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Summary. In the framework of ZF (Zermelo�Fraenkel set theory without the Axiom ofChoie) we provide topologial and Boolean-algebrai haraterizations of the statements�2R is ountably ompat� and �2R is ompat�.1. Notation and terminology1. Let X be a non-empty set. 2X will denote the Tyhono� produt ofthe disrete spae 2 = {0, 1}. Likewise, BX = {[p] : p ∈ Fn(X, 2)},where Fn(X, 2) is the set of all �nite partial funtions from X into 2and
[p] = {f ∈ 2X : p ⊂ f},will denote the standard lopen (= simultaneously losed and open)base for the topology on 2X . If A ⊂ X, and p ∈ Fn(A, 2), then

[p]A = {f ∈ 2A : p ⊂ f}. If Y ⊂ 2X , then BX |Y = {O∩Y : O ∈ BX}.A non-empty olletion H ⊂ P(X)\{∅} has the �nite intersetionproperty , FIP for abbreviation, if ∀Q ∈ [H]<ω,
⋂

Q 6= ∅.2. Let (X, T ) be a topologial spae.(a) X is said to be ompat if every open over of X has a �nitesubover. Equivalently, X is ompat i� for every family G oflosed subsets of X having the FIP, ⋂

G 6= ∅.2000 Mathematis Subjet Classi�ation: 03E25, 54A35, 54B10, 54D20, 54D30.Key words and phrases: axiom of hoie, weak axioms of hoie, Tyhono� produts,ompat spaes, ountably ompat spaes, Lindelöf spaes, Boolean algebras, �lters, ul-tra�lters. [293℄ © Instytut Matematyzny PAN, 2007
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(b) X is said to be ountably ompat if every ountable open overof X has a �nite subover. Equivalently, X is ountably ompati� for every ountable family G of losed subsets of X having theFIP, ⋂

G 6= ∅.() X is said to be Lindelöf if every open over of X has a ountablesubover.(d) Let E ⊂P(X)\{∅}. A non-empty olletion F ⊂ E is an E-�lter i�(i) if F1, F2 ∈ F then F1 ∩ F2 ∈ F ,(ii) if F ∈ F , F ′ ∈ E and F ⊂ F ′, then F ′ ∈ F .In partiular, if E is the olletion of all non-empty losed (respe-tively, lopen, open) sets of X, then we say that F is a losed (re-spetively, lopen, open) �lter. If E = P(X) \ {∅} then an E-�lteris alled simply a �lter on X. An E-�lter F is free if ⋂

F = ∅.An E-�lter F is an E-ultra�lter if for every E-�lter G with F ⊂ Gwe have F = G.3. If A and B are any sets, then |A| ≤ |B| means that there exists aone-to-one funtion f : A → B, and |A| = |B|means that there existsa bijetion f : A → B.4. AC(R) (Form 79 in [1℄): Every family of non-empty subsets of R hasa hoie funtion.5. CAC(R) (Form 94 in [1℄): AC(R) restrited to ountable families.6. TP(2R): The Tyhono� produt 2R is ompat.7. TPC(2R): The Tyhono� produt 2R is ountably ompat.8. PrX(2R): If G is a losed subset of 2R then {g|X : g ∈ G} is a losedsubspae of 2X .9. Pr(2R): For all X ⊂ R, PrX(2R).10. BPI(ω) (Form 225 in [1℄): Every proper �lter of P(ω) an be extendedto an ultra�lter.2. Introdution and some preliminary results. The Tyhono�produt of ℵ0 opies of the two-element set 2 = {0, 1} with the disretetopology, i.e., the Cantor ube Kω = 2ℵ0 , is a universal spae in the sensethat every zero-dimensional, separable, metrizable spae embeds into it. Like-wise, the Cantor ube KR = 2R of weight R is a universal spae for the lass
S of all zero-dimensional spaes of weight ≤ |R|. It is well-known that Kω inZF, and KR in ZFC, are ompat spaes. In ZF, however, KR need not beompat. Indeed, in [4℄ we have shown:Theorem 1 ([4℄). The following statements are equivalent in ZF:

(i) In a Boolean algebra B of size ≤ |R| every �lter an be extended toan ultra�lter.
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(ii) BPI(ω).
(iii) For every separable ompat T2 spae (X, T ) the produt XR is om-pat.
(iv) The produt [0, 1]R is ompat.
(v) Tyhono� produts of �nite subspaes of R are ompat.
(vi) KR is ompat.Sine in Feferman's model (Model M2 in [1℄), ω has no free ultra�lters, itfollows that �KR is ompat� fails to hold in M2, and onsequently it is nota theorem of ZF. At this point one may ask whether the weaker statement�KR is ountably ompat� is a theorem of ZF. The answer is again no(Theorem 7).In this paper we shall ontinue the researh of [4℄ and �nd equivalentonditions under whih �KR is ompat� or �KR is ountably ompat�.Theorem 2 ([5, Theorem 16.4()℄). A produt of Hausdor� spaes withat least two points eah is separable i� eah fator is separable and there are

≤ |R| fators. In partiular , if (X, T ) is a separable Hausdor� spae then,in ZF, the produt XR is separable.Proposition 3. (ZF) If |X| = |Y |, then the Tyhono� produts 2Xand 2Y are homeomorphi.Proof. Let h : X → Y be a bijetion. Then H : 2X → 2Y given by
H(f)(x) = f(h−1(x)) is easily seen to be a bijetion. Sine H([(x, i)]) =
[(h(x), i)] for all i ∈ 2 and x ∈ X, it follows that H maps a basi open set of
2X to a basi of set of 2Y . Thus, 2X and 2Y are homeomorphi as required.Theorem 4 ([3℄). (ZF) For any well-ordered ardinal ℵ, the Tyhono�produt 2ℵ is ompat.Theorem 5 ([2℄, Cantor�Bernstein theorem). (ZF) If |A| ≤ |B| and
|B| ≤ |A|, then |A| = |B|.3. Main resultsTheorem 6. In ZF, TPC(2R) implies that every family A={An : n∈ω}of non-empty �nite subsets of P(R) suh that ⋃

A is disjoint , has a hoiefuntion.Proof. This an be proved just as Theorem 2 in [3℄.Theorem 7. TPC(2R) is not provable in ZF.Proof. In the seond Cohen model (modelM7 in [1℄) there exists a ount-able family A = {An : n ∈ ω} of two-element subsets of P(R) whih admitsno hoie funtion in the model. Therefore, we may assume without lossof generality that for all n ∈ ω, if An = {X, Y }, then X \ Y 6= ∅ and
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Y \ X 6= ∅. Sine |R × ω| = |R|, we may view the family B = {Bn : n ∈ ω},where

Bn =
{((

⋃

An

)

\ X
)

× {n} : X ∈ An

}

,as a family of two-element subsets of P(R) suh that ⋃

B is disjoint. It fol-lows that B has no hoie funtion in M7, hene by Theorem 6, TPC(2R)fails to hold in M7.Clearly, for every t ∈ R, the anonial projetion of 2R on the t-th oordi-nate is a losed map. However, the statement PrX(2R) need not be provablein ZF. In partiular, we show in Theorem 8 below that TPC(2R) and Prω(2R)are equivalent.Theorem 8. The following statements are equivalent in ZF:
(i) TPC(2R).
(ii) Let G be a losed subset of 2R. Then every ountable family F ⊂

BR|G with the FIP has a non-empty intersetion.
(iii) For every ountably in�nite subset X of R, PrX(2R.)Proof. (i)→(ii). This is straightforward.(ii)→(iii). Let X be a ountable subset of R and let G be a losed subsetof 2R. Without loss of generality assume that X = ω. Suppose that Gω =

{g|ω : g ∈ G} is not losed in 2ω, so let f ∈ Gω \ Gω. For every n ∈ ω \ {0},let fn = f |{0,1,...,n−1}. We set Vn = [fn] ∩ G and F = {Vn : n ∈ ω \ {0}}.Clearly Vn 6= ∅ for all n ∈ ω \ {0} and F has the FIP. By hypothesis thereexists g ∈
⋂

F . But then f = g|ω ∈ Gω, whih is a ontradition.(iii)→(i). Suppose that 2R is not ountably ompat and let G = {Gn :
n ∈ ω \ {0}} be a desending family of losed subsets of 2R having emptyintersetion. It is straightforward to verify that G = {gn ∈ 2ω : n ∈ ω} isa losed subset of 2ω, where for every n ∈ ω \ {0}, gn is the harateristifuntion of An = {n}, and g0 is the harateristi funtion of the empty set.Sine |R| = |R \ ω| we may assume without loss of generality that G is afamily of losed subsets of 2R\ω. For every n ∈ ω \ {0} put

Bn = {f ∈ 2R : (f |ω = gn) ∧ (f |R\ω ∈ Gn)}.

Claim. The set H =
⋃

{Bn : n ∈ ω \ {0}} is a losed subspae of 2R.Proof of laim. Fix f ∈ Hc. We onsider the following ases:(a) f |ω = gn for some n ∈ ω\{0}. Then f |R\ω ∈ Gc
n. Let p ∈ Fn(R\ω, 2)be suh that f |R\ω ∈ [p]R\ω ⊂ Gc

n. Clearly, [q], where q = p ∪ {(n, 1)}, is aneighborhood of f avoiding H.(b) f |ω 6= gn for all n ∈ ω. Sine G is a losed subset of 2ω it follows thatthere exists a p ∈ Fn(ω, 2) suh that f |ω ∈ [p]ω ⊂ Gc. Then f ∈ [p] ⊂ Hc.
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() f |ω = g0. Sine ⋂

G = ∅ it follows that f |R\ω ∈ Gc
n for some n ∈ ω.Then [{(i, 0) : i ≤ n} ∪ p], where p ∈ Fn(R \ ω, 2) and f |R\ω ∈ [p]R\ω ⊂ Gc

n,is learly a neighborhood of f avoiding H.Thus, H is losed in 2R as required.Clearly, the projetion of H to 2ω is G \ {g0}, whih is not losed in 2ω.This ontradition �nishes the proof.Theorem 9. (ZF) Eah of the following statements implies the one be-neath it :
(i) TPC(2R).
(ii) 2R has no ountably in�nite losed relatively disrete subsets.
(iii) Every ountable lopen over of 2R has a �nite subover. (Equiva-lently , every ountable desending family of lopen subsets of 2R hasa non-empty intersetion).
(iv) Every ountable family of lopen subsets of 2R having the FIP anbe extended to a lopen ultra�lter.Proof. (i)→(ii). This is straightforward.(ii)→(iii). Let G = {Gn : n ∈ ω} be a desending family of lopensubsets of 2R. Assume that ⋂

G = ∅. Let D = {dm : m ∈ ω} be a ountabledense subset of 2R. Using the fat that D is ountable we �x a dmn
∈

(Gn \ Gn+1) ∩ D for eah n ∈ ω. Sine ⋂

G = ∅, the set K = {dmn
: n ∈ ω}is a losed relatively disrete subset of 2R, ontraditing (ii). Thus, ⋂

G 6= ∅.(iii)→(iv). Let F = {Fn : n ∈ ω} be a desending family of lopensubsets of 2R. By our hypothesis there exists an f ∈
⋂

F . Clearly, G =
{G ⊂ 2R : G is lopen and f ∈ G} is a lopen ultra�lter of 2R whih in-ludes F .We next show that statements (iii) and (iv) of Theorem 9 are equivalentin ZF. First we need the following lemma. We denote by S the standardsubbase of 2R, that is, S = {[(t, i)] : (t, i) ∈ R × 2} ∪ {∅, 2R}.Lemma 10. (ZF)

(i) Every over U of 2R onsisting of standard subbasi open sets has a�nite subover V with |V| ≤ 2.
(ii) 2R has no free lopen ultra�lters.Proof. (i) Let U ⊂ S be a over of 2R. Suppose that 2R 6∈ U . For eah

t ∈ R, put Ut = {i ∈ {0, 1} : [(t, i)] ∈ U}. We assert that there exists t0 ∈ Rsuh that Ut0 = {0, 1}. Assume not; then for eah t ∈ R onsider the leastelement f(t) ∈ {0, 1} \ Ut and let f = (f(t))t∈R. It is evident that f 6∈
⋃

U ,a ontradition. Clearly {[(t0, 0)], [(t0, 1)]} is a �nite subover of U .
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(ii) Assume that 2R has a free lopen ultra�lter F . Let U = {C ∈ S :

C /∈ F}. Sine ⋂

F = ∅, it follows that U is a over of 2R. Indeed, let f ∈ 2R.Then there exists an F ∈ F suh that f /∈ F . Let O = [{(t1, i1), . . . , (tn, in)}]be a basi neighborhood of f suh that O ∩ F = ∅. Sine O /∈ F and F is a�lter, it follows that [(tj, ij)] 6∈ F for some j ≤ n. Sine f ∈ [(tj, ij)] we inferthat U is a over of 2R as asserted. By (i), let V be a �nite subover of U .Sine F is a lopen ultra�lter, V c ∈ F for all V ∈ V, and as F is a �lter itfollows that 2R 6=
⋃

V, a ontradition.Theorem 11. The following statements are equivalent in ZF:
(i) Every ountable lopen over of 2R has a �nite subover.
(ii) Every ountable family of lopen subsets of 2R having the FIP anbe extended to a lopen ultra�lter.Proof. (i)→(ii). This is shown in Theorem 9.(ii)→(i). Let U = {Un : n ∈ ω} be a lopen over of 2R. Assume that Uhas no �nite subover. Then V = {U c

n : n ∈ ω} is a family of lopen subsetsof 2R having the FIP. By our hypothesis, V an be extended to a lopenultra�lter W . By Lemma 10(ii) we have ⋂

W 6= ∅. Hene U is not a overof 2R, a ontradition.Theorem 12. The following statements are equivalent in ZF:
(i) TP(2R).
(ii) Every losed �lter of 2R an be extended to a losed ultra�lter.
(iii) Every lopen �lter of 2R an be extended to a lopen ultra�lter.
(iv) Every open �lter of 2R an be extended to an open ultra�lter.
(v) Every regular-open �lter of 2R an be extended to a regular-openultra�lter.
(vi) 2R is Lindelöf.
(vii) Every open over of 2R has a well-ordered subover.Proof. (i)→(ii). Fix a �lter C of losed subsets of 2R. Sine 2R is ompatit follows that ⋂

C 6= ∅. Fix g ∈
⋂

C. Clearly, F = {F ⊂ 2R : F is losed and
g ∈ F} is a losed ultra�lter of 2R inluding C.(ii)→(iii). Let G be a family of lopen subsets of 2R having the FIP.By hypothesis, let F be a losed ultra�lter of 2R whih inludes G. Clearly,
H = {F ∈ F : F is lopen} is a lopen ultra�lter extending G.(iii)→(i). This an be proved as in (ii)→(i) of Theorem 11 using arbitrarybasi open overs.(i)→(v). Let R be the omplete Boolean algebra of all regular-open sub-sets of 2R. Let D = {dn : n ∈ ω} be a ountable dense subset of 2R (seeTheorem 2). It is not hard to verify that the funtion f : R → P(D),
f(O) = O ∩ D for all O ∈ R, is one-to-one. Therefore, |R| ≤ |P(D)| = |R|.
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Sine lopen sets are regular-open and the standard lopen base BR of 2Rhas size |R|, it follows from Theorem 5 that |R| = |R|. The onlusion nowfollows from Theorem 1.(v)→(iv). Fix a �lter G of open subsets of 2R and let H ⊂ R be the �ltergenerated by the family {int(G) : G ∈ G}, where int(A) denotes the interiorof the set A. By hypothesis there exists an ultra�lter W of R whih inludes
H. Put

F = {O ⊂ 2R : O is open and int(O) ∈ W}.In order to omplete the proof of the impliation, it su�es to show:
Claim. G ⊂ F and F is an open ultra�lter of 2R.Proof of Claim. The �rst assertion is straightforward. We next show that

F is �lter. Fix O, Q ∈ F . Then int(O) ∩ int(Q) ∈ W . We show that
(∗) int(O) ∩ int(Q) = O ∩ Q.The ⊇ inlusion is lear. Conversely, �x x ∈ int(O) ∩ int(Q). Assume that
x /∈ O ∩ Q. Fix a neighborhood Vx of x suh that Vx ∩ (O ∩ Q) = ∅ and let
W = Vx ∩ (int(O) ∩ int(Q)). Clearly, ∅ 6= W ⊂ O ∩ Q. Fix y ∈ W and let
Vy be a basi neighborhood of y suh that Vy ⊂ W . Then P = Vy ∩ O 6= ∅.Fix now z ∈ P and let Vz be a basi neighborhood of z suh that Vz ⊂ P .Then Vz ⊂ W (sine P ⊂ W ) and S = Vz ∩ Q 6= ∅. It follows that S ⊂ Vxsatis�es S ∩ (O ∩ Q) 6= ∅, ontraditing Vx ∩ (O ∩ Q) = ∅; this proves (∗).Consequently, int(O)∩ int(Q) = int(int(O) ∩ int(Q)) = int(O ∩ Q), meaningthat O ∩ Q ∈ F .Now �x O ∈ F and let Q be an open set suh that O ⊂ Q. Sine int(O) ⊂
int(Q) and int(O) ∈ W , it follows that int(Q) ∈ W and onsequently Q ∈ F .We next show that F is not ontained properly in any other open �lter.Let H be an open set of 2R suh that H ∩ O 6= ∅ for all O ∈ F . It anbe readily veri�ed that int(H) ∩ Q 6= ∅ for all Q ∈ W , and sine W isnot ontained properly in any other regular-open ultra�lter, it follows that
int(H) ∈ W . Hene, H ∈ F and F is an open ultra�lter, �nishing the proofof the laim and of the impliation.(iv)→(iii). This an be proved similarly to (ii)→(iii).(i)→(vi)→(vii). These are straightforward.(vii)→(i). Fix a over U ⊂ BR of 2R. By (vii) we may assume that Uis well-ordered. Clearly, A =

⋃

{Dom(p) : [p] ∈ U} is well-ordered (beinga well-ordered union of �nite subsets of R). By Theorem 4, 2A is ompat.It is easy to see that UA = {[p]A : [p] ∈ U} is an open over of 2A. Let
WA = {[pi]A : i ≤ n} be a �nite subover. Clearly W = {[pi] : i ≤ n} is a�nite subover of U , and so 2R is ompat as required.
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Remark 13. 1. Note that the omplete Boolean algebra RO(2R) ofall regular-open subsets of 2R does not oinide with the Boolean algebra

Clop(2R) of all lopen subsets of 2R. Otherwise, 2R would be extremally dis-onneted (i.e., the losure of every open set would be open), whih is nottrue. Indeed, let
V = {f ∈ 2R : f−1(0) ∩ ω 6= ∅ and if nf is the least natural numbersuh that f(nf ) = 0, then f(nf + 1) = 1}.It is straightforward to verify that V is an open set of 2R. However, V =

V ∪ {f ∈ 2R : (∀n ∈ ω)(f(n) = 1)} and the latter set is not open in 2R.2. Clearly, one an prove in ZF that 2R has losed as well as lopenultra�lters. Indeed, for any f ∈ 2R, F = {G ⊂ 2R : G losed (resp., lopen)and f ∈ G} is a losed (resp., lopen) ultra�lter of 2R. If Q is a losed (resp.,lopen) subset of 2R meeting non-trivially eah member of F then f ∈ Q. Ifnot then for some lopen neighborhood Vf of f we have Vf ∩ Q = ∅, whihis a ontradition. Thus, Q ∈ F and F is a losed (resp., lopen) ultra�lterof 2R. However, we annot prove in ZF that 2R has an open ultra�lter. Thereason, as one an easily verify, is that in ZF an open ultra�lter F of 2Ris always free. (If ⋂

{F : F ∈ F} 6= ∅, then ⋂

{F : F ∈ F} = {x}. Sine
{x}c ∈ F , we see that ⋂

F = ∅.)We leave the proofs of the next two theorems as an easy exerise for thereader.Theorem 14. The following statements are equivalent in ZF:
(i) TPC(2R).
(ii) Every ountable family of losed subsets of 2R having the FIP an beextended to a losed ultra�lter.Theorem 15. The following statements are equivalent in ZF:

(i) For every set X, the Tyhono� produt 2X is ompat.
(ii) For every set X, every losed �lter of 2X an be extended to alosed ultra�lter.
(iii) For every set X, every lopen �lter of 2X an be extended to alopen ultra�lter.
(iv) For every set X, every open �lter of 2X an be extended to an openultra�lter.
(v) For every set X, every regular-open �lter of 2X an be extended toa regular-open ultra�lter.
(vi) BPI.
(vii) For every set X, 2X is Lindelöf + CACfin (= AC for ountablefamilies of non-empty �nite sets).
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(viii) For every set X, every open over of 2X has a well-ordered subover
+ AC(WO, < ℵ0) (= AC for well-ordered families of non-empty�nite sets).In view of Theorem 1 we �nd that TP(2R) implies that every Booleanalgebra of size ≤ |R| has an ultra�lter. In the following theorem we give aharaterization of the latter statement.Theorem 16. The following statements are equivalent in ZF:

(i) Every Boolean algebra of size ≤ |R| has an ultra�lter.
(ii) Every family B of regular-open (respetively , lopen, losed , open)subsets of 2R whih is losed under �nite intersetions ontains a

B-ultra�lter.Proof. (i)→(ii). Fix a non-empty family B of regular-open subsets of 2Rlosed under �nite intersetions. Let B be the subalgebra of the Boolean alge-bra of all regular-open subsets of 2R whih is generated by B. By hypothesis
B has an ultra�lter F . Clearly, F ∩ B is a B-ultra�lter.(ii)→(i). Let (B,⊕,⊙) be a Boolean algebra of size ≤ |R|. We shall showthat there exists a non-trivial homomorphism g : B → 2. Then g−1(1) willbe the required ultra�lter. Let A = {Ai : i ∈ I ⊂ R} be the set of all �nitesubalgebras of B. Without loss of generality we may assume that I = R.Identify B and A with R and let

G = {[p] : ∃K ∈ [R]<ω, Dom(p) =
⋃

{{i} × Ai : i ∈ K},

∀i ∈ K, p(i, ·) : Ai → 2 = {0, 1} is a non-trivial homomorphism,and ∀i, j ∈ K, if Ai ⊂ Aj then p(i, ·) ⊂ p(j, ·)} ∪ {∅}.Clearly, G is a family of lopen subsets of 2R×R losed under �niteintersetions. By hypothesis, let F be a G-ultra�lter.
Claim 1. For every i ∈ R there is a [p] ∈ F with {i} × Ai ⊂ Dom(p).Proof of Claim 1. Assume that for some i ∈ R and every [p] ∈ F , {i} ×

Ai 6⊂ Dom(p). Then for every non-trivial homomorphism q : Ai → 2 (Ai isa �nite subalgebra and therefore suh a q exists), [{i} × q] ∈ G meets non-trivially eah member of F . Sine F is maximal it follows that [{i}× q] ∈ F .This is a ontradition.De�ne g : B → 2 by setting g(b) = p((i, b)), where i ∈ R is suh that Aiis the subalgebra of B generated by {b} and [p] ∈ F is suh that {i} ×Ai ⊂
Dom(p).
Claim 2. g is well-de�ned.Proof of Claim 2. Let [p] and [q] in F be suh that {i} × Ai is inludedin both Dom(p) and Dom(q). Sine F is a �lter, p and q are ompatible,hene p((i, b)) = q((i, b)). Thus, g is well-de�ned as required.
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Sine for every a, b ∈ B, the Boolean subalgebra B(a, b) generated by

a and b is �nite, it follows that B(a, b) = Ai for some i ∈ R. Fix [p] ∈ Fwith {i} × Ai ⊂ Dom(p). Sine p(i, ·) : Ai → 2 is a homomorphism, itfollows that g(a ⊕ b) = p(i, a ⊕ b) = p(i, a) + p(i, b) = g(a) + g(b) and
g(a ⊙ b) = p(i, a ⊙ b) = p(i, a)p(i, b) = g(a)g(b). Thus, g : B → 2 is a(non-trivial) homomorphism as required.4. Questions1. Does TPC(2R) imply TP(2R) in ZF?2. Is TPC(2R) provable in ZF + CAC(R)?
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