subset of $2^{\mathbb{R}}$. Using the fact that D is countable we fix a $d_{m_n} \in$ $(G_n \setminus G_{n+1}) \cap D$ for each $n \in \omega$. Since $\bigcap \mathcal{G} = \emptyset$, the set $K = \{d_{m_n} : n \in \omega\}$ is a closed relatively discrete subset of $2^{\mathbb{R}}$, contradicting (ii). Thus, $\bigcap \mathcal{G} \neq \emptyset$.

(iii) \rightarrow (iv). Let $\mathcal{F} = \{F_n : n \in \omega\}$ be a descending family of clopen subsets of $2^{\mathbb{R}}$. By our hypothesis there exists an $f \in \bigcap \mathcal{F}$. Clearly, $\mathcal{G} = \{G \subset 2^{\mathbb{R}} : G \text{ is clopen and } f \in G\}$ is a clopen ultrafilter of $2^{\mathbb{R}}$ which includes \mathcal{F} .

We next show that statements (iii) and (iv) of Theorem 9 are equivalent in ZF. First we need the following lemma. We denote by S the standard subbase of $2^{\mathbb{R}}$, that is, $S = \{[(t,i)] : (t,i) \in \mathbb{R} \times 2\} \cup \{\emptyset, 2^{\mathbb{R}}\}.$

LEMMA 10. (ZF)

- (i) Every cover \mathcal{U} of $2^{\mathbb{R}}$ consisting of standard subbasic open sets has a finite subcover \mathcal{V} with $|\mathcal{V}| \leq 2$.
- (ii) $2^{\mathbb{R}}$ has no free clopen ultrafilters.

Proof. (i) Let $\mathcal{U} \subset \mathcal{S}$ be a cover of $2^{\mathbb{R}}$. Suppose that $2^{\mathbb{R}} \notin \mathcal{U}$. For each $t \in \mathbb{R}$, put $\mathcal{U}_t = \{i \in \{0, 1\} : [(t, i)] \in \mathcal{U}\}$. We assert that there exists $t_0 \in \mathbb{R}$ such that $\mathcal{U}_{t_0} = \{0, 1\}$. Assume not; then for each $t \in \mathbb{R}$ consider the least element $f(t) \in \{0, 1\} \setminus \mathcal{U}_t$ and let $f = (f(t))_{t \in \mathbb{R}}$. It is evident that $f \notin \bigcup \mathcal{U}$, a contradiction. Clearly $\{[(t_0, 0)], [(t_0, 1)]\}$ is a finite subcover of \mathcal{U} .

(ii) Assume that $2^{\mathbb{R}}$ has a free clopen ultrafilter \mathcal{F} . Let $\mathcal{U} = \{C \in \mathcal{S} : C \notin \mathcal{F}\}$. Since $\bigcap \mathcal{F} = \emptyset$, it follows that \mathcal{U} is a cover of $2^{\mathbb{R}}$. Indeed, let $f \in 2^{\mathbb{R}}$. Then there exists an $F \in \mathcal{F}$ such that $f \notin F$. Let $O = [\{(t_1, i_1), \ldots, (t_n, i_n)\}]$ be a basic neighborhood of f such that $O \cap F = \emptyset$. Since $O \notin \mathcal{F}$ and \mathcal{F} is a filter, it follows that $[(t_j, i_j)] \notin \mathcal{F}$ for some $j \leq n$. Since $f \in [(t_j, i_j)]$ we infer that \mathcal{U} is a cover of $2^{\mathbb{R}}$ as asserted. By (i), let \mathcal{V} be a finite subcover of \mathcal{U} . Since \mathcal{F} is a clopen ultrafilter, $V^c \in \mathcal{F}$ for all $V \in \mathcal{V}$, and as \mathcal{F} is a filter it follows that $2^{\mathbb{R}} \neq \bigcup \mathcal{V}$, a contradiction.

THEOREM 11. The following statements are equivalent in ZF:

- (i) Every countable clopen cover of $2^{\mathbb{R}}$ has a finite subcover.
- (ii) Every countable family of clopen subsets of $2^{\mathbb{R}}$ having the FIP can be extended to a clopen ultrafilter.

Proof. (i) \rightarrow (ii). This is shown in Theorem 9.

(ii) \rightarrow (i). Let $\mathcal{U} = \{U_n : n \in \omega\}$ be a clopen cover of $2^{\mathbb{R}}$. Assume that \mathcal{U} has no finite subcover. Then $\mathcal{V} = \{U_n^c : n \in \omega\}$ is a family of clopen subsets of $2^{\mathbb{R}}$ having the FIP. By our hypothesis, \mathcal{V} can be extended to a clopen ultrafilter \mathcal{W} . By Lemma 10(ii) we have $\bigcap \mathcal{W} \neq \emptyset$. Hence \mathcal{U} is not a cover of $2^{\mathbb{R}}$, a contradiction.

THEOREM 12. The following statements are equivalent in ZF:

- (i) $\operatorname{TP}(2^{\mathbb{R}})$.
- (ii) Every closed filter of $2^{\mathbb{R}}$ can be extended to a closed ultrafilter.
- (iii) Every clopen filter of $2^{\mathbb{R}}$ can be extended to a clopen ultrafilter.
- (iv) Every open filter of $2^{\mathbb{R}}$ can be extended to an open ultrafilter.
- (v) Every regular-open filter of $2^{\mathbb{R}}$ can be extended to a regular-open ultrafilter.
- (vi) $2^{\mathbb{R}}$ is Lindelöf.
- (vii) Every open cover of $2^{\mathbb{R}}$ has a well-ordered subcover.

Proof. (i) \rightarrow (ii). Fix a filter \mathcal{C} of closed subsets of $2^{\mathbb{R}}$. Since $2^{\mathbb{R}}$ is compact it follows that $\bigcap \mathcal{C} \neq \emptyset$. Fix $g \in \bigcap \mathcal{C}$. Clearly, $\mathcal{F} = \{F \subset 2^{\mathbb{R}} : F \text{ is closed and } g \in F\}$ is a closed ultrafilter of $2^{\mathbb{R}}$ including \mathcal{C} .

(ii) \rightarrow (iii). Let \mathcal{G} be a family of clopen subsets of $2^{\mathbb{R}}$ having the FIP. By hypothesis, let \mathcal{F} be a closed ultrafilter of $2^{\mathbb{R}}$ which includes \mathcal{G} . Clearly, $\mathcal{H} = \{F \in \mathcal{F} : F \text{ is clopen}\}$ is a clopen ultrafilter extending \mathcal{G} .

(iii) \rightarrow (i). This can be proved as in (ii) \rightarrow (i) of Theorem 11 using arbitrary basic open covers.

 $(i) \to (v)$. Let \mathcal{R} be the complete Boolean algebra of all regular-open subsets of $2^{\mathbb{R}}$. Let $\mathcal{D} = \{d_n : n \in \omega\}$ be a countable dense subset of $2^{\mathbb{R}}$ (see Theorem 2). It is not hard to verify that the function $f : \mathcal{R} \to \mathcal{P}(\mathcal{D})$, $f(O) = O \cap \mathcal{D}$ for all $O \in \mathcal{R}$, is one-to-one. Therefore, $|\mathcal{R}| \leq |\mathcal{P}(\mathcal{D})| = |\mathbb{R}|$. Since clopen sets are regular-open and the standard clopen base $\mathcal{B}^{\mathbb{R}}$ of $2^{\mathbb{R}}$ has size $|\mathbb{R}|$, it follows from Theorem 5 that $|\mathcal{R}| = |\mathbb{R}|$. The conclusion now follows from Theorem 1.

 $(v) \rightarrow (iv)$. Fix a filter \mathcal{G} of open subsets of $2^{\mathbb{R}}$ and let $\mathcal{H} \subset \mathcal{R}$ be the filter generated by the family $\{int(\overline{G}) : G \in \mathcal{G}\}$, where int(A) denotes the interior of the set A. By hypothesis there exists an ultrafilter \mathcal{W} of \mathcal{R} which includes \mathcal{H} . Put

 $\mathcal{F} = \{ O \subset 2^{\mathbb{R}} : O \text{ is open and } \operatorname{int}(\overline{O}) \in \mathcal{W} \}.$

In order to complete the proof of the implication, it suffices to show:

CLAIM. $\mathcal{G} \subset \mathcal{F}$ and \mathcal{F} is an open ultrafilter of $2^{\mathbb{R}}$.

Proof of Claim. The first assertion is straightforward. We next show that \mathcal{F} is filter. Fix $O, Q \in \mathcal{F}$. Then $\operatorname{int}(\overline{O}) \cap \operatorname{int}(\overline{Q}) \in \mathcal{W}$. We show that

(*)
$$\overline{\operatorname{int}(\overline{O}) \cap \operatorname{int}(\overline{Q})} = \overline{O \cap Q}.$$

The \supseteq inclusion is clear. Conversely, fix $x \in \operatorname{int}(\overline{O}) \cap \operatorname{int}(\overline{Q})$. Assume that $x \notin \overline{O \cap Q}$. Fix a neighborhood V_x of x such that $V_x \cap (O \cap Q) = \emptyset$ and let $W = V_x \cap (\operatorname{int}(\overline{O}) \cap \operatorname{int}(\overline{Q}))$. Clearly, $\emptyset \neq W \subset \overline{O} \cap \overline{Q}$. Fix $y \in W$ and let V_y be a basic neighborhood of y such that $V_y \subset W$. Then $P = V_y \cap O \neq \emptyset$. Fix now $z \in P$ and let V_z be a basic neighborhood of z such that $V_z \subset P$. Then $V_z \subset W$ (since $P \subset W$) and $S = V_z \cap Q \neq \emptyset$. It follows that $S \subset V_x$ satisfies $S \cap (O \cap Q) \neq \emptyset$, contradicting $V_x \cap (O \cap Q) = \emptyset$; this proves (*). Consequently, $\operatorname{int}(\overline{O}) \cap \operatorname{int}(\overline{Q}) = \operatorname{int}(\operatorname{int}(\overline{O}) \cap \operatorname{int}(\overline{Q})) = \operatorname{int}(\overline{O \cap Q})$, meaning that $O \cap Q \in \mathcal{F}$.

Now fix $O \in \mathcal{F}$ and let Q be an open set such that $O \subset Q$. Since $\operatorname{int}(\overline{O}) \subset \operatorname{int}(\overline{Q})$ and $\operatorname{int}(\overline{O}) \in \mathcal{W}$, it follows that $\operatorname{int}(\overline{Q}) \in \mathcal{W}$ and consequently $Q \in \mathcal{F}$.

We next show that \mathcal{F} is not contained properly in any other open filter. Let H be an open set of $2^{\mathbb{R}}$ such that $H \cap O \neq \emptyset$ for all $O \in \mathcal{F}$. It can be readily verified that $\operatorname{int}(\overline{H}) \cap Q \neq \emptyset$ for all $Q \in \mathcal{W}$, and since \mathcal{W} is not contained properly in any other regular-open ultrafilter, it follows that $\operatorname{int}(\overline{H}) \in \mathcal{W}$. Hence, $H \in \mathcal{F}$ and \mathcal{F} is an open ultrafilter, finishing the proof of the claim and of the implication.

 $(iv) \rightarrow (iii)$. This can be proved similarly to $(ii) \rightarrow (iii)$.

 $(i) \rightarrow (vi) \rightarrow (vii)$. These are straightforward.

 $(\text{vii}) \rightarrow (\text{i})$. Fix a cover $\mathcal{U} \subset \mathcal{B}^{\mathbb{R}}$ of $2^{\mathbb{R}}$. By (vii) we may assume that \mathcal{U} is well-ordered. Clearly, $A = \bigcup \{\text{Dom}(p) : [p] \in \mathcal{U}\}$ is well-ordered (being a well-ordered union of finite subsets of \mathbb{R}). By Theorem 4, 2^A is compact. It is easy to see that $\mathcal{U}_A = \{[p]_A : [p] \in \mathcal{U}\}$ is an open cover of 2^A . Let $\mathcal{W}_A = \{[p_i]_A : i \leq n\}$ be a finite subcover. Clearly $\mathcal{W} = \{[p_i] : i \leq n\}$ is a finite subcover of \mathcal{U} , and so $2^{\mathbb{R}}$ is compact as required.

REMARK 13. 1. Note that the complete Boolean algebra $\operatorname{RO}(2^{\mathbb{R}})$ of all regular-open subsets of $2^{\mathbb{R}}$ does not coincide with the Boolean algebra $\operatorname{Clop}(2^{\mathbb{R}})$ of all clopen subsets of $2^{\mathbb{R}}$. Otherwise, $2^{\mathbb{R}}$ would be extremally disconnected (i.e., the closure of every open set would be open), which is not true. Indeed, let

$$V = \{ f \in 2^{\mathbb{R}} : f^{-1}(0) \cap \omega \neq \emptyset \text{ and if } n_f \text{ is the least natural number} \\ \text{ such that } f(n_f) = 0, \text{ then } f(n_f + 1) = 1 \}.$$

It is straightforward to verify that V is an open set of $2^{\mathbb{R}}$. However, $\overline{V} = V \cup \{f \in 2^{\mathbb{R}} : (\forall n \in \omega)(f(n) = 1)\}$ and the latter set is not open in $2^{\mathbb{R}}$.

2. Clearly, one can prove in ZF that $2^{\mathbb{R}}$ has closed as well as clopen ultrafilters. Indeed, for any $f \in 2^{\mathbb{R}}$, $\mathcal{F} = \{G \subset 2^{\mathbb{R}} : G \text{ closed (resp., clopen)} \}$ and $f \in G\}$ is a closed (resp., clopen) ultrafilter of $2^{\mathbb{R}}$. If Q is a closed (resp., clopen) subset of $2^{\mathbb{R}}$ meeting non-trivially each member of \mathcal{F} then $f \in Q$. If not then for some clopen neighborhood V_f of f we have $V_f \cap Q = \emptyset$, which is a contradiction. Thus, $Q \in \mathcal{F}$ and \mathcal{F} is a closed (resp., clopen) ultrafilter of $2^{\mathbb{R}}$. However, we cannot prove in ZF that $2^{\mathbb{R}}$ has an open ultrafilter. The reason, as one can easily verify, is that in ZF an open ultrafilter \mathcal{F} of $2^{\mathbb{R}}$ is always free. (If $\bigcap \{\overline{F} : F \in \mathcal{F}\} \neq \emptyset$, then $\bigcap \{\overline{F} : F \in \mathcal{F}\} = \{x\}$. Since $\{x\}^c \in \mathcal{F}$, we see that $\bigcap \mathcal{F} = \emptyset$.)

We leave the proofs of the next two theorems as an easy exercise for the reader.

THEOREM 14. The following statements are equivalent in ZF:

- (i) TPC($2^{\mathbb{R}}$).
- (ii) Every countable family of closed subsets of $2^{\mathbb{R}}$ having the FIP can be extended to a closed ultrafilter.

THEOREM 15. The following statements are equivalent in ZF:

- (i) For every set X, the Tychonoff product 2^X is compact.
- (ii) For every set X, every closed filter of 2^X can be extended to a closed ultrafilter.
- (iii) For every set X, every clopen filter of 2^X can be extended to a clopen ultrafilter.
- (iv) For every set X, every open filter of 2^X can be extended to an open ultrafilter.
- (v) For every set X, every regular-open filter of 2^X can be extended to a regular-open ultrafilter.
- (vi) BPI.
- (vii) For every set X, 2^X is Lindelöf + CAC_{fin} (= AC for countable families of non-empty finite sets).

(viii) For every set X, every open cover of 2^X has a well-ordered subcover $+ \operatorname{AC}(WO, < \aleph_0)$ (= AC for well-ordered families of non-empty finite sets).

In view of Theorem 1 we find that $TP(2^{\mathbb{R}})$ implies that every Boolean algebra of size $\leq |\mathbb{R}|$ has an ultrafilter. In the following theorem we give a characterization of the latter statement.

THEOREM 16. The following statements are equivalent in ZF:

- (i) Every Boolean algebra of size $\leq |\mathbb{R}|$ has an ultrafilter.
- (ii) Every family B of regular-open (respectively, clopen, closed, open) subsets of 2^ℝ which is closed under finite intersections contains a B-ultrafilter.

Proof. (i) \rightarrow (ii). Fix a non-empty family \mathcal{B} of regular-open subsets of $2^{\mathbb{R}}$ closed under finite intersections. Let B be the subalgebra of the Boolean algebra of all regular-open subsets of $2^{\mathbb{R}}$ which is generated by \mathcal{B} . By hypothesis B has an ultrafilter \mathcal{F} . Clearly, $\mathcal{F} \cap \mathcal{B}$ is a \mathcal{B} -ultrafilter.

(ii) \rightarrow (i). Let $(\mathcal{B}, \oplus, \odot)$ be a Boolean algebra of size $\leq |\mathbb{R}|$. We shall show that there exists a non-trivial homomorphism $g: \mathcal{B} \rightarrow 2$. Then $g^{-1}(1)$ will be the required ultrafilter. Let $\mathcal{A} = \{A_i : i \in I \subset \mathbb{R}\}$ be the set of all finite subalgebras of \mathcal{B} . Without loss of generality we may assume that $I = \mathbb{R}$. Identify \mathcal{B} and \mathcal{A} with \mathbb{R} and let

$$\mathcal{G} = \{ [p] : \exists K \in [\mathbb{R}]^{<\omega}, \operatorname{Dom}(p) = \bigcup \{ \{i\} \times A_i : i \in K \}, \\ \forall i \in K, \ p(i, \cdot) : A_i \to 2 = \{0, 1\} \text{ is a non-trivial homomorphism,} \\ \text{and } \forall i, j \in K, \text{ if } A_i \subset A_j \text{ then } p(i, \cdot) \subset p(j, \cdot) \} \cup \{ \emptyset \}.$$

Clearly, \mathcal{G} is a family of clopen subsets of $2^{\mathbb{R} \times \mathbb{R}}$ closed under finite intersections. By hypothesis, let \mathcal{F} be a \mathcal{G} -ultrafilter.

CLAIM 1. For every $i \in \mathbb{R}$ there is a $[p] \in \mathcal{F}$ with $\{i\} \times A_i \subset \text{Dom}(p)$.

Proof of Claim 1. Assume that for some $i \in \mathbb{R}$ and every $[p] \in \mathcal{F}$, $\{i\} \times A_i \not\subset \text{Dom}(p)$. Then for every non-trivial homomorphism $q: A_i \to 2$ $(A_i \text{ is a finite subalgebra and therefore such a <math>q$ exists), $[\{i\} \times q] \in \mathcal{G}$ meets non-trivially each member of \mathcal{F} . Since \mathcal{F} is maximal it follows that $[\{i\} \times q] \in \mathcal{F}$. This is a contradiction.

Define $g: \mathcal{B} \to 2$ by setting g(b) = p((i, b)), where $i \in \mathbb{R}$ is such that A_i is the subalgebra of \mathcal{B} generated by $\{b\}$ and $[p] \in \mathcal{F}$ is such that $\{i\} \times A_i \subset \text{Dom}(p)$.

CLAIM 2. g is well-defined.

Proof of Claim 2. Let [p] and [q] in \mathcal{F} be such that $\{i\} \times A_i$ is included in both Dom(p) and Dom(q). Since \mathcal{F} is a filter, p and q are compatible, hence p((i,b)) = q((i,b)). Thus, g is well-defined as required. Since for every $a, b \in \mathcal{B}$, the Boolean subalgebra $\mathcal{B}(a, b)$ generated by a and b is finite, it follows that $\mathcal{B}(a, b) = A_i$ for some $i \in \mathbb{R}$. Fix $[p] \in \mathcal{F}$ with $\{i\} \times A_i \subset \text{Dom}(p)$. Since $p(i, \cdot) : A_i \to 2$ is a homomorphism, it follows that $g(a \oplus b) = p(i, a \oplus b) = p(i, a) + p(i, b) = g(a) + g(b)$ and $g(a \odot b) = p(i, a \odot b) = p(i, a)p(i, b) = g(a)g(b)$. Thus, $g : \mathcal{B} \to 2$ is a (non-trivial) homomorphism as required.

4. Questions

- 1. Does $\text{TPC}(2^{\mathbb{R}})$ imply $\text{TP}(2^{\mathbb{R}})$ in ZF?
- 2. Is $\text{TPC}(2^{\mathbb{R}})$ provable in $\text{ZF} + \text{CAC}(\mathbb{R})$?

References

- P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., 1998.
- [2] T. Jech, The Axiom of Choice, North-Holland, Amsterdam, 1973.
- K. Keremedis, The compactness of 2^ℝ and some weak forms of the axiom of choice, Math. Logic Quart. 46 (2000), 569–571.
- [4] —, Tychonoff products of two-element sets and some weakenings of the Boolean prime ideal theorem, Bull. Polish Acad. Sci. Math. 53 (2005), 349–359.
- [5] S. Willard, General Topology, Addison-Wesley, 1968.

K. Keremedis and E. Felouzis	E. Tachtsis
Department of Mathematics	Department of Statistics
University of the Aegean	and Actuarial-Financial Mathematics
Karlovassi, 83200, Samos, Greece	University of the Aegean
E-mail: kker@aegean.gr	Karlovassi, 83200, Samos, Greece
${ m felouzis@aegean.gr}$	E-mail: $tah@aegean.gr$

Received September 10, 2007

(7614)