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Summary. We prove an analogue of Topsøe’s criterion for relative compactness of a
family of probability measures which are regular with respect to a family sets. We consider
measures whose values are compact convex sets in a locally convex linear topological space.

Introduction. Let T be an abstract set, K a family of subsets of T ,
and (E,F ) a dual pair of real vector spaces, with E endowed with the weak
topology σ(E,F ). Let cc(E,F ) be the set of all convex compact non-empty
subsets of E, and M̃+(T,K, cc(E,F )) the set of K-inner regular positive
set-valued measures defined on a σ-field B of subsets of T and with values
in cc(E,F ). We denote by M+(T,K) the set of K-inner regular non-negative
measures defined on B provided with the topology of weak convergence.
Prokhorov [11] has proved that if T is a Polish space and B the set of Borel
subsets, then the relatively compact subsets of M+(T,K) are precisely the
tight ones. But this result is not valid for all topological space (see e.g. [5],
[10], [18]). In [16] Topsøe has characterized the relatively compact subsets of
M+(T,K) in general situations. Before and after Topsøe’s paper there were
others (e.g. [1], [3], [18], [5]–[10]). In this paper we generalize to the space
M̃+(T,K, cc(E,F )) the criterion of Topsøe (Theorem 2.1). In addition, we
prove a result (Theorem 3.3) analogous to Theorem 8.1 in [17, p. 40].

1. Preliminaries

1.1. We denote by T an abstract set; G and K are families of subsets
of T . We let B denote the smallest σ-field containing every set A ⊆ T for
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which K ∩A ∈ K for all K ∈ K. The family K is said to be semicompact
if every countable subfamily of K with the finite intersection property has
a non-empty intersection. We shall say that G separates the sets in K if for
any pair K,K ′ of disjoint sets in K we can find a pair G,G′ of disjoint sets
in G such that K ⊂ G and K ′ ⊂ G′.

Let G′ be a family of subsets of T such that G′ ⊆ G. We shall say that G′
dominates K and write G′ � K if for any K ∈ K there exists G′ ∈ G′ such
that K ⊆ G′.

1.2. Nets on T. Let X be a non-empty subset of T and (xi)i∈I be a net
on T . We say that xi ∈ X eventually if there exists i ∈ I such that xj ∈ X
for every j ∈ I with j ≥ i. A net (xi)i∈I on T is universal if, for every subset
X ⊂ T either xi ∈ X eventually or xi ∈ T \X eventually.

1.3. The space cc(E,F ). Let (E,F ) be a dual pair of real vector spaces,
with E and F endowed with the weak topologies σ(E,F ) and σ(F,E) re-
spectively. If X and Y are subsets of E, we denote by X + Y the subset of
E consisting of all elements of the form x+ y, where x ∈ X and y ∈ Y . The
closed convex hull of X is denoted by coX, the polar of X by X

◦
, and the

closure of X by clX. The support function of X is the map

δ∗(·|X) : F → [−∞,+∞], y 7→ δ∗(y|X) = sup{y(x); x ∈ X}.

We denote by cc(E,F ) the set of all σ(E,F )-compact non-empty convex sub-
sets of E. We equip cc(E,F ) with the Hausdorff topology. Let C ∈ cc(E,F ),
β(o) a base of neighbourhoods of o in E, V ∈ β(o), and ε > 0. The set

W(V,ε,C) = {C ′ ∈ cc(E,F ); sup
y∈V
◦
|δ∗(y|C)− δ∗(y|C ′)| < ε}

is a neighbourhood of C. The family {W(V,ε,C); V ∈ β(o) and ε > 0} is
a base of neighborhoods of C. The space cc(E,F ) is a completely regular
topological space ([2, Theorem II.19]).

1.4. Set-valued measures. Let M be a map from B to cc(E,F ). The
map M is called additive if M(A ∪ B) = M(A) + M(B) for any disjoint
sets A,B in B; monotone if M(∅) = {o} and M(A) ⊆ M(B) for all A and
B in B such that A ⊆ B; and positive if M(∅) = {o} and o ∈ M(A) for
all A ∈ B. We say that M is a weak set-valued measure if M is additive
and for every y ∈ F the map A 7→ δ∗(y|M(A)) from B to R is a σ-additive
measure. A positive weak set-valued measure is K-inner regular if for every
A ∈ B,M(A) = co

⋃
{M(K); K ⊂ A, K ∈ K}. Note that a positive additive

map M : B → cc(E,F ) is monotone. Indeed, if A,B ∈ B and A ⊆ B, then
M(B) = M(A) + M(B \ A). Hence M(A) = M(A) + {o} ⊂ M(B) since
o ∈M(B \A).
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1.5. Set-valued integral. An integration theory for positive weak set-
valued measures is developed in [15]. Let us only recall the following def-
initions and results. Assume that M : B → cc(E,F ) is a positive weak
set-valued measure. If h is a positive simple function defined on T (i.e.
h =

∑n
i=1 αi1Ai where αi ≥ 0, Ai ∈ B and {A1, . . . , An} is a partition

of T ) then the integral of h with respect to M is defined by
	
hM =∑n

i=1 αiM(Ai). If f is a positive measurable function with respect to B
and the Borel field of R, there exists an increasing sequence (hn) of simple
functions such that f = sup{hn; n ∈ N}. The integral of f is defined by	
fM = co

⋃
{
	
hnM ; n ∈ N}. We have δ∗(y|

	
fM) =

	
fδ∗(y|M(·)) for every

y ∈ F . If f is bounded we have
	
fM ∈ cc(E,F ). If f and g are measurable

functions and f ≤ g then
	
fM ⊆

	
gM .

1.6. Topologies on M̃+(T, cc(E,F )). We denote by M̃+(T, cc(E,F )) the
set of all positive weak set-valued measures from B to cc(E,F ) and by
M̃+(T,K, cc(E,F )) the subset of M̃+(T, cc(E,F )) consisting of all K-inner
regular elements. In M̃+(T, cc(E,F )) we define the following topologies.

The weak narrow topology (wn-topology) on M̃+(T, cc(E,F )) is the
weakest topology for which the map M 7→ M(T ) is continuous and all
maps M 7→ δ∗(y|M(G)) are lower semicontinuous for every G ∈ G and
y ∈ F .

The strong narrow topology (sn-topology) on M̃+(T, cc(E,F )) is the
weakest topology for which the map M 7→M(T ) is continuous and all maps
M 7→M(G) are lower semicontinuous for every G ∈ G.

LetM ∈ M̃+(T, cc(E,F )) and let (Mi)i∈I be a net on M̃+(T, cc(E,F ))).
Then (Mi) converges to M in the wn-topology if and only if (Mi(T )) con-
verges to M(T ) in cc(E,F ) and lim infi δ∗(y|Mi(G)) ≥ δ∗(y|M(G)) for all
y ∈ F and G ∈ G; and (Mi) converges to M in the sn-topology if and only
if (Mi(T )) converges to M(T ) in cc(E,F ) and for every G ∈ G and every
open subset O of E such that M(G) ∩ O 6= ∅ there exists i0 ∈ I such that
Mi(G) ∩ O 6= ∅ for every i ∈ I with i ≥ i0. The subset M̃+(T,K, cc(E,F ))
will be considered as a subspace of M̃+(T, cc(E,F )).

Consider now the following axioms on K and G, introduced byTopsøe [16].

(i) K is closed under finite unions and countable intersections, and
∅ ∈ K.

(ii) G is closed under finite unions and finite intersections, and ∅ ∈ G.
(iii) For every K ∈ K and every G ∈ G,K \G ∈ K.
(iv) G separates the sets in K.
(v) K is semicompact.

Note that (i) and (iv) imply that G dominates K.
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1.7. Topological case. Assume now that T is a Hausdorff topological
space. We then denote by K(T ), G(T ) and B(T ) the families of compact sub-
sets, open subsets, and Borel subsets of T , respectively. Now M̃+(T,cc(E,F ))
denotes the set of positive weak set-valued measures defined on B(T ). The
wn-topology and sn-topology are defined by means of G(T ). Generally K(T ),
G(T ), B(T ) replace K, G and B respectively. We denote by C+(T ) the
set of non-negative bounded continuous functions defined on T . In view
of [17, Theorem 8.1 p. 40] if T is a completely regular space then a net
(Mi) on M̃+(T, cc(E,F )) converges in the wn-topology to M if and only
if (Mi(T )) converges to M(T ) in cc(E,F ) and for every y ∈ F and every
f ∈ C+(T ), (

	
fδ∗(y|Mi(·))) converges to

	
fδ∗(y|M(·)). It follows that if T

is a completely regular space, the wn-topology in M̃+(T,K(T ), cc(E,F )) is
a uniform topology. The uniformity is generated by the families of pseudo-
metrics {pV ; V ∈ β(o)} and {pf,y; y ∈ F, f ∈ C+(T )}, defined as follows:
for every M and M ′ in M̃+(T,K(T ), cc(E,F ))

pV (M,M ′) = sup
y∈
◦
V

|δ∗(y|M(T ))− δ∗(y|M ′(T ))|,

pf,y(M,M ′) =
∣∣∣ � fδ∗(y|M(·))−

�
fδ∗(y|M ′(·))

∣∣∣.
It is evident that M̃+(T,K(T ), cc(E,F )) endowed with this uniform topology
is a Hausdorff space.

Let us introduce another topology. The simple topology (s-topology) on
M̃+(T, cc(E,F )) is the weakest topology for which all maps M 7→M(f) are
continuous for every f ∈ C+(T ).

2. Main results. The following theorem was proved by Topsøe ([16,
Theorem 4, p. 202]) for non-negative scalar measures.
Theorem 2.1. Let G and K be families of subsets of a set T which satisfy

axioms (i)–(v) and let H be a subset of M̃+(T,K, cc(E,F )) endowed with the
wn-topology. Then the following conditions (1) and (2) are equivalent :

(1) Every net on H has a convergent subnet in M̃+(T,K, cc(E,F )).
(2) (a) The set {M(T );M ∈ H} is relatively compact in cc(E,F ).

(b) For every y ∈ F , every subclass G′ of G which dominates K, and
every ε > 0 there exists a finite subclass G′′ of G′ such that

sup
M∈H

inf
G∈G′′

δ∗(y|M(T \G)) < ε.

Proof. Assume that (1) is satisfied. It is obvious that (a) holds. If (b)
failed we would find y ∈ F , ε > 0, G′ ⊆ G with G′ � K such that for any finite
subfamily G′′ of G′ there exists MG′′ ∈ H such that inf{δ∗(y|MG′′(T \ G));
G ∈ G′′} ≥ ε. We then obtain a net (MG′′)G′′⊂G′ , where the family of all
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finite subsets of G′ is directed by ⊃. According to (1), the net MG′′ has a
subnet convergent in M̃+(T,K, cc(E,F )). We denote this subnet again by
(MG′′); let M be its limit. Then

lim
G′′

δ∗(y|MG′′(T ))

= δ∗(y|M(T )) = sup
K∈K

δ∗(y|M(K)) ≤ sup
K∈K

inf
G∈G′, K⊂G

δ∗(y|M(G))

≤ sup
K∈K

inf
G∈G′, K⊂G

lim inf
G′′

δ∗(y|MG′′(G))

= sup
K∈K

inf
K⊆G, G∈G′

lim inf
G′′

[δ∗(y|MG′′(T ))− δ∗(y|MG′′(T \G))]

= sup
K∈K

inf
K⊆G, G∈G′

[lim
G′′

δ∗(y|MG′′(T ))− lim sup
G′′

δ∗(y|MG′′(T \G))]

≤ lim
G′′

δ∗(y|MG′′(T ))− ε,

a contradiction.
Let us now prove the converse. Assume that (2) is satisfied. It suffices to

prove that every universal net (Mi)i∈I on H converges in M̃+(T,K,cc(E,F )).
Because of (2a), (Mi(T ))i∈I is convergent in cc(E,F ). Put limiMi(T ) =
C. The set

⋃
{M(T ); M ∈ H} is bounded in E. So is

⋃
{M(A); M ∈

H} for every A ∈ B because M(A) ⊂ M(T ). Then for each y ∈ F and
A ∈ B the universal net (δ∗(y|Mi(A)))i∈I is convergent in R. Put py(A) =
limi δ

∗(y|Mi(A)). Let G ∈ G. Define SG : F → R by SG(y) = py(G). One
has SG(y + y′) ≤ SG(y) + SG(y′) and SG(αy) = αSG(y) for all α ≥ 0
and y, y′ ∈ F , and |SG(y)| ≤ δ∗(y|C̃) where C̃ is the absolutely con-
vex hull of C. We have C̃ ∈ cc(E,F ) ([7, p. 242]). This proves that SG

is σ(F,E)-continuous. By the Hahn–Banach theorem ([4, p. 62]) we have
SG(y) = sup{lG(y); lG : F → R linear and lG ≤ SG}. The relation lG ≤ SG

shows that lG is also σ(F,E)-continuous. Hence we may put lG(y) = y(xG)
where xG ∈ E. Denote by cf(E,F ) the set of all convex closed non-empty
subsets of E and consider the map

M : G → cf(E), G 7→M(G) = cl{xG; xG ∈ E, ∀y ∈ F y(xG) ≤ SG(y)}.
One has SG(y) = δ∗(y|M(G)). Since SG(y) ≤ δ∗(y|C̃) for every y ∈ F we
haveM(G) ∈ cc(E,F ). Moreover,M is positive, monotone and subadditive.
In view of [12, Theorem 2] the map M̃ from B to cf(E,F ) defined by

M̃(A) = co
⋃

K⊆A

⋂
G⊇K

M(G)

is a positive weak set-valued measure. It is K-inner regular and M̃(G) ⊆
M(G) for every G ∈ G. Since M(G) ⊆ C̃ for all G ∈ G, we have M̃(A) ∈
cc(E,F ) for all A ∈ B.
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Let us prove that (Mi)i∈I converges to M̃ . By the definition of M , we
have limi δ

∗(y|Mi(G)) = δ∗(y|M(G)). Since M̃(G) ⊆M(G),

∀y ∈ F, ∀G ∈ G, lim
i
δ∗(y|Mi(G)) ≥ δ∗(y|M̃(G)).

It remains to show that limiMi(T ) = M̃(T ). First let us prove that
limi δ

∗(y|Mi(T )) = δ∗(y|M̃(T )) for all y ∈ F . Note that

δ∗(y|M̃(T )) = sup
K∈K

inf
G⊇K

δ∗(y|M(G))

([12, Lemmas 1–3]). Therefore we have to prove that

∀y ∈ F inf
K∈K

sup
K⊆G

lim
i
δ∗(y|Mi(T \G)) = 0.

If this were not so we would find ε > 0 and y ∈ F such that for every K ∈ K
there exists GK ∈ G with GK ⊃ K and δ∗(y|Mi(T \ GK)) > ε eventually.
Put G′ = {GK ; K ∈ K}; then G′ dominates K and for every finite subfamily
G′′ of G′ we have inf{δ∗(y|Mi(T \ GK)); GK ∈ G′′} > ε eventually. This
contradicts condition (b) of (2). Therefore limi δ

∗(y|Mi(T )) = δ∗(y|M̃(T ))
for all y ∈ F .

On the other hand, the net (Mi(T )) converges to C in cc(E,F ). It follows
that δ∗(y|C) = δ∗(y|M̃(T )) for all y ∈ F and therefore M̃(T ) = C.

Remark. If in condition (2)(b) we only take subclasses G′′ of G′ consist-
ing of one set then we obtain the following condition:

(3) For all y ∈ F , all G′ ⊂ G with G′ � K and all ε > 0 there exists
G ∈ G′ such that

sup{δ∗(y|M(T \G)); M ∈ H} < ε.

In view of [14, Lemma 7] this condition is equivalent to the following:

(4) For all y ∈ F and ε > 0 there exists K ∈ K such that
sup{δ∗(y|M(T \K)); M ∈ H} < ε.

Definition. A subset of M̃+(T,K, cc(E,F )) which satisfies condition (4)
is said to be uniformly tight.

Corollary 2.1. Let T be an abstract set , and let G and K be families
of subsets of T which satisfy axioms (i)–(v). Let H ⊂ M̃+(T,K, cc(E,F ))
be such that {M(T ); M ∈ H} is relatively compact in cc(E,F ). If H is
uniformly tight , then every net on H has a convergent subnet.

The results of the next corollary have been proved in [6] for scalar-valued
measures. For non-negative measures they have been proved separately by
several authors (e.g. [3], [1], [8], [18], [9], [5]). We have generalized them to
set-valued measures [13].
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Corollary 2.2. Assume that T is a locally compact space or a com-
plete metric space or else a hemicompact k-space. Let H be a subset of
M̃+(T,K(T ), cc(E,F )) endowed with the wn-topology. Then the following
conditions (1) and (2) are equivalent :

(1) H is relatively compact.
(2) (a) The set {M(T ); M ∈ H} is relatively compact in cc(E,F ),

(b) H is uniformly tight.

Since M̃+(T,K(T ), cc(E,F )) is a completely regular space, condition (1)
of the corollary is equivalent to that of the theorem. The result is evident if T
is a locally compact space or a complete metric space. If T is a hemicompact
k-space the proof is similar to that in [9, Theorem 5.2, p. 884].

Finally, note that M̃+(T,K, cc(E,F )) with the wn-topology is a Haus-
dorff space when axioms (i)–(v) are satisfied. Since two weak set-valued
measures M and M ′ are equal if and only if δ∗(y|M(·)) = δ∗(y|M ′(·)) for all
y ∈ F , the proof follows from that of Topsøe ([16, p. 204]).

3. The space M̃+(T,K(T ), ck(E)). In this section we prove that the
wn-topology, the sn-topology and the s-topology coincide in M̃+(T,K(T ),
ck(E)). Now E is a Banach space and F = E′ is its topological dual. The
norms on E and E′ are denoted by | · |. Let B′(0, 1) be the closed unit
ball of E′, endowed with the relative topology σ(B′(0, 1), E) generated by
the weak topology σ(E′, E) in E′. We denote by ck(E) the space of all
convex compact non-empty subsets of E, and by M̃+(T,K(T ), ck(E)) the
subspace of M̃+(T,K(T ), cc(E,E′)) consisting of all elements with values
in ck(E). Note that a weak set-valued M with values in cc(E,E′) is a set-
valued measure, that is, for any sequence (An) of pairwise disjoint sets in
B(T ) with union A, we have M(A) = limn→∞

∑n
k=0M(Ak) where the limit

is taken with respect to the Hausdorff topology [15]. The Hausdorff topology
derives from the distance δ defined by δ(C,C ′) = sup{|δ∗(y|C) − δ∗(y|C ′)|;
y ∈ E′, |y| ≤ 1} for all C and C ′ in cc(E,E′). The space (ck(E), δ) is a
complete metric space [2]. We start with the following

Lemma 3.1. Let (Ci)i∈I be a net on ck(E), and let (zi)i∈I be a net on
B′(0, 1). If (Ci) converges to C0 in ck(E), and (zi) converges to z0 in B′(0, 1),
then (δ∗(zi|Ci)) converges to δ∗(z0|C0).

Proof. We have

|δ∗(zi|Ci)−δ∗(z0|C0)| ≤ |δ∗(zi|Ci)− δ∗(zi|C0)|+ |δ∗(zi|C0)− δ∗(z0|C0)|
≤ sup
|y|≤1
|δ∗(y|Ci)−δ∗(y|C0)|+ |δ∗(zi|C0)−δ∗(z0|C0)|.

Since C0 ∈ ck(E) and the map δ∗(·|C0) : B′(0, 1) → R, y 7→ δ∗(y|C0), is
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continuous, the net (δ∗(zi|C0))i converges to δ∗(z0|C0). Moreover

lim
i

( sup
|y|≤1
|δ∗(y|Ci)− δ∗(y|C0)|) = 0

because (Ci) converges to C0. The lemma is therefore proved.

Theorem 3.2. Let T be a completely regular Hausdorff space, and E
be a Banach space. Let (Mi)i∈I be a net on M̃+(T,K(T ), ck(E)) and M0 ∈
M̃+(T,K(T ), ck(E)). Then (Mi) converges to M0 in the wn-topology if and
only if (Mi) converges to M0 in the s-topology.

Proof. By Section 1.6 it is evident that the s-topology is finer than the
wn-topology, so we need only prove that convergence in the wn-topology
implies convergence in the s-topology. Assume that (Mi) converges to M0

in the wn-topology. To show that (Mi) converges to M0 in the s-topology
it suffices to prove that for every f ∈ C+(T ), (

	
fMi) is a Cauchy net. If

this were not so, there would exist g ∈ C+(T ) and ε > 0 such that for
every i ∈ I we would find ki, ji ∈ I with ki, ji ≥ i and yi ∈ B′(0, 1)
such that |

	
gδ∗(yi|Mji(·)) −

	
gδ∗(yi|Mki

(·))| ≥ ε. We may assume with-
out loss of generality that g ≤ 1. Since B′(0, 1) is a compact space for the
topology σ(B′(0, 1), E), the net (yi)i∈I has a convergent subnet. Assume
for simplicity that (yi) itself converges to z ∈ B′(0, 1). Consider the net
(
	
gδ∗(yi|Mki

(·)))i∈I . We have
�
gδ∗(yi|Mki

(·))−
�
gδ∗(z|Mki

(·)) ≤
�
gδ∗(yi − z|Mki

(·))

because for every y and y′ in E′ one has
	
gδ∗(y+y′|Mki

(·)) ≤
	
gδ∗(y|Mki

(·))
+

	
gδ∗(y′|Mki

(·)). Since g ≤ 1 and δ∗(y|Mki
(·)) is a non-negative measure

one has
	
gδ∗(y|Mki

(·)) ≤ δ∗(y|Mki
(T )) for every y ∈ E′. We then have

�
gδ∗(yi|Mki

(·))−
�
gδ∗(z|Mki

(·)) ≤ 2δ∗
(

1
2

(yi − z)
∣∣∣∣Mki

(T )
)
.

It follows that∣∣∣ � gδ∗(yi|Mki
(·))−

�
gδ∗(z|Mki

(·))
∣∣∣

≤ 2 sup
(
δ∗
(

1
2

(yi − z)
∣∣∣∣Mki

(T )
)
, δ∗
(

1
2

(z − yi)
∣∣∣∣Mki

(T )
))

.

By Lemma 3.1 the nets (δ∗(1
2(yi− z)|Mki

(T )))i and (δ∗(1
2(z− yi)|Mki

(T )))i

converge to 0. Hence limi |
	
gδ∗(yi|Mki

(·))−
	
gδ∗(z|Mki

(·))| = 0. Taking ac-
count of the hypothesis one has limi

	
gδ∗(z|Mki

(·)) =
	
gδ∗(z|M0(·)). Then

we may conclude that limi

	
gδ∗(yi|Mki

(·)) =
	
gδ∗(z|M0(·)). Analogously,

limi

	
gδ∗(yi|Mji(·)) =

	
gδ∗(z|M0(·)). It follows from the equality of those

limits that limi |
	
gδ∗(yi|Mki

(·))−
	
gδ∗(yi|Mji(·))| = 0. That is a contradic-

tion.
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We denote by tsn, twn and ts the strong-narrow, weak-narrow and simple
topology, respectively. If t and t′ are two topologies on the same set, we write
t � t′ if t is coarser than t′.

Let G ∈ G(T ) and K ∈ K(T ) and assume that K ⊂ G and T is
a completely regular Hausdorff space. Put F = {f ∈ C+(T ); f < 1G}
where 1G is the indicator function of G. Since T is a completely regular
Hausdorff space, there exists f ∈ F such that f(x) = 1 for all x ∈ K.
The family F is filtering to the right and 1G = sup{f ; f ∈ F}. Now let
M ∈ M̃+(T,K(T ), ck(E)). Since M is K(T )-inner regular and positive, we
have M(G) = co

⋃
{
	
fM ; f ∈ F} = cl

⋃
{
	
fM ; f ∈ F}. The second equal-

ity follows from the fact that
⋃
{
	
fM ; f ∈ F} is a convex set in E. Indeed, if

x ∈
	
fM and y ∈

	
gM with f ∈ F and g ∈ F , then h = sup(f, g) ∈ F and

M(h) ⊇M(f) ∪M(g) becauseM is positive. Therefore rx+(1−r)y ∈M(h)
where 0 ≤ r ≤ 1.
Theorem 3.3. Let T be a completely regular Hausdorff space and let

E be a Banach space. Then in M̃+(T,K(T ), ck(E)) the wn-topology , sn-
topology and s-topology are identical.

Proof. Let f ∈ C+(T ) and let

pf : (M̃+(T ;K(T ), ck(E)), ts)→ (ck(E), δ), M 7→ pf (M) =
�
fM.

Then pf is continuous, and therefore lower semicontinuous. It follows that
for every G ∈ G(T ) the map

pG : (M̃+(T,K(T ), ck(E)), ts)→ (ck(E), δ)

M 7→ pG(M) = M(G) = cl
⋃{ �

fM ; f ∈ F
}

is lower semicontinuous. We deduce that tsn � ts because tsn is the weakest
topology for which all mapsM 7→M(G) defined on M̃+(T,K(T ), ck(E)) are
lower semicontinuous. It follows from the proof of Theorem II.21 in [2, p. 52]
that twn � tsn. The relations twn � tsn � ts and Theorem 3.2 show that
these three topologies are identical.
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