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Summary. We show that the main result of [1] on sufficiency of existence of a majorizing
measure for boundedness of a stochastic process can be naturally split in two theorems,
each of independent interest. The first is that the existence of a majorizing measure is
sufficient for the existence of a sequence of admissible nets (as recently introduced by
Talagrand [5]), and the second that the existence of a sequence of admissible nets is
sufficient for sample boundedness of a stochastic process with bounded increments.

1. Introduction. Let (T, d) be a compact metric space, and let ϕ :
R+ → R+ be a Young function, i.e. convex, increasing, continuous and such
that ϕ(0) = 0. We say that a stochastic process X(t), t ∈ T , has bounded
increments if

(1) Eϕ
(
|X(s)−X(t)|

d(s, t)

)
≤ 1 for s, t ∈ T,

Without losing generality one can assume that ϕ is normalized, i.e. ϕ(1) = 1.
Note that under (1) there exists a separable modification of X(t), t ∈ T ,
which we always refer to when considering a process with bounded incre-
ments.

We say that a Borel probability measure m on (T, d) is majorizing if

(2) M(m,ϕ) := sup
t∈T

D(t,T )�

0

ϕ−1

(
1

m(B(t, ε))

)
dε <∞,
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and weakly majorizing if

M(m,ϕ) :=
�

T

D(t,T )�

0

ϕ−1

(
1

m(B(t, ε))

)
dεm(dt) <∞,

where B(t, ε) := {s ∈ T : d(s, t) ≤ ε} and D(t, T ) := sup{d(s, t) : s ∈ T}.
The concept of majorizing measure was introduced by Fernique [2] for the
purpose of proving boundedness of stochastic processes. For the historical
background on the sample boundedness of stochastic processes under the
bounded increment assumption we refer to [2], [3] and [5]. The following
theorem proved in [1] is a generalization of Fernique’s result as well as Tala-
grand’s:

Theorem 1. If ϕ is a Young function and m a majorizing measure on
T then, for each separable stochastic process X(t), t ∈ T , which satisfies (1),

E sup
s,t∈T

|X(s)−X(t)| ≤ 32M(m,ϕ).

In this paper we pursue a new approach to Theorem 2 using the language
of admissible nets (cf. Definition 1.2.3 in [3]). Below we give a definition of
admissible nets suitable for our purposes. Let (Nk)k≥0 be a sequence of
positive reals such that N0 = 1 and

(3) cϕ−1(Nk) ≤ ϕ−1(Nk+1) ≤ Cϕ−1(Nk) for k ≥ 1,

where 2 < c ≤ C (the usual choice is Nk := ϕ(Rk), where R > 2). We will
say that T := (Tk)k≥0 is an admissible sequence of nets if |Tk| ≤ Nk and

A(T , ϕ) := sup
u∈T

∞∑
k=0

d(u, Tk)ϕ−1(Nk) <∞,

A(T , ϕ) :=
∞∑
k=0

∑
u∈Tk+1

d(u, Tk)ϕ−1(Nk)
Nk+1

<∞.

Theorem 1 can be obtained as a corollary of the following two theorems,
which are of independent interest:

Theorem 2. For each sequence of admissible nets T = (Tk)k≥0 and any
stochastic process X(t), t ∈ T , satisfying (1),

(4) E sup
s,t∈T

|X(s)−X(t)| ≤ 4cC
c− 2

A(T , ϕ) + 2CA(T , ϕ).

Theorem 3. If (T, d) admits a majorizing measure m then there exists
a sequence of nets T = (Tk)k≥0 such that |Tk| ≤ Nk for k ≥ 0 and

A(T , ϕ) ≤ 4c
c− 1

M(T , ϕ), A(T , ϕ) ≤ 4c
c− 1

M(m,ϕ).
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Indeed, since clearlyM(m,ϕ) ≤M(m,ϕ), Theorems 2 and 3 show that
the existence of a majorizing measure implies the sample boundedness of
any stochastic process with bounded increments, so in this way we reprove
Theorem 1.

2. Sample boundedness via admissible nets. Let πk(t) be any point
in Tk which satisfies d(t, Tk) = d(t, πk(t)), i.e. a point in Tk closest to t.

Proof of Theorem 2. Fix l ≥ 0 and t ∈ T . Clearly one may assume that
limk→∞ d(t, Tk) = 0 since otherwise the right hand side in (4) is infinite and
there is nothing to prove. We define tl = πl(t) and by reverse induction,
tk = πk(tk+1). By the chain argument we obtain

(5) |f(tl)− f(t0)| ≤
l−1∑
j=0

|f(tj)− f(tj+1)|.

For all Young functions ϕ we clearly have

(6)
x

y
≤ 1 +

ϕ(x)
ϕ(y)

, x, y > 0.

Setting x = |f(tj)− f(tj+1)|/d(tj , tj+1) and y = ϕ−1(Nj+1) in (6), we derive
that

|f(tj)− f(tj+1)|
d(tj , tj+1)ϕ−1(Nj+1)

≤ 1 +
1

Nj+1
ϕ

(
|f(tj)− f(tj+1)|

d(tj , tj+1)

)
.

Since by (3) we have ϕ−1(Nj+1) ≤ Cϕ−1(Nj), we can see that

|f(tj)− f(tj+1)| ≤ Cd(tj , tj+1)ϕ−1(Nj)
(

1 +
1

Nj+1
ϕ

(
|f(tj)− f(tj+1)|

d(tj , tj+1)

))
.

This implies that

(7) |f(tl)− f(t0)|

≤ C
l−1∑
j=0

d(tj , tj+1)ϕ−1(Nj)

+ C

∞∑
k=0

∑
u∈Tk+1

d(u, Tk)ϕ−1(Nk)
Nk+1

ϕ

(
|f(u)− f(πk(u))|

d(u, πk(u))

)
.

Lemma 1. The following inequality holds:
l−1∑
j=0

d(tj , tj+1)ϕ−1(Nj) ≤
2c
c− 2

l∑
k=0

d(t, πk(t))ϕ−1(Nk).
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Proof. We first show that for each 0 ≤ j ≤ l we have

(8) d(t, tj)ϕ−1(Nj) ≤
l∑

k=j

(
2
c

)j−k
d(t, Tk)ϕ−1(Nk),

where c is the constant in (3). The proof goes by reverse induction. The case
j = l is trivial, so we may assume that

(9) d(t, tj+1)ϕ−1(Nj+1) ≤
l∑

k=j+1

(
2
c

)j+1−k
d(t, Tk)ϕ−1(Nk).

Note that the definition of πj implies that

d(tj , tj+1) = d(πj(tj+1), tj+1) ≤ d(πj(t), tj+1) ≤ d(t, πj(t)) + d(t, tj+1),

which combined with d(t, tj) ≤ d(t, tj+1) + d(tj , tj+1) results in

d(t, tj) ≤ d(t, πj(t)) + 2d(t, tj+1).

From (3) we obtain

d(t, tj)ϕ−1(Nj) ≤ (d(t, πj(t)) + 2d(t, πj+1(t)))ϕ−1(Nj)

≤ d(t, πj(t))ϕ−1(Nj) +
2
c
d(t, πj+1(t))ϕ−1(Nj+1).

The induction assumption (9) now yields (8). We finish the proof of the
lemma by first checking that

(10)
l−1∑
j=0

d(tj , tj+1)ϕ−1(Nj) ≤ 2
l∑

j=0

d(t, tj)ϕ−1(Nj)

and then applying (8) so that
l∑

j=0

d(t, tj)ϕ−1(Nj) ≤
l∑

j=0

( l∑
k=j

(
c

2

)j−k
d(t, πk(t))ϕ−1(Nk)

)

≤
l∑

k=0

( l∑
j=k

(
c

2

)j−k)
d(t, πk(t))ϕ−1(Nk)

≤ c

c− 2

l∑
k=0

d(t, πk(t))ϕ−1(Nk).

We use (7) and Lemma 1 to show that

|f(tl)− f(t0)| ≤
2cC
c− 2

l∑
k=0

d(t, Tk)ϕ−1(Nk)

+ C

∞∑
k=0

∑
u∈Tk+1

d(u, Tk)ϕ−1(Nk)
Nk+1

ϕ

(
|f(u)− f(πk(u))|

d(u, πk(u))

)
.
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From the property limk→∞ d(t, Tk) = 0 we deduce that

|f(t)− f(t0)| ≤
4cC
c− 2

sup
u∈T

∞∑
k=0

d(u, Tk)ϕ−1(Nk)

+ 2C
∞∑
k=0

∑
u∈Tk+1

d(u, Tk)ϕ−1(Nk)
Nk+1

ϕ

(
|f(u)− f(πk(u))|

d(u, πk(u))

)
.

Since t0 = π0(T ) is the only point in T0 which does not depend on t, it is
clear that for any s, t ∈ T we have

(11) |f(s)− f(t)|

≤ 4cC
c− 2

sup
u∈T

∞∑
k=0

d(u, Tk)ϕ−1(Nk)

+ 2C
∞∑
k=0

∑
u∈Tk+1

d(u, Tk)ϕ−1(Nk)
Nk+1

ϕ

(
|f(u)− f(πk(u))|

d(u, πk(u))

)
.

Having thus established the result for any continuous functions f on (T, d)
we turn to its stochastic version. By a standard argument (see Theorem 2.3
of [3] or Theorem 3.1 of [1]) it suffices to prove Theorem 2 for processes with
a.s. Lipschitz samples (with respect to d). By the Fubini theorem and (1) we
obtain

E sup
s,t∈T

|X(s)−X(t)| ≤ 4cC
c− 2

sup
u∈T

∞∑
k=0

d(u, Tk)ϕ−1(Nk)

+ 2C
∞∑
k=0

∑
u∈Tk+1

d(u, Tk)ϕ−1(Nk)
Nk+1

Eϕ
(
|f(u)− f(πk(u))|

d(u, πk(u))

)

≤ 4cC
c− 2

sup
u∈T

∞∑
k=0

d(u, Tk)ϕ−1(Nk) + 2C
∞∑
k=0

∑
u∈Tk+1

d(u, Tk)ϕ−1(Nk)
Nk+1

.

3. Construction of a sequence of admissible nets. We describe
how to construct a sequence of admissible nets when we have a majorizing
measure m on (T, d) (thus in particular supp(m) = T ). Let

rk(t) := inf{ε > 0 : m(B(t, ε)) ≥ 1/Nk},

where (Nk)k≥0 satisfies (3). Clearly m(B(t, rk(t))) ≥ 1/Nk and r0(t) ≤
D(t, T ). In [1] two simple properties of rk are given; we repeat their proofs
for completeness.

Lemma 2. The functions rk, k ≥ 0, are 1-Lipschitz for all t ∈ T .
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Proof. A geometrical argument shows that

B(s, rk(t) + d(s, t)) ⊃ B(t, rk(t)),

and consequently m(B(s, rk(t) + d(s, t))) ≥ 1/Nk. Hence rk(s) ≤ rk(t) +
d(s, t) and similarly rk(t) ≤ rk(s) + d(s, t), which implies that rk is 1-
Lipschitz.

Lemma 3. For each 0 ≤ δ ≤ D(t, T ) we have
∞∑
k=0

min{rk(t), δ}ϕ−1(Nk) ≤
c

c− 1

δ�

0

ϕ−1

(
1

m(B(t, ε))

)
dε.

Proof. Observe that there exists k0 ≥ 0 such that rk0+1(t) < δ ≤ rk0(t).
Clearly

rk(t)�

rk+1(t)

ϕ−1

(
1

m(B(t, ε))

)
dε ≥ (rk(t)− rk+1(t))ϕ−1(Nk),

and in the same way we show that
δ�

rk0+1(t)

ϕ−1

(
1

m(B(t, ε))

)
dε ≥ (δ − rk0+1(t))ϕ−1(Nk0).

Thus using (3) we deduce that
δ�

0

ϕ−1

(
1

m(B(t, ε))

)
dε

≥
∞∑

k=k0+1

(rk(t)− rk+1(t))ϕ−1(Nk) + (δ − rk0+1(t))ϕ−1(Nk0)

≥
∞∑

k=k0+1

rk(t)(ϕ−1(Nk)− ϕ−1(Nk−1)) + δϕ−1(Nk0)

≥ c− 1
c

∞∑
k=k0+1

rk(t)ϕ−1(Nk) + δϕ−1(Nk0).

Since
k0∑
k=0

ϕ−1(Nk) ≤
k0∑
k=0

c−kϕ−1(Nk0) ≤
c

c− 1
ϕ−1(Nk0)

we finally obtain
δ�

0

ϕ−1

(
1

m(B(t, ε))

)
dε ≥ c− 1

c

∞∑
k=0

min{rk(t), δ}ϕ−1(Nk).
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The construction of a sequence of admissible nets T = (Tk)k≥0, assuming
the existence of a majorizing measure, is based on the following intermediate
result:

Theorem 4. There exists a sequence of nets T = (Tk)k≥0, Tk ⊂ T , that
satisfies the following conditions:

1. |T0| = 1, |Tk| ≤ Nk;
2. B(t, rk(t)) are disjoint for t ∈ Tk;
3. for each t ∈ T we have d(t, Tk) ≤ 4rk(t);
4. rk(t) ≤ 2rk(x) for each t ∈ Tk and x ∈ B(t, rk(t)).

Proof. Fix k ≥ 0. We define t1 as a minimum point of rk, that is, rk(t1) =
inft∈T rk(t) (we use the fact that (T, d) is compact). Then we define an open
subset A1 in T by

A1 := {s ∈ T : 2(rk(s) + rk(t1)) > d(s, t1)}.

Suppose we have constructed points t1, . . . , tl and open sets A1, . . . , Al. If
T \

⋃l
j=1Aj is non-empty, then we define tl+1 as a minimum point of rk on

this set (which is again compact), and set

Al+1 := {s ∈ T : 2(rk(s) + rk(tl+1)) > d(s, tl+1)}.

Note that by the definition d(tj , tl) ≥ 2(rk(tj) + rk(tl)) if j 6= l, and hence
B(tj , rk(tj)) and B(tl, rk(tl)) are disjoint. It follows that

1 = m(T ) ≥
|Tk|∑
j=1

m(B(tj , rk(tj))) ≥
|Tk|
Nk

.

Thus |Tk| ≤ Nk, which implies that our construction stops after a finite
number of steps. Clearly N0 = 1 implies that |T0| = 1. For each t ∈ T there
exists the smallest l = l0 such that t ∈ Al. By the construction we have
2(rk(t) + rk(tl0)) > d(t, tl0) and rk(tl0) ≤ rk(t), hence d(t, Tk) < 4rk(t).

To prove the last assertion we consider x ∈ B(tl0 , rk(tl0)) with tl0 ∈ Tk.
There exists the smallest l = l1 such that x ∈ Al; if l0 ≤ l1 then rk(tl0) ≤
rk(tl1) ≤ rk(x), which ends the proof in this case. If l1 < l0, then tl0 6∈⋃l1
j=1Aj and so d(tl0 , tl1) ≥ 2(rk(tl0)+rk(tl1)). Consequently, by the triangle

inequality,

2(rk(tl0) + rk(tl1)) ≤ d(tl0 , tl1) ≤ d(x, tl1) + d(x, tl0) ≤ d(x, tl1) + rk(tl0),

where the last inequality follows because x ∈ B(tl0 , rk(tl0)). On the other
hand, x ∈ Al1 , so

d(x, tl1) < 2(rk(x) + rk(tl1)).

It follows that
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2(rk(tl0) + rk(tl1)) ≤ d(x, tl1) + rk(tl0) ≤ 2(rk(x) + rk(tl1)) + rk(tl0),

and hence rk(tl0) ≤ 2rk(x) as desired.

Proof of Theorem 3. By Theorem 4 there exists an admissible net T =
(Tk)k≥0 such that d(t, Tk) ≤ 4rk(t). Consequently, Lemma 3 shows that for
each t ∈ T we have

∞∑
k=0

d(t, Tk)ϕ−1(Nk) ≤ 4
∞∑
k=0

rk(t)ϕ−1(Nk)

≤ 4c
c− 1

D(t,T )�

0

ϕ−1

(
1

m(B(t, ε))

)
dε,

which implies that

sup
t∈T

∞∑
k=0

d(t, Tk)ϕ−1(Nk) ≤
4c
c− 1

M(m,ϕ).

To show the second claim we first check that since 1/Nk+1 ≤ m(B(t, rk+1(t)))
and d(t, Tk) ≤ 4rk(t) one can see that

(12)
∑

t∈Tk+1

d(t, Tk)ϕ−1(Nk)
Nk+1

≤ 4
∑
t∈Tk

�

B(t,rk+1(t))

rk(t)ϕ−1(Nk)m(dx).

By the Lipschitz property of rk (Lemma 2) we derive that rk(t) ≤ rk(x) +
rk+1(t) for x ∈ B(t, rk+1(t)). Therefore�

B(t,rk+1(t))

rk(t)ϕ−1(Nk)m(dx) ≤
�

B(t,rk+1(t))

(rk(x) + rk+1(t))ϕ−1(Nk)m(dx).

The last assertion in Theorem 4 implies that rk+1(t) ≤ 2rk+1(x) for any
t ∈ Tk+1 and x ∈ B(t, rk+1(t)). Hence�

B(t,rk+1(t))

rk(t)ϕ−1(Nk)m(dx)≤
�

B(t,rk+1(t))

(rk(x)+2rk+1(x))ϕ−1(Nk)m(dx).

Since B(t, rk+1(t)) are disjoint for t ∈ Tk (the second claim in Theorem 4),
we derive∑
t∈Tk

�

B(t,rk+1(t))

rk(t)ϕ−1(Nk)m(dx) ≤ 2
�

T

(rk(x) + 2rk+1(x))ϕ−1(Nk)m(dx).

Combining the above inequality with (12) and (3) (with c > 2) we deduce
that

∞∑
k=0

d(t, Tk)ϕ−1(Nk)
Nk+1

≤ 4
�

T

∞∑
k=0

rk(x)ϕ−1(Nk)m(dx).
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It remains to use Lemma 3, which yields
∞∑
k=0

d(t, Tk)ϕ−1(Nk)
Nk+1

≤ 4c
c− 1

M(m,ϕ).
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