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Summary. Sufficient conditions for the absence of absolutely continuous spectrum for
unbounded Jacobi operators are given. A class of unbounded Jacobi operators with purely
singular continuous spectrum is constructed as well.

1. Introduction. In this paper we will discuss self-adjoint unbounded
Jacobi operators in l2 = l2(N) without absolutely continuous part. Let
{en}n∈N be the canonical orthonormal basis in l2. A Jacobi operator H is
densely defined in l2 by the formula

Hen = an−1en−1 + bnen + anen+1, n = 1, 2, . . . ,

where the weights {an}n∈N and the diagonal {bn}n∈N are sequences of real
numbers with a0 = 0. More precisely, the Jacobi operator H associated to
{an} and {bn} is defined on its maximal domain in l2 by

(Hf)n = an−1fn−1 + bnfn + anfn+1, n = 1, 2, . . . .

Assumption. In what follows we will always assume that H∗ = H and
an > 0 for all n ∈ N.

The spectral theory of Jacobi operators is a large field far from being
completed. We mention here only a few papers concerning spectral analysis
of H in the case limn an =∞ [1–3, 6, 8–10]. Most of these papers contain suf-
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ficient conditions for existence of nontrivial absolutely continuous spectrum
of H.

The problem of the absence of absolutely continuous spectrum of Schrö-
dinger operators has been studied by Simon and Spencer [17] and by Simon
and Stolz [18]. They studied the cases of continuous and discrete versions
(i.e. Jacobi operators with an ≡ 1). Following their ideas we will find gen-
eral criteria for the absence of absolutely continuous spectrum of H, i.e. for
σac(H) = ∅. For λ ∈ R consider the infinite system of equations

(1.1) an−1un−1 + bnun + anun+1 = λun, n > 1.

It is well known that spectral analysis of H is strongly related to the asymp-
totic behaviour of solutions of (1.1) (Gilbert–Pearson subordination theory
[12]). In particular, using this theory one can formulate the following general
observation which can be used to verify that σac(H) = ∅.

Proposition 1.1. If for almost all λ ∈ R (with respect to the Lebesgue
measure) there exists a nontrivial solution u of (1.1) such that

(1.2)
N∑
i=1

|ui|2 = o

(N−1∑
i=1

1
ai

)
,

then σac(H) = ∅.
Remark 1.2. The above o(·) term in general depends on λ.

Proof. We claim that any solution of (1.1) satisfying (1.2) must be sub-
ordinated, [12]. Suppose that there exists v linearly independent of u and a
constant c0 > 0 such that

Ni∑
s=1

|us|2
( Ni∑
s=1

|vs|2
)−1
≥ c0

for a sequence Ni → ∞. Let c = W (u, v) be the Wrońskian of u and v. By
the Schwarz inequality we have (cf. [8, p. 222])

Ni−1∑
s=1

|c|
as
≤ 2
[ Ni∑
s=1

|us|2
]1/2[ Ni∑

s=1

|vs|2
]1/2
≤ 2

c
1/2
0

Ni∑
s=1

|us|2

=
2

c
1/2
0

o

(Ni−1∑
s=1

1
as

)
,

a contradiction. This proves our claim and completes the proof.

Despite its simplicity, Proposition 1.1 is, in general, not easy to apply.
Therefore we look for more efficient criteria for the absence of absolutely con-
tinuous spectrum of H. In Section 2 we shall formulate sufficient conditions
(in terms of {an} and {bn}) which guarantee that σac(H) = ∅. Moreover, in
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Section 3 a class of Jacobi operators with purely singular continuous spec-
trum will be constructed.

2. The absence of absolutely continuous spectrum. Due to the
results of [5] sufficient conditions are known for compactness of the resol-
vent R(H, ·) of H, which are given in terms of asymptotic behaviour of the
weights and the diagonal. We want to find sufficient conditions which guar-
antee that H does not have absolutely continuous spectrum. It turns out
that the method used by Simon and Spencer [15] for Schrödinger operators
(continuous or discrete) can be easily adapted to our case. We shall consider
the following three cases:

(a) {an} is unbounded and {bn} ∈ l∞,
(b) {an} ∈ l∞ and {bn} is unbounded,
(c) both {an} and {bn} are unbounded.

Before formulating the results concerning the above three cases we intro-
duce the following definition.

Let a and b be the weight sequence and the diagonal, respectively, of the
original Jacobi operator H. Suppose that {Lk}k≥1 is a sequence of mutually
disjoint finite subsets of N, and define Zk =

⋃k
s=1 Ls for k ∈ N∪{∞}, Z0 = ∅.

Define a new sequence a(k) of weights by

a(k)
n :=

{
0, n ∈ Zk,
an, n 6∈ Zk,

for k ∈ {0} ∪ N ∪ {∞} and n ∈ N.

Definition 2.1. We define Hk to be the Jacobi operator given by the
weight sequence a(k) and the diagonal sequence b.

Note that H0 = H. and H∞ is the direct sum of finite-dimensional Jacobi
matrices provided all Lk 6= ∅. Observe that all Hk are self-adjoint. Indeed,
if k is finite, then Hk is a finite-dimensional perturbation of a self-adjoint
operator H. For k = ∞ the restriction of H∞ to the linear space D of
finite linear combinations of base vectors en, n ∈ N, is essentially self-adjoint
because the space D is equal to the space of finite linear combinations of all
the eigenvectors of H∞|D.

Theorem 2.2. Let H be a self-adjoint Jacobi operator corresponding to
a positive sequence of weights {ak} and a diagonal {bn}. Suppose that one of
the following conditions holds:

(a) limk ak =∞, {bn} ∈ l∞ and

(2.1) lim inf
n

[a2
n−1 + a2

n+1]a
−1
n = 0.

(b) {an} ∈ l∞ and {bn} is unbounded , i.e. supn |bn| =∞.
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(c) {an} and {bn} are unbounded , lim infn an > 0, (2.1) holds and

lim inf
n

(
1− bnbn+1

a2
n

)2

= %2 > 0,(2.2)

sup
n

(b2n + b2n+1)a
−2
n <∞.(2.3)

Then σac(H) = ∅.
Proof. The proof is based on the (folklore) result formulated below. In

what follows, for an operator A the notation A± i means A± iI, where I is
the identity operator.

Lemma 2.3. Let Hk be the sequence of Jacobi operators given in Def-
inition 2.1 and such that (Hk−1 − i)−1 − (Hk − i)−1 is of trace class for
k = 1, 2, . . . with

(2.4)
∞∑
k=1

‖(Hk−1 − i)−1 − (Hk − i)−1‖1 <∞,

where ‖T‖1 denotes the trace norm of T . Then σac(H) = ∅.
Proof. First note that for any n ∈ N, (H0− i)−1− (Hn− i)−1 is of trace

class. Moreover, from (2.4) we know that

(H0 − i)−1 − (Hn − i)−1 =
n∑
k=1

[(Hk−1 − i)−1 − (Hk − i)−1]

is convergent in trace norm to a trace class operator C as n → ∞. On
the other hand, (Hn − i)−1 converges strongly to (H∞ − i)−1. Indeed, by
definitions of Hn and H∞ we have

Hnf → H∞f for any f ∈ D.
But Hn|D = Hn and H∞|D = H∞ (see [3]). Applying Theorem VIII.25 of
[14] we get the desired strong convergence of the resolvents. Hence
(H0 − i)−1 − (H∞ − i)−1 = C is of trace class. Finally, the Birman–Kuroda
theorem (see [11]) completes the proof.

(c) Choose nk →∞ such that nk+1 − nk > 2 for all k, n1 > 1, and∑
k

[a2
nk−1 + a2

nk+1]a
−1
nk

<∞.

Let Lk = {nk − 1, nk + 1} and let Hk be as in Definition 2.1. We claim that

(2.5)
∞∑
k=1

‖(Hk−1 − i)−1 − (Hk − i)−1‖1 <∞.

Since the rank of Hk −Hk−1 equals 4, we have

‖(Hk − i)−1 − (Hk−1 − i)−1‖1 ≤ 4‖(Hk − i)−1 − (Hk−1 − i)−1‖.
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Below we will estimate

‖(Hk − i)−1 − (Hk−1 − i)−1‖ = ‖(Hk − i)−1(Hk−1 −Hk)(Hk−1 − i)−1‖.

Note that the domains of Hk and Hk−1 are equal and Hk−1 = Hk+Tk+T ∗k ,
where

(Tkf)(n) =


0, n 6∈ {nk, nk + 1},
ank−1f(nk − 1), n = nk,

ank+1f(nk + 2), n = nk + 1.

Now

(Hk − i)−1 =


X 0 0

0

(
bnk
− i ank

ank
bnk+1 − i

)−1

0

0 0 Y

 ,

whereX = (Ak−i)−1 is the resolvent of the obvious finite-dimensional Jacobi
matrix Ak and Y = (Bk − i)−1 is the resolvent of the infinite-dimensional
Jacobi matrix Bk having the weights cn = ank+1+n and the diagonal dn =
bnk+1+n.

Hence

[(Hk − i)−1Tkf ](n) =


0, n 6∈ {nk, nk + 1},
c(f, k), n = nk,

c(f, k + 1), n = nk + 1,

where

c(f, k) := [(bnk+1 − i)ank−1f(nk − 1)− ank
ank+1f(nk + 2)]s−1

nk
,

c(f, k + 1) := [(bnk
− i)ank+1f(nk + 2)− ank

ank−1f(nk − 1)]s−1
nk
,

with

snk
:= det

(
bnk
− i ank

ank
bnk+1 − i

)
.

Let ‖ · ‖2 denote the Hilbert–Schmidt norm. Using the above relations
we compute

(2.6) ‖(Hk − i)−1Tk‖ ≤ ‖(Hk − i)−1Tk‖2

≤
[
(b2nk+1 + 1)a2

nk−1 + a2
nk+1a

2
nk

+ a2
nk−1a

2
nk

+ (b2nk
+ 1)a2

nk+1

(a2
nk
− bnk

bnk+1)2 + b2nk
+ b2nk+1 + 2a2

nk
+ 1

]1/2

=: Wnk
.

Obviously a similar estimate holds for ‖(Hk + i)−1Tk‖. On the other hand,



44 P. Cojuhari and J. Janas

(2.7) ‖(Hk − i)−1T ∗k (Hk−1 − i)−1‖
≤ ‖T ∗k (Hk−1 − i)−1‖

≤ ‖T ∗k (Hk − i)−1‖+ ‖T ∗k (Hk − i)−1(Hk −Hk−1)(Hk−1 − i)−1‖

≤ ‖(Hk + i)−1Tk‖+ ‖Tk∗(Hk − i)−1‖ ‖(Hk −Hk−1)(Hk−1 − i)−1‖

≤ Wnk
+
√

2Wnk
(a2
nk−1 + a2

nk+1)
1/2.

Note that the denominator of Wnk
is equal to

|snk
| := a2

nk

[(
bnk

bnk+1

a2
nk

− 1
)2

+
b2nk

+ b2nk+1
+ 1

a4
nk

+
2
a2
nk

]1/2

≥ a2
nk

∣∣∣∣bnk
bnk+1

a2
nk

− 1
∣∣∣∣ ≥ %

2
a2
nk

for k sufficiently large. In the last inequality we used (2.2). Now the numer-
ator of Wnk

is equal to

(2.8) (a2
nk−1 + a2

nk+1)
1/2ank

[
1 +

a2
nk−1(b

2
nk+1 + 1) + a2

nk+1(b
2
nk

+ 1)
(a2
nk−1 + a2

nk+1)a2
nk

]1/2

.

Using (2.3) it is clear that the expression in square brackets is uniformly
bounded by a constant M . Combining (2.6) and (2.8) we have

(2.9) Wnk
≤ 2M

%

(a2
nk−1 + a2

nk+1)
1/2

ank

for k sufficiently large.
Combining all the above estimates we have

‖(Hk−1 − i)−1 − (Hk − i)−1‖ ≤Wnk
[2 +

√
2(a2

nk−1 + a2
nk+1)

1/2]

≤ C
a2
nk−1 + a2

nk+1

ank

for some positive constant C independent of nk. Due to our choice of nk it
follows that

(2.10)
∞∑
k=0

‖(Hk+1 − i)−1 − (Hk − i)−1‖ <∞.

Now it is enough to apply Lemma 2.3. This completes the proof of (c).
(b) We follow the proof given by Simon–Spencer in [17]. Let nk+1 > nk+1

be a sequence of natural numbers such that
∞∑
k=1

1
|bnk
|
<∞.

Define Ls := {ns − 1, ns} and the sets Zk and weights a(k)
n as above.
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By definition of Hk we can write, for f ∈ D(Hk),

(2.11) (Hk−1 −Hk)f = (Rk +R∗k)f,

where

(Rkf)(n) =
{
ank−1f(nk − 1) + ank

f(nk + 1), n = nk,

0, n 6= nk.

Using again the definition of Hk we have

(2.12) (Hk − i)−1 =

 (A− i)−1 0 0
0 (bnk

− i)−1 0
0 0 (B − i)−1

 ,

where A and B are suitable Jacobi matrices coming from the original matrix
H (see the corresponding part of the proof of (c)). Assume that supn an = M.

Repeating computations given in case (c) we have

‖(Hk−1 − i)−1 − (Hk − i)−1‖ = ‖(Hk − i)−1(Hk−1 −Hk)(Hk−1 − i)−1‖
≤ ‖(Hk − i)−1Rk(Hk−1 − i)−1‖+ ‖(Hk − i)−1R∗k(Hk−1 − i)−1‖.

Using (2.11) and (2.12) we estimate

(2.13) ‖(Hk− i)−1Rk(Hk−1− i)−1‖ ≤ ‖(Hk− i)−1Rk‖ ≤
2M
|bnk
− i|

<
2M
|bnk
|
,

(2.14) ‖(Hk − i)−1R∗k(Hk−1 − i)−1‖ ≤ ‖R∗k(Hk−1 − i)−1‖
≤ ‖R∗k(Hk − i)−1‖+ ‖R∗k(Hk − i)−1‖ ‖(Hk −Hk−1)(Hk−1 − i)−1‖.

But

(2.15) ‖R∗k(Hk − i)−1‖ = ‖(Hk + i)−1Rk‖ ≤ 2M/|bnk
|,

and

(2.16) ‖(Hk −Hk−1)(Hk−1 − i)−1‖ ≤ 4M.

Thus the above four inequalities imply that

‖(Hk−1 − i)−1 − (Hk − i)−1‖ ≤ C/|bnk
|, k = 1, 2, . . . ,

for some positive C. Since all the estimated operators have rank less than
or equal to 3 similar inequalities also hold for the trace norm, and again
Lemma 2.3 ends the proof of (b).

(a) Let Hk be defined as in (c), i.e. Ls = {ns − 1, ns + 1}, where {nk} is
chosen in such a way that

∞∑
k=1

(a2
nk−1 + a2

nk+1)a
−1
nk

<∞.
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In this case estimates of Wnk
(see case (c)) are immediate. In fact, applying

the formula for snk
we have, for any ε ∈ (0, 1) and k sufficiently large,

(2.17) |snk
| ≥ ank

2

∣∣∣∣bnk
bnk+1

a2
nk

− 1
∣∣∣∣≥ a2

nk
(1− ε).

This is clear because limk ank
= ∞. On the other hand, the numerator

of Wnk
can be estimated from above by

(2.18) (a2
nk−1 + a2

nk+1)
1/2ank

(1 + ε),

provided k is sufficiently large. This is obvious because {bn} ∈ l∞.
Using (2.17) and (2.18) we obtain the desired estimate

Wnk
≤ (a2

nk−1 + a2
nk+1)

1/2a−1
nk

(1 + ε)(1− ε)−1

for k sufficiently large. The rest of the proof is the same as the final part of
the proof in (c).

This ends the proof of the theorem.

3. Construction of an unbounded Jacobi matrix with singular
continuous spectrum. By the well known general result of Simon [15,
Theorem 4.1] the set X of bounded self-adjoint Jacobi operators A in l2(Z)
with σ(A) = [−a−2, a+2] and purely singular spectrum is Baire typical. This
means that for a suitable metric on the space of all bounded and self-adjoint
Jacobi operators, the above setX is dense and Gδ. Later in a joint paper with
Stolz they found explicit examples of Jacobi operators (with an = 1) having
purely singular continuous spectrum in (−2, 2) [18]. Using Theorem 2.2 of
Section 2 we shall construct an unbounded Jacobi operator (with bn ≡ 0)
having the same property. The idea of our construction is similar to the
one presented by Simon and Stolz (which in turn resembles the classical one
given by Pearson for the Schrödinger operator [13]).

Before we start the construction let us recall some notation. For λ ∈ R
consider the system (1.1). Using the transfer matrix

Bλ(n) :=

(
0 1

−an−1/an λ/an

)
,

and setting ~u(n) =
(
un−1

un

)
one can rewrite (1.1) in the form

~u(n+ 1) = Bλ(n)~u(n), n ≥ 2.

For given sequences {cs} and {ws} of positive numbers and a sequence {ks}
of natural numbers with ks+1 − ks > 2 we define the sequence {an} by

(3.1) an =
{
cs, n ∈ [ks + 1, ks+1),
ws, n = ks,

and an = 1 for n < k1.
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Below we shall impose some conditions on the above sequences but at
this point it is enough to know that {1/cs} ∈ l1.

Fix λ > 0 and choose s0 ∈ N such that λ2 < 4c2s for s ≥ s0.
Define Cs := Bλ(ks+1 − 1). Then for s ≥ s0, σ(Cs) = {%s, %s}, where

%s =
1
2

(λc−1
s + i

√
4− λ2c−2

s )

and %s denotes the complex conjugate of %s. The matrix

Xs :=
(

1 1
%s %s

)
diagonalizes Cs, i.e.

X−1
s CsXs =

(
%s 0
0 %s

)
.

Using ‖A‖2 = ‖A∗A‖ = ‖A∗A‖s (the spectral norm of A∗A), we compute

‖Xs‖2 = 2 +
λ

cs
, ‖X−1

s ‖2 =
(

2− λ

cs

)−1

.

Hence

(3.2) ‖Xs‖2 · ‖X−1
s ‖2 = 1 +

λ

cs
+O

((
λ

cs

)2)
, s→∞.

Suppose that the above sequences {cs}, {ws} and {ks} also satisfy

(i) (c2s−1 + c2s)w
−1
s → 0 as s→∞,

(ii)
∑

s(ks+1 − ks)c−2
s

∏s
p=1[cpw

−1
p ]2 =∞.

In particular, (i) implies that csw−1
s < 1 for large s. This fact will be used a

few times.
Let J0 be the Jacobi operator defined by {an} given in (3.1) and bn ≡ 0

with sequences {cs} and {ws} obeying (i) and (ii).
From the above assumptions, we have∑

n

a−1
n >

∑
s

(ks+1 − ks)c−1
s ≥

∑
s

(ks+1 − ks)c−2
s

s∏
p=1

(
cp
wp

)2

,

and the Carleman condition
∑

n a
−1
n =∞ guarantees that J0 is self-adjoint.

We claim that J0 has purely singular continuous spectrum in R \ {0}. First
note that σac(J0) = ∅ by Theorem 2.2(a). Indeed, by (3.1) and (i) the con-
dition (a) of Theorem 2.2 is satisfied. Therefore it remains to prove that J0

does not have point spectrum in R \ {0}. This can be proved by applying
the following general result (which is also implicitly contained in [18]) of [16,
Theorem 10.5.3].
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Lemma 3.1. Let J be a self-adjoint Jacobi operator defined by the se-
quences {an} and {bn}. For λ ∈ R define

Mλ(n) := Bλ(n) . . . Bλ(2).

If

(3.3)
∑
n

a−2
n ‖Mλ(n)‖−2 =∞,

then (1.1) has no solution in l2, i.e. λ 6∈ σp(J).

Below we check that J0 satisfies (3.3). Let As := Bλ(ks+1)Bλ(ks). Then
for l ∈ [ks + 2, ks+1 − 1] we have

Mλ(l) = Bλ(l) . . . Bλ(ks + 2)AsBλ(ks − 1)ks−ks−1−2(3.4)
·As−1Bλ(ks−1 − 1)ks−1−ks−2−2 . . . As0Bλ(ks0 − 1) . . . Bλ(2).

Write

As =
(

−cs−1ws
−1 λws

−1

−λcs−1(csws)−1 λ2(csws)−1

)
+
(

0 0
0 −wscs−1

)
.

Note that all entries of the first matrix belong to l1. This is obvious by using
the above assumption (i) and the identities

cs−1w
−1
s = c−1

s−1(c
2
s−1w

−1
s ), w−1

s = c−1
s (csw−1

s ).

Thus

(3.5) ‖As‖ ≤
ws
cs

+ rs,

where {rs} ∈ l1.
Combining (3.2), (3.4), (3.5) and using the diagonalization of Cs and

|%s| = 1 we can write, for l ∈ [ks + 2, ks+1 − 1],

‖Mλ(l)‖2 ≤ ‖Xs‖2‖X−1
s ‖2‖As‖2 · ‖Xs−1‖2‖X−1

s−1‖
2‖As−1‖2(3.6)

. . . ‖As0‖2‖Bλ(ks0 − 1) . . . Bλ(2)‖2

≤M(λ)
s∏

p=s0

[(
1 +

λ

cp
+O

((
λ

cp

)2))(wp
cp

+ rp

)2]

≤ C(λ)
s∏

p=s0

(
wp
cp

)2

,

where M(λ) and C(λ) are some finite positive constants.
Note that

(3.7)
∑
n

a−2
n ‖Mλ(n)‖−2 ≥

∑
s

c−2
s

ks+1−1∑
l=ks+2

‖Mλ(l)‖−2.
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Using (3.6) and (ii) we have∑
s≥s0

c−2
s

ks+1−1∑
l=ks+2

‖Mλ(l)‖−2 ≥ C(λ)−1
∑
s≥s0

c−2
s (ks+1− ks− 2)

s∏
p=s0

(
cp
wp

)2

=∞.

Therefore (3.3) of Lemma 3.1 is satisfied and so λ 6∈ σp(J0). Since the spec-
trum of J0 is symmetric (because the diagonal of J0 vanishes) (see [7]), we
do not have to repeat the proof for λ < 0. It follows that σp(J0) \ {0} = ∅.

Consequently, we have proved

Theorem 3.2. Let {cs} be a sequence of positive numbers with {c−1
s }

∈ l1, and let {ws} be a sequence of positive numbers such that

(c2s−1 + c2s)w
−1
s → 0.

For any sequence {kn} of integers with kn+1 > kn+2 satisfying the condition

(3.8)
∑
s

(ks+1 − ks)c−2
s

s∏
p=1

(
cp
wp

)2

=∞

and the weights defined by

an =


cs, n ∈ [ks + 1, ks+1),
ws, n = ks,

1, n < k1,
the Jacobi operator J0 with the above weights and zero diagonal has purely
singular continuous spectrum in R \ {0}.

Corollary 3.3. Let {an}, {cs}, {ks} and {ws} be as in Theorem 3.2.
If each ks is odd , then the spectrum of the Jacobi operator J0 defined in that
theorem has purely singular continuous spectrum in R.

Proof. Direct computation shows that 0 ∈ σp(J0) if and only if∑
n

n∏
l=1

(a2l−1/a2l)2 <∞.

But∑
n

n∏
l=1

(a2l−1/a2l)2 >
∑
s

(ks+1)/2∏
l=1

(a2l−1/a2l)2 =
∑
s

s∏
p=1

(wp/cp)2 =∞.

The last equality holds because wpc−1
p > 1 for large p and so the third

product is increasing for large s. This completes the proof.

The following two examples satisfy the assumptions of Theorems 2.2
and 3.2, respectively.

Example 3.4. Let {cn} ∈ l∞. Take α ∈ (0, 1] and define a3n−1 =
a3n+1 = nα, a1 = 1, and a3n = nβ , where β > 2α. The diagonal bn is
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given by b2n = cn and b2n+1 = nγ with 0 < γ < α. It is easy to check
that for these weights and diagonal all assumptions of Theorem 2.2(c) are
satisfied.

Example 3.5. Take α > 1 and define cs = sα and ws = s2α+ε, ε > 0.
Choose a sequence {ks} ⊂ N such that

(3.9)
∑
s

(ks+1 − ks)s−2α (s!)−2(α+ε) =∞.

Then the condition (3.8) of Theorem 3.2 is satisfied.

Remark 3.6. One can construct examples of unbounded Jacobi opera-
tors J with σac(J) = R and nonempty σp(J) (see [8]). However, we do not
know explicit examples of unbounded weights {an} which define a Jacobi op-
erator (with zero diagonal) having mixed absolutely continuous and singular
continuous spectrum.

We conclude this paper with the following question. Let J be a Jacobi
operator with purely singular continuous spectrum. By a general result of
Carey and Pincus [4] there exists a trace class operator T with σac(J +T ) =
σsc(J + T ) = ∅. Can one choose T to be a Jacobi operator?

We greatly appreciate the great job done by an anonymous referee, who
helped us to remove many errors from the original version of the manuscript.

We are also grateful to Günter Stolz for his help in proving Theorem 2.2.
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