FUNCTIONAL ANALYSIS

Open Subsets of LF-spaces

by

Kotaro MINE and Katsuro SAKAI

Presented by Stanisław KWAPIEŃ

Summary. Let $F = \operatorname{ind} \lim F_n$ be an infinite-dimensional LF-space with density dens $F = \tau$ ($\geq \aleph_0$) such that some F_n is infinite-dimensional and dens $F_n = \tau$. It is proved that every open subset of F is homeomorphic to the product of an $\ell_2(\tau)$ -manifold and $\mathbb{R}^{\infty} = \operatorname{ind} \lim \mathbb{R}^n$ (hence the product of an open subset of $\ell_2(\tau)$ and \mathbb{R}^{∞}). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.

1. Introduction. A locally convex topological linear space F is called an *LF-space* if it is the strict inductive limit of Fréchet spaces (¹). More precisely, F has a tower $F_1 \subsetneq F_2 \subsetneq \cdots$ of linear subspaces being Fréchet and a local basis consisting of balanced (circled) convex sets V such that $V \cap F_n$ is a neighborhood of 0 in F_n for each $n \in \mathbb{N}$. Then we write $F = \operatorname{ind} \lim F_n$. Given countably many Fréchet spaces F_n , $n \in \mathbb{N}$, we define $\sum_{n=1}^{\infty} F_n =$ ind $\lim \prod_{i=1}^{n} F_i$, where each $\prod_{i=1}^{n} F_i$ is identified with the subspace $\prod_{i=1}^{n} F_i \times$ $\{0\}$ of $\prod_{i=1}^{n+1} F_i$. For LF-spaces, we refer to [8, Ch. II, §6], [12, Ch. 13], etc.

In this paper, we also consider the (topological) direct limit of a tower $X_1 \subset X_2 \subset \cdots$ of (topological) spaces which is denoted by $\varinjlim X_n$, that is, $\varinjlim X_n = \bigcup_{n \in \mathbb{N}} X_n$ with the topology such that U is open in $\varinjlim X_n$ if and only if $U \cap X_n$ is open in X_n for each $n \in \mathbb{N}$. Even if each $\overline{X_n}$ is a topological linear space, $\varinjlim X_n$ is not in general. If the addition of $\varinjlim X_n$ is continuous, then it is a topological linear space (²). In this case, if every X_n

²⁰⁰⁰ Mathematics Subject Classification: 46A13, 46T05, 57N17, 57N20.

Key words and phrases: LF-space, density, open set, direct limit, \mathbb{R}^{∞} , $\ell_2(\tau)$ -manifold, $\ell_2(\tau) \times \mathbb{R}^{\infty}$ -manifold.

This work is supported by Grant-in-Aid for Scientific Research (No. 17540061).

^{(&}lt;sup>1</sup>) A Fréchet space is a locally convex completely metrizable topological linear space. (²) The scalar multiplication is continuous because $\mathbb{R} \times \lim X_n = \lim (\mathbb{R} \times X_n)$. However, $\lim X_n \times \lim X_n \neq \lim (X_n \times X_n)$ in general, so the continuity of the addition is a problem.

is locally convex then so is $\varinjlim X_n$ (cf. [12, Problem 13-1-5]). For the tower $\mathbb{R} \subset \mathbb{R}^2 \subset \mathbb{R}^3 \subset \cdots$, the direct limit $\mathbb{R}^{\infty} = \varinjlim \mathbb{R}^n$ is a topological linear space, hence \mathbb{R}^{∞} is an LF-space, i.e., $\mathbb{R}^{\infty} = \operatorname{ind} \lim \mathbb{R}^n$. The Hilbert space with density $\tau (\geq \aleph_0)$ is denoted by $\ell_2(\tau)$, where $\ell_2 = \ell_2(\aleph_0)$.

The topological classification problem for LF-spaces is completely solved by the results of Mankiewicz [6, Theorem 2.14] and Toruńczyk [11, Theorem 6.1]: every LF-space $F = \operatorname{ind} \lim F_n$ is homeomorphic to (\approx) one of the spaces \mathbb{R}^{∞} , $\ell_2(\tau) \times \mathbb{R}^{\infty}$ or $\sum_{n=1}^{\infty} \ell_2(\tau_n)$, where $\tau = \operatorname{dens} F$ and $\tau_1 < \tau_2 < \cdots$ with $\sup \tau_i = \operatorname{dens} F$. In fact, (1) $F \approx \mathbb{R}^{\infty}$ if $\dim F_n < \infty$ for each $n \in \mathbb{N}$; (2) $F \approx \ell_2(\tau) \times \mathbb{R}^{\infty}$ if some F_n is infinite-dimensional and dens $F_n = \operatorname{dens} F$ $= \tau$; (3) $F \approx \sum_{i=1}^{\infty} \ell_2(\tau_i)$ if dens $F_n < \operatorname{dens} F$ for every $n \in \mathbb{N}$.

Given a space E (called a model space), a paracompact Hausdorff space M is called an E-manifold if it is locally homeomorphic to E, that is, each point of M has an open neighborhood homeomorphic to an open set in E. Although the theory of \mathbb{R}^{∞} -manifolds has been well developed (cf. [3], [7], etc.), that of $\ell_2 \times \mathbb{R}^{\infty}$ -manifolds has not. Not much is known about $\ell_2(\tau) \times \mathbb{R}^{\infty}$ - or $\sum_{i=1}^{\infty} \ell_2(\tau_i)$ -manifolds.

In the following,

let F be an LF-space such that $F \approx \ell_2(\tau) \times \mathbb{R}^{\infty}$, where $\tau \geq \aleph_0$.

In this paper, we show the following:

MAIN THEOREM. For each open set U in F, there exists an $\ell_2(\tau)$ -manifold M such that $U \approx M \times \mathbb{R}^{\infty}$.

We have the following corollaries. The first one follows from the classification theorem for $\ell_2(\tau)$ -manifolds [5], [4] (cf. [2, Ch. IX, Theorem 7.3]): any two $\ell_2(\tau)$ -manifolds with the same homotopy type are homeomorphic.

COROLLARY 1 (Classification). Two open subsets of F are homeomorphic if they have the same homotopy type.

Due to the stability theorem for $\ell_2(\tau)$ -manifolds [9] (cf. [2, Ch. IX, Theorem 4.1]), $M \times \ell_2(\tau) \approx M$ for every $\ell_2(\tau)$ -manifold M, hence we have the following:

COROLLARY 2 (Stability). Every open set U in F is homeomorphic to $U \times F$.

For each connected $\ell_2(\tau)$ -manifold M, there exists a locally finite-dimensional simplicial complex K with card $K^{(0)} \leq \tau$ such that $M \approx |K| \times \ell_2$, where |K| admits the metric topology, by the triangulation theorem for $\ell_2(\tau)$ -manifolds [4]. Thus, the following holds:

COROLLARY 3 (Triangulation). Each open subset of F is homeomorphic to $|K| \times F$ for some locally finite-dimensional simplicial complex K with card $K^{(0)} \leq \tau$. **2.** Outline of the proof. Let $\mathbf{I} = [0, 1]$ and $\mathbb{R}_+ = [0, \infty)$. Since $\ell_2(\tau) \times \mathbb{R}^n_+ \approx \ell_2(\tau) \times \mathbf{I}^n \approx \ell_2(\tau)$ for every $n \in \mathbb{N}$ (cf. [10]), it follows from the stability theorem for $\ell_2(\tau)$ -manifolds [9] that $X \times \mathbb{R}^n_+ \approx X \times \mathbf{I}^n \approx X$ for each $\ell_2(\tau)$ -manifold X and $n \in \mathbb{N}$. Moreover, $\mathbb{R}^\infty \approx \mathbb{R}^\infty_+ = \varinjlim \mathbb{R}^n_+$, the direct limit of the tower $\mathbb{R}_+ \subset \mathbb{R}^2_+ \subset \mathbb{R}^3_+ \subset \cdots$ (cf. [7]), where each \mathbb{R}^n_+ is identified with $\mathbb{R}^n_+ \times \{0\} \subset \mathbb{R}^{n+1}_+$. Therefore, $F \approx \ell_2(\tau) \times \mathbb{R}^\infty_+$. Thus, we can consider U as an open set in $\ell_2(\tau) \times \mathbb{R}^\infty_+$. One should note that

$$\ell_2(\tau) \times \mathbb{R}^{\infty}_+ = \ell_2(\tau) \times \varinjlim \mathbb{R}^n_+ \neq \varinjlim (\ell_2(\tau) \times \mathbb{R}^n_+)$$
 as spaces.

A closed set A in a space X is called a Z-set if for each open cover \mathcal{U} of X there is a map $f : X \to X \setminus A$ which is \mathcal{U} -close to id, that is, every $\{x, f(x)\}$ is contained in some $U \in \mathcal{U}$. It is known that if an $\ell_2(\tau)$ -manifold A is a Z-set in an $\ell_2(\tau)$ -manifold X then A is collared in X, that is, there is an open embedding $\psi : A \times [0, 1) \to X$ (called a collar) such that $\psi(x, 0) = x$ for every $x \in A$.

For each $n \in \mathbb{N}$, let $U_n = U \cap (\ell_2(\tau) \times \mathbb{R}^n_+)$. As is easily observed, each U_n is an $\ell_2(\tau)$ -manifold which is a Z-set in U_{n+1} . Note that $U_1 \subset U_2 \subset \cdots$ and $U = \bigcup_{n \in \mathbb{N}} U_n$. We define

$$M = \bigcup_{n \in \mathbb{N}} [n-1, n] \times U_n \subset \bigcup_{n \in \mathbb{N}} \mathbb{R}_+ \times \ell_2(\tau) \times \mathbb{R}_+^n = \mathbb{R}_+ \times \ell_2(\tau) \times \mathbb{R}_+^\infty.$$

Now, each $[n-1,n] \times U_n$ is an $\ell_2(\tau)$ -manifold and

$$([n-1,n] \times U_n) \cap ([n,n+1] \times U_{n+1}) = \{n\} \times U_n,$$

where $\{n\} \times U_n$ is collared not only in $[n-1, n] \times U_n$ but also in $[n, n+1] \times U_{n+1}$ because it is a Z-set in the $\ell_2(\tau)$ -manifold $[n, n+1] \times U_{n+1}$. It follows that M is a separable $\ell_2(\tau)$ -manifold. Since $\mathbb{R}^{\infty} \approx [0, 1)^{\infty} = \varinjlim [0, 1)^n$, we shall show that $M \times [0, 1)^{\infty} \approx U$.

Let $\Psi = (\psi_i)_{i \in \mathbb{N}}$ be a sequence of collars $\psi_i : U_i \times [0, 1) \to U_{i+1}$. By the natural embedding

$$\psi_n \times \operatorname{id} : U_n \times [0,1) \times [0,1)^{\infty} \to U_{n+1} \times [0,1)^{\infty},$$

we regard $U_n \times [0, 1) \times [0, 1)^{\infty} = U_n \times [0, 1)^{\infty}$ as an open set in $U_{n+1} \times [0, 1)^{\infty}$. Let U_{Ψ} be the direct limit of the following open tower:

$$U_1 \times [0,1)^{\infty} \underset{\psi_1 \times \mathrm{id}}{\subset} U_2 \times [0,1)^{\infty} \underset{\psi_2 \times \mathrm{id}}{\subset} \cdots$$

Since each $U_n \times [0,1)^\infty$ is an open set in $\ell_2(\tau) \times \mathbb{R}^n_+ \times [0,1)^\infty \approx \ell_2(\tau) \times \mathbb{R}^\infty$, it follows that U_{Ψ} is an $\ell_2(\tau) \times \mathbb{R}^\infty$ -manifold. Since $U_n \times [0,1)^k \subset U_{n+k}$ for each $n, k \in \mathbb{N}$, we can regard $U_{\Psi} = \bigcup_{n \in \mathbb{N}} U_n$ as sets but the topology of U_{Ψ} depends on the sequence $\Psi = (\psi_i)_{i \in \mathbb{N}}$. The first step of the proof is to find Ψ so that $U_{\Psi} \approx U$. Observe that U_{Ψ} is also the direct limit of the following open tower:

$$U_1 \times [0, 1/2)^{\infty} \underset{\psi_1 \times \mathrm{id}}{\subset} U_2 \times [0, 2/3)^{\infty} \underset{\psi_2 \times \mathrm{id}}{\subset} \cdots$$

On the other hand, for each $n \in \mathbb{N}$, let

$$M_n^{\infty} = \left(\bigcup_{i=1}^n \left[i-1,n\right] \times U_i\right) \times \left[0,\frac{n}{n+1}\right]^{\infty}.$$

Then $M_1^{\infty} \subset M_2^{\infty} \subset \cdots$ are open sets in $M \times [0,1)^{\infty}$ and $M \times [0,1)^{\infty} = \bigcup_{n \in \mathbb{N}} M_n^{\infty}$. In the second step, we construct homeomorphisms

$$h_n: M_n^{\infty} \to U_n \times \left[0, \frac{n}{n+1}\right)^{\infty}, \quad n \in \mathbb{N},$$

so that the following diagram commutes:

$$\begin{array}{cccc}
 & M_n^{\infty} & \xrightarrow{\subset} & M_{n+1}^{\infty} \\
 & & & & \downarrow^{h_{n+1}} \\
 & & & \downarrow^{h_{n+1}} \\
 & U_n \times \left[0, \frac{n}{n+1}\right)^{\infty} \xrightarrow{\subset} & U_{n+1} \times \left[0, \frac{n+1}{n+2}\right)^{\infty}
\end{array}$$

This implies that $M \times [0,1)^{\infty} \approx U_{\Psi}$.

To complete the proof, we use two more results on $\ell_2(\tau)$ -manifolds. The following is proved in [5]:

THEOREM 1. Let M and N be $\ell_2(\tau)$ -manifolds. Every homotopy equivalence $f: M \to N$ is homotopic to (\simeq) a homeomorphism.

We call an embedding $f : X \to Y$ a Z-embedding if f(X) is a Z-set in Y. The following easily follows from the Z-set unknotting theorem [1]:

THEOREM 2. Let $f : M \to N$ be a homeomorphism between $\ell_2(\tau)$ manifolds and $g : A \to N$ a Z-embedding of a Z-set A in M. If g is homotopic to the restriction f|A then g extends to a homeomorphism $\tilde{g} : M \to M$ which is isotopic to f.

3. The first step of the proof. For simplicity, we use the following notation: $n < \omega$ n

$$\prod_{i=k}^{n<\omega} [0,a_i] = \bigcup_{n\geq k} \prod_{i=k}^n [0,a_i] \quad \text{for } a_i > 0, \, i \geq k.$$

For a subset $N \subset \ell_2(\tau) \times \mathbb{R}^n_+$ and a map $\alpha : N \to (0, 1)$, we define

$$N(\alpha) = \{(x,t) \in N \times \mathbb{R}_+ \mid t < \alpha(x)\} \subset \ell_2(\tau) \times \mathbb{R}_+^{n+1}$$

For each $n \in \mathbb{N}$, let $U_n = U \cap (\ell_2(\tau) \times \mathbb{R}^n_+)$. Then U_n is an $\ell_2(\tau)$ -manifold. For a sequence $\alpha = (\alpha_k)_{k \in \mathbb{N}}$ of maps $\alpha_k : U_k \to (0, 1)$ satisfying the condition $U_k(\alpha_k) \subset U_{k+1}$, we can inductively define

$$U_n(\alpha_n, \dots, \alpha_k) = U_n(\alpha_n, \dots, \alpha_{k-1})(\alpha_k)$$

$$\subset U_k(\alpha_k) \subset U_{k+1} \quad \text{for each } k > n.$$

Then, for each $n \in \mathbb{N}$,

$$U_n(\alpha_n) \subset U_n(\alpha_n, \alpha_{n+1}) \subset U_n(\alpha_n, \alpha_{n+1}, \alpha_{n+2}) \subset \cdots$$

Let $U_n^{\alpha} = \bigcup_{k \ge n} U_n(\alpha_n, \dots, \alpha_k) \subset U$. Thus, we have a tower $U_1^{\alpha} \subset U_2^{\alpha} \subset U_3^{\alpha} \subset \cdots$ with $U = \bigcup_{n \in \mathbb{N}} U_n^{\alpha}$. If each U_n^{α} is open in U then $U = \varinjlim U_n^{\alpha}$.

LEMMA 1. There exists a sequence $\alpha = (\alpha_k)_{k \in \mathbb{N}}$ of maps $\alpha_k : U_k \to (0, 1)$ such that $U_k(\alpha_k) \subset U_{k+1}$ for every $k \in \mathbb{N}$ and each U_n^{α} is open in U, hence $U = \varinjlim U_n^{\alpha}$. Moreover, for each $x \in U_k$ there is a neighborhood V of x in U_k and $a_i > 0$, i > k, such that $\inf_{y \in V} \alpha_k(y) > 0$ and

$$\inf \left\{ \alpha_n(y) \mid y \in V \times \prod_{i=k+1}^n [0, a_i] \right\} > 0 \quad \text{for every } n > k.$$

Proof. For each $k \in \mathbb{N}$, let \mathcal{V}_k be a locally finite open cover of U_k and let $a_{V,i} \in (0,1], i > k$, be such that

$$\operatorname{cl} V \times \prod_{i=k+1}^{n<\omega} [0, a_{V,i}] \subset U$$
 for each $k \in \mathbb{N}$ and $V \in \mathcal{V}_k$.

We define $\beta_k : U_k \to \mathbf{I}$ as follows:

$$\beta_k(x) = \max\left\{a_{V,k+1} \mid V \in \mathcal{V}_j, \ j \le k, \ x \in \operatorname{cl} V \times \prod_{i=j+1}^k [0, a_{V,i}]\right\},\$$

where $\operatorname{cl} V \times \prod_{i=j+1}^{k} [0, a_{V,i}] = \operatorname{cl} V$ if j = k. Then β_k is upper semicontinuous because

$$\{(x,t) \in U_k \times \mathbf{I} \mid t \le \beta_k(x)\} = \bigcup_{j \le k} \bigcup_{V \in \mathcal{V}_j} \operatorname{cl} V \times \prod_{i=j+1}^{k+1} [0, a_{V,i}]$$

is closed in $U_k \times \mathbb{R}_+$. Choose an open set U'_{k+1} in U_{k+1} so that

$$\{(x,t)\in U_k\times\mathbf{I}\mid t\leq\beta_{k+1}(x)\}\subset U'_{k+1}\subset\operatorname{cl} U'_{k+1}\subset U_{k+1}.$$

Then we have a lower semicontinuous function $\gamma_k: U_k \to \mathbf{I}$ defined by

$$\gamma_k(x) = \sup\{t \in \mathbf{I} \mid \{x\} \times [0, t] \subset U'_{k+1}\}$$

Since $\beta_k < \gamma_k$, there exists a continuous map $\alpha_k : U_k \to (0, 1)$ such that $\beta_k < \alpha_k < \gamma_k$. Thus, $U_k(\alpha_k) \subset U_{k+1}$ for every $k \in \mathbb{N}$.

By the definition, for each $V \in \mathcal{V}_k$ and $n \ge k$,

$$\operatorname{cl} V \times \prod_{i=k+1}^{n+1} [0, a_{V,i}] \subset U_k(\alpha_k, \dots, \alpha_n),$$

which implies $\inf_{y \in V} \alpha_k(y) \ge a_{V,k+1} > 0$ and

$$\inf\left\{\alpha_n(y) \mid y \in V \times \prod_{i=k+1}^n [0, a_i]\right\} \ge a_{V, n+1} > 0 \quad \text{for every } n > k.$$

To show that each U_n^{α} is open in U, let $x \in U_n^{\alpha}$. Choose $k \ge n$ so that $x \in U_n(\alpha_n, \ldots, \alpha_k) \subset U_{k+1}$. Then x has the following open neighborhood in U:

$$W \times \prod_{i=k+2}^{m+1<\omega} [0, a_{V,i}),$$

where $W = V \cap U_n(\alpha_n, \ldots, \alpha_k)$ and $V \in \mathcal{V}_{k+1}$. Now, by induction on m > k, we shall show that

$$W \times \prod_{i=k+2}^{m+1} [0, a_{V,i}] \subset U_n(\alpha_n, \dots, \alpha_m).$$

To this end, take an arbitrary

$$y = (z, t_{k+2}, \dots, t_{m+1}) \in W \times \prod_{i=k+2}^{m+1} [0, a_{V,i}].$$

By the inductive assumption, it follows that

$$y' = (z, t_{k+2}, \dots, t_m) \in W \times \prod_{i=k+2}^{m} [0, a_{V,i}] \subset U_n(\alpha_n, \dots, \alpha_{m-1}).$$

Since $t_{m+1} < a_{V,m+1} < \alpha_m(y')$, it follows that

$$y \in U_n(\alpha_n, \ldots, \alpha_{m-1})(\alpha_m) = U_n(\alpha_n, \ldots, \alpha_m).$$

Thus, we have

$$W \times \prod_{i=k+2}^{m+1 < \omega} [0, a_{V,i}] = \bigcup_{m > k} W \times \prod_{i=k+2}^{m} [0, a_{V,i}] \subset U_n^{\alpha}.$$

Therefore, U_n^{α} is open in U.

Now, we shall construct a sequence $\Psi = (\psi_i)_{i \in \mathbb{N}}$ of collars $\psi_i : U_i \times [0, 1) \to U_{i+1}, i \in \mathbb{N}$, so that $U_{\Psi} \approx U$. Recall U_{Ψ} is the direct limit of the following open tower:

$$U_1 \times [0,1)^{\infty} \underset{\psi_1 \times \mathrm{id}}{\subset} U_2 \times [0,1)^{\infty} \underset{\psi_2 \times \mathrm{id}}{\subset} \cdots,$$

where we regard $U_n \times [0,1)^{\infty}$ as an open set in $U_{n+1} \times [0,1)^{\infty}$ by the embedding

 $\psi_n \times \mathrm{id} : U_n \times [0,1)^\infty = U_n \times [0,1) \times [0,1)^\infty \to U_{n+1} \times [0,1)^\infty.$

LEMMA 2. There exists a sequence $\Psi = (\psi_n)_{n \in \mathbb{N}}$ of collars $\psi_n : U_n \times [0,1) \to U_{n+1}$ such that $U_{\Psi} \approx U$.

Proof. Let $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ be a sequence of maps $\alpha_n : U_n \to (0, 1)$ obtained by Lemma 1. Then U_n^{α} is open in U and $U = \varinjlim U_n^{\alpha}$. For each $n \in \mathbb{N}$, we define a collar $\psi_n : U_n \times [0, 1) \to U_{n+1}$ by $\psi_n(x, t) = (x, \alpha_n(x)t)$. For every $k \in \mathbb{N}$, we inductively define $\delta_{n,k} : U_n \times [0, 1)^k \to [0, 1)$ as follows:

$$\delta_{n,k}(x, t_{n+1}, \dots, t_{n+k}) = \alpha_{n+k-1}(x, \delta_{n,1}(x, t_{n+1}), \dots, \delta_{n,k-1}(x, t_{n+1}, \dots, t_{n+k-1}))t_{n+k},$$

where $\delta_{n,1}(x,t) = \alpha_n(x)t$. Then we have the following equation:

(*)
$$\delta_{n,k}\left(x, \frac{s_{n+1}}{\alpha_n(x)}, \dots, \frac{s_{n+k}}{\alpha_{n+k-1}(x, s_{n+1}, \dots, s_{n+k-1})}\right) = s_{n+k}.$$

Define $h_n: U_n \times [0,1)^{\infty} \to U_n^{\alpha}$ and $g_n: U_n^{\alpha} \to U_n \times [0,1)^{\infty}$ as follows: $h_n(x, t_{n+1}, t_{n+2}, \dots) = (x, \delta_{n,1}(x, t_{n+1}), \delta_{n,2}(x, t_{n+1}, t_{n+2}), \dots),$ $g_n(x, s_{n+1}, s_{n+2}, \dots) = \left(x, \frac{s_{n+1}}{\alpha_n(x)}, \frac{s_{n+2}}{\alpha_{n+1}(x, s_{n+1})}, \frac{s_{n+3}}{\alpha_{n+2}(x, s_{n+1}, s_{n+2})}, \dots\right).$

It is easily observed that $g_n \circ h_n = \operatorname{id}_{U_n \times [0,1)^{\infty}}$. By (*), we have $h_n \circ g_n = \operatorname{id}_{U_n^{\alpha}}$. Thus, g_n is a bijection with $h_n = g_n^{-1}$. Moreover, $(\psi_n \times \operatorname{id}) \circ g_n = g_{n+1} | U_n^{\alpha}$ for all $n \in \mathbb{N}$, that is, the following diagram commutes:

$$\begin{array}{cccc}
U_n^{\alpha} & \subset & U_{n+1}^{\alpha} \\
g_n \downarrow & & g_{n+1} \downarrow \\
U_n \times [0,1)^{\infty} & \xrightarrow{C} & U_{n+1} \times [0,1)^{\infty}
\end{array}$$

Indeed, for each $(x, s_{n+1}, s_{n+2}, \dots) \in U_n^{\alpha}$,

$$(\psi_n \times id) \circ g_n(x, s_{n+1}, s_{n+2}, \dots) = (\psi_n \times id) \left(x, \frac{s_{n+1}}{\alpha_n(x)}, \frac{s_{n+2}}{\alpha_{n+1}(x, s_{n+1})}, \dots \right)$$

= $\left(\psi_n \left(x, \frac{s_{n+1}}{\alpha_n(x)} \right), \frac{s_{n+2}}{\alpha_{n+1}(x, s_{n+1})}, \dots \right)$
= $\left((x, s_{n+1}), \frac{s_{n+2}}{\alpha_{n+1}(x, s_{n+1})}, \dots \right)$
= $g_{n+1}((x, s_{n+1}), s_{n+2}, \dots).$

We shall show that h_n and g_n are all continuous, which means that g_n is a homeomorphism. Then we shall have

$$U = \varinjlim U_n^{\alpha} \approx \varinjlim U_n \times [0, 1)^{\infty} = U_{\Psi}.$$

To see the continuity of h_n at $x \in U_n \times [0,1)^\infty$, let V be a neighborhood of $h_n(x)$ in U_n^α . Then x is contained in some $U_n \times [0,1)^k$, which implies that $h_n(x) \in U_n(\alpha_1, \ldots, \alpha_{k-1})$. We can find a neighborhood V' of $h_n(x)$ in $U_n \times [0,1)^k$ and $0 < r_{n+k+i} < 1, i \in \mathbb{N}$, such that

$$h_n(x) \in V' \times \prod_{i=1}^{j < \omega} [0, r_{n+k+i}] \subset V.$$

Since $\delta_{n,1}, \ldots, \delta_{n,k}$ are continuous, it follows that $h_n | U_n \times [0,1)^k$ is continuous, hence x has a neighborhood W in $U_n \times [0,1)^k$ such that $h_n(W) \subset V'$. Then $W \times \prod_{i=1}^{j < \omega} [0, r_{n+k+i}]$ is a neighborhood of x in $U_n \times [0,1)^\infty$ and

$$h_n\left(W \times \prod_{i=1}^{j < \omega} [0, r_{n+k+i}]\right) \subset V' \times \prod_{i=1}^{j < \omega} [0, r_{n+k+i}] \subset V,$$

which implies that h_n is continuous at x.

To see the continuity of g_n at $x \in U_n^{\alpha}$, for each neighborhood V of $g_n(x)$ in $U_n \times [0,1)^{\infty}$ choose an open set W in U_n and $r_{n+i} > 0$, $i \in \mathbb{N}$, so that

$$g_n(x) \in W \times \prod_{i=1}^{j < \omega} [0, r_{n+i}] \subset V.$$

Due to Lemma 1, it can be assumed that $\inf_{y \in W} \alpha_n(y) > 0$ and

$$\inf\left\{\alpha_{n+k}(y) \mid y \in W \times \prod_{i=1}^{k} [0, r_{n+i}]\right\} > 0 \quad \text{for every } k \in \mathbb{N}.$$

Hence, we can find $0 < q_{n+i} \leq r_{n+i}$, $i \in \mathbb{N}$, such that

$$(y, s_{n+1}, \dots, s_{n+j-1}) \in W \times \prod_{i=1}^{j} [0, r_{n+i}], \quad s_{n+j} < q_{n+j},$$

 $\Rightarrow \frac{s_{n+j}}{\alpha_{n+j-1}(y, s_{n+1}, \dots, s_{n+j-1})} < r_{n+j}.$

Then it follows that

$$g_n\left(W \times \prod_{i=1}^{j < \omega} [0, q_{n+i}]\right) \subset W \times \prod_{i=1}^{j < \omega} [0, r_{n+i}] \subset V,$$

which implies that g_n is continuous at x.

REMARK 1. Let $M_1 \subset M_2 \subset \cdots$ be a closed tower of $\ell_2(\tau)$ -manifolds such that each M_i is a Z-set (hence collared) in M_{i+1} . Then $M_{\infty} = \bigcup_{i \in \mathbb{N}} M_n$ has a topology such that M_{∞} is an $\ell_2(\tau) \times \mathbb{R}^{\infty}$ -manifold and each M_i is a subspace of M_{∞} . Indeed, given a sequence $\Psi = (\psi_i)_{i \in \mathbb{N}}$ of collars $\psi_i :$ $M_i \times [0, 1) \to M_{i+1}$, we regard $M_n \times [0, 1)^{\infty}$ as an open set in $M_{n+1} \times [0, 1)^{\infty}$ by the natural embedding

$$\psi_n \times \text{id} : M_n \times [0,1)^\infty = M_n \times [0,1) \times [0,1)^\infty \to M_{n+1} \times [0,1)^\infty.$$

Let M_{Ψ} be the direct limit of the open tower

$$M_1 \times [0,1)^{\infty} \underset{\psi_1 \times \mathrm{id}}{\subset} M_2 \times [0,1)^{\infty} \underset{\psi_2 \times \mathrm{id}}{\subset} \cdots$$

Since every separable $\ell_2(\tau)$ -manifold can be embedded into $\ell_2(\tau)$ as an open set by the open embedding theorem for $\ell_2(\tau)$ -manifolds [5] (cf. [4]), each $M_n \times [0, 1)^\infty$ is homeomorphic to an open set in $\ell_2(\tau) \times [0, 1)^\infty \approx \ell_2(\tau) \times \mathbb{R}^\infty$. Then M_{Ψ} is an $\ell_2(\tau) \times \mathbb{R}^\infty$ -manifold. Since $M_n \times [0, 1)^k \subset M_{n+k}$ for each $n, k \in \mathbb{N}$, we can regard $M_{\Psi} = M_\infty$ as sets but the topology of M_{Ψ} depends on the sequence $\Psi = (\psi_i)_{i \in \mathbb{N}}$. One should note that $M_{\Psi} \neq \varinjlim M_n$. In fact, the topology of $\lim M_n$ is finer than that of M_{Ψ} .

4. The second step of the proof. By Lemma 2, we have a sequence $\Psi = (\psi_i)_{i \in \mathbb{N}}$ of collars $\psi_i : U_i \times \mathbf{I} \to U_{i+1}$ such that U is homeomorphic to the direct limit U_{Ψ} of the following open tower:

$$U_1 \times [0,1)^{\infty} \underset{\psi_1 \times \mathrm{id}}{\subset} U_2 \times [0,1)^{\infty} \underset{\psi_2 \times \mathrm{id}}{\subset} \cdots$$

The Main Theorem is reduced to the following:

LEMMA 3. $M \times [0,1)^{\infty} \approx U_{\Psi}$.

Proof. Here, we regard U_{Ψ} as the direct limit of the following open tower:

$$U_1 \times [0, 1/2)^{\infty} \underset{\psi_1 \times \mathrm{id}}{\subset} U_2 \times [0, 2/3)^{\infty} \underset{\psi_2 \times \mathrm{id}}{\subset} \cdots$$

Recall we can write $M \times [0,1)^{\infty} = \bigcup_{n \in \mathbb{N}} M_n^{\infty}$, where $M_1^{\infty} \subset M_2^{\infty} \subset \cdots$ are open sets in $M \times [0,1)^{\infty}$ defined as follows:

$$M_n^{\infty} = \left(\bigcup_{i=1}^n [i-1,n] \times U_i\right) \times \left[0,\frac{n}{n+1}\right)^{\infty}.$$

To show that $M \times [0,1)^{\infty} \approx U_{\Psi}$, it suffices construct homeomorphisms

$$h_n: M_n^{\infty} \to U_n \times \left[0, \frac{n}{n+1}\right)^{\infty}, \quad n \in \mathbb{N},$$

so that the following diagram commutes:

$$\begin{array}{cccc}
 & M_n^{\infty} & \xrightarrow{\subset} & M_{n+1}^{\infty} \\
 & & & & \downarrow^{h_{n+1}} \\
 & & & \downarrow^{h_{n+1}} \\
 & U_n \times \left[0, \frac{n}{n+1}\right)^{\infty} \xrightarrow{\subset} & U_{n+1} \times \left[0, \frac{n+1}{n+2}\right)^{\infty}
\end{array}$$

For each $n \in \mathbb{N}$, we define

$$M_n = \left(\bigcup_{i=1}^n [i-1,n] \times U_i\right) \times \left[0,\frac{n}{n+1}\right)^n.$$

Then it follows that

$$M_n^{\infty} = M_n \times \left[0, \frac{n}{n+1}\right)^{\infty}$$
 and $M_n \times \left[0, \frac{n}{n+1}\right) \subset M_{n+1}$.

If we could construct homeomorphisms

$$f_n: M_n \to U_n \times \left[0, \frac{n}{n+1}\right)^{\infty}, \quad n \in \mathbb{N},$$

so that the following diagram commutes:

then the desired homeomorphism h_n could be defined as follows:

$$h_n = f_n \times \mathrm{id} : M_n^\infty = M_n \times \left[0, \frac{n}{n+1}\right)^\infty \to U_n \times \left[0, \frac{n}{n+1}\right)^\infty.$$

To construct f_n inductively, let

$$\overline{M}_n = \left(\bigcup_{i=1}^n [i-1,n] \times U_i\right) \times \left[0,\frac{n}{n+1}\right]^n,$$

$$\partial M_n = \overline{M}_n \setminus M_n$$

$$= \{n\} \times U_n \times \left[0,\frac{n}{n+1}\right]^n$$

$$\cup \left(\bigcup_{i=1}^n [i-1,n] \times U_i\right) \times \left(\left[0,\frac{n}{n+1}\right]^n \setminus \left[0,\frac{n}{n+1}\right]^n\right).$$

Similarly to M, we can see that these are $\ell_2(\tau)$ -manifolds. Note that ∂M_n is a Z-set in \overline{M}_n . Let $p_n : \overline{M}_n \to U_n$ be the projection and $i_n : U_n \to \partial M_n \subset \overline{M}_n$ the injection defined by $i_n(x) = (n, x, v_n)$, where

$$v_n = \left(\frac{n}{n+1}, \dots, \frac{n}{n+1}\right) \in \left[0, \frac{n}{n+1}\right]^n$$

Then $i_n(U_n) = U_n \times \{v_n\}$ is a strong deformation retract of both \overline{M}_n and ∂M_n , hence p_n and $p_n | \partial M_n$ are homotopy equivalences and i_n is a homotopy inverse of both p_n and $p_n | \partial M_n$. Thus, we have the homotopy equivalences

$$r_n: \overline{M}_n \to U_n \times \left[0, \frac{n}{n+1}\right]$$
 and $r'_n = r_n |\partial M_n: \partial M_n \to U_n \times \left\{\frac{n}{n+1}\right\}$
defined by $r_n(x) = (p_n(x), n/(n+1)).$

We shall construct homeomorphisms

$$\overline{f}_n: \overline{M}_n \to U_n \times \left[0, \frac{n}{n+1}\right], \quad n \in \mathbb{N},$$

so that $\overline{f}_n \simeq r_n$,

$$\overline{f}_n(\partial M_n) = U_n \times \left\{\frac{n}{n+1}\right\}, \quad \text{i.e.,} \quad \overline{f}_n(M_n) = U_n \times \left[0, \frac{n}{n+1}\right),$$

and the following diagram commutes:

Then $f_n = \overline{f}_n | M_n$ is the desired homeomorphism.

First, by Theorem 1, we have homeomorphisms $f: \overline{M}_1 \to U_1 \times [0, 1/2]$ and $f': \partial M_1 \to U_1 \times \{1/2\}$ onto U_1 such that $f \simeq r_1$ and $f' \simeq r'_1$. Since $f' \simeq f | \partial M_1$, we can apply Theorem 2 to extend f' to a homeomorphism $\overline{f}_1: \overline{M}_1 \to U_1 \times [0, 1/2]$ which is isotopic f, hence $\overline{f}_1 \simeq r_1$.

Now, assume that \overline{f}_n has been obtained and consider the following sets:

$$\begin{split} \overline{\partial}M_n &= \partial M_n \times \left[0, \frac{n}{n+1}\right] \cup \overline{M}_n \times \left\{\frac{n}{n+1}\right\},\\ L_{n+1} &= \overline{M}_{n+1} \setminus \left(M_n \times \left[0, \frac{n}{n+1}\right]\right) \right)\\ &= [n, n+1] \times U_{n+1} \times \left[0, \frac{n+1}{n+2}\right]^{n+1} \\ &\cup \left(\bigcup_{i=1}^n [i-1, n] \times U_i\right) \times \left(\left[0, \frac{n+1}{n+2}\right]^{n+1} \setminus \left[0, \frac{n}{n+1}\right]^{n+1}\right),\\ B_n &= \psi_n \left(U_n \times \left\{\frac{n}{n+1}\right\}\right) \times \left[0, \frac{n}{n+1}\right] \\ &\cup \psi_n \left(U_n \times \left[0, \frac{n}{n+1}\right]\right) \times \left\{\frac{n}{n+1}\right\},\\ W_{n+1} &= \left(U_{n+1} \times \left[0, \frac{n+1}{n+2}\right]\right) \setminus \left(\psi_n \left(U_n \times \left[0, \frac{n}{n+1}\right]\right) \times \left[0, \frac{n}{n+1}\right)\right)\\ \text{Then we have the following homeomorphism:} \end{split}$$

 $g_n = (\psi_n \times \mathrm{id})(\overline{f}_n \times \mathrm{id}) |\overline{\partial} M_n : \overline{\partial} M_n \to B_n.$

Observe that L_{n+1} and W_{n+1} are $\ell_2(\tau)$ -manifolds, $\overline{\partial}M_n$ and ∂M_{n+1} are disjoint Z-sets in L_{n+1} , and B_n and $U_{n+1} \times \{(n+1)/(n+2)\}$ are disjoint Z-

sets in W_{n+1} . Since $i_{n+1}(U_{n+1}) = U_{n+1} \times \{v_{n+1}\}$ and $U_{n+1} \times \{(n+1)/(n+2)\}$ are strong deformation retracts of L_{n+1} and W_{n+1} respectively, it follows that $r''_{n+1} = r_{n+1}|L_{n+1} : L_{n+1} \to W_{n+1}$ is a homotopy equivalence. By Theorem 1, we have homeomorphisms

$$g: L_{n+1} \to W_{n+1}$$
 and $g': \partial M_{n+1} \to U_{n+1} \times \left\{\frac{n+1}{n+2}\right\}$

such that $g \simeq r''_{n+1}$ and $g' \simeq r'_{n+1} = r''_{n+1} |\partial M_{n+1}|$. Then g' extends to a homeomorphism

$$g'': \overline{\partial} M_n \cup \partial M_{n+1} \to B_n \cup U_{n+1} \times \left\{\frac{n+1}{n+2}\right\}$$

by setting $g''|\overline{\partial}M_n = g_n$.

Note that r_n is homotopic to the map

$$q_n: \overline{M}_n \to U_n \times \left[0, \frac{n}{n+1}\right]$$

defined by $q_n(x) = (p_n(x), 0)$ and $\psi_n q_n = p_n$. Then we have $\psi_n \overline{f}_n \simeq \psi_n r_n \simeq \psi_n q_n = p_n$. Let $c_n : \mathbf{I} \to \{n/(n+1)\}$ and $c_{n+1} : \mathbf{I} \to \{(n+1)/(n+2)\}$ be the constant maps. Since $r''_{n+1}|\overline{\partial}M_n = p_n \times c_{n+1}|\overline{\partial}M_n$, it follows that

 $g_n \simeq \psi_n \overline{f}_n \times c_n |\overline{\partial} M_n \simeq p_n \times c_n |\overline{\partial} M_n \simeq p_n \times c_{n+1} |\overline{\partial} M_n = r_{n+1}'' |\overline{\partial} M_n,$

where all homotopies are realized in W_{n+1} (the first two in B_n). Therefore,

$$g'' \simeq r_{n+1}'' |\overline{\partial} M_n \cup \partial M_{n+1} \simeq g|\overline{\partial} M_n \cup \partial M_{n+1}.$$

Thus, we can apply Theorem 2 to extend g'' to a homeomorphism $\tilde{g}: L_{n+1} \to W_{n+1}$. By pasting \tilde{g} with $(\psi_n \times id)(\bar{f}_n \times id)$, we can obtain the desired homeomorphism \bar{f}_{n+1} . Since $i_{n+1}p_{n+1} \simeq id$ in \overline{M}_{n+1} , it follows that

$$\bar{f}_{n+1} \simeq \bar{f}_{n+1}i_{n+1}p_{n+1} = g'i_{n+1}p_{n+1} \simeq r_{n+1}i_{n+1}p_{n+1} \simeq r_{n+1}$$

This completes the proof.

REMARK 2. For a closed tower $M_1 \subset M_2 \subset \cdots$ of $\ell_2(\tau)$ -manifolds such that each M_i is a Z-set in M_{i+1} , $M = \bigcup_{n \in \mathbb{N}} [n-1,n] \times M_n$ is an $\ell_2(\tau)$ manifold. On the other hand, given a sequence $\Psi = (\psi_n)_{n \in \mathbb{N}}$ of collars $\psi_n :$ $M_n \times [0,1) \to M_{n+1}$, the $\ell_2(\tau) \times \mathbb{R}^\infty$ -manifold M_{Ψ} can be defined as in Remark 1. Similarly to Lemma 3, we can show $M \times \mathbb{R}^\infty \approx M_{\Psi}$. Since $M \times \mathbb{R}^\infty$ does not depend on Ψ , the topological type of M_{Ψ} is unique. Moreover, M_{Ψ} can be embedded in $\ell_2(\tau) \times \mathbb{R}^\infty$ as an open set.

References

 R. D. Anderson and J. D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283–289.

- C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Monogr. Mat. 58, Polish Sci. Publ., Warszawa, 1975.
- [3] R. E. Heisey, Manifolds modelled on the direct limit of lines, Pacific J. Math. 102 (1982), 47–54.
- [4] D. W. Henderson, Corrections and extensions of two papers about infinite-dimensional manifolds, General Topology Appl. 1 (1971), 321–327.
- [5] D. W. Henderson and R. M. Schori, Topological classification of infinite-dimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1970), 121–124.
- P. Mankiewicz, On topological, Lipschitz, and uniform classification of LF-spaces, Studia Math. 52 (1974), 109–142.
- [7] K. Sakai, On \mathbb{R}^{∞} -manifolds and Q^{∞} -manifolds, Topology Appl. 18 (1984), 69–79.
- [8] H. H. Schaefer with M. P. Wolff, *Topological Vector Spaces*, 2nd ed., Grad. Texts in Math. 3, Springer, New York, 1999.
- [9] R. M. Schori, Topological stability of infinite-dimensional manifolds, Compos. Math. 23 (1971), 87–100.
- [10] H. Toruńczyk, Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974), 53–67.
- [11] —, Characterizing Hilbert space topology, ibid. 111 (1981), 247–262.
- [12] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.

Kotaro Mine and Katsuro Sakai Institute of Mathematics University of Tsukuba Tsukuba, 305-8571, Japan E-mail: pen@math.tsukuba.ac.jp sakaiktr@sakura.cc.tsukuba.ac.jp

Received April 20, 2007

(7595)