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Summary. The Polish space Y constructed in [vM1] admits no nontrivial isotopy. Yet,
there exists a Polish group that acts transitively on Y .

1. Introduction. We consider separable metric spaces only.

Theorem 1.1. The countable dense homogeneous Polish AR-space Y
constructed in [vM1] has the following properties:

(1) Y admits no nontrivial isotopy with a continuum as the parameter
set ;

(2) Y admits a transitive action of a Polish group and , hence, Y is a
coset space;

(3) Y has the homeomorphism extension property for compacta (that is,
Y is compactly homogeneous);

(4) for any bijection Φ of Y with int(Fix(Φ)) = ∅ (in particular , by a
result of van Mill [vM1], for any nonidentity homeomorphism of Y ),
Y is countable dense homogeneous with respect to conjugates of Φ.

Recall that a space X is countable dense homogeneous (abbreviated
CDH) if for any countable dense subsets A and B of X there exists a hom-
eomorphism h of X such that h(A) = B; by a result of Bennett [B], such
a connected X is necessarily homogeneous. In (4) of Theorem 1.1, we have
in mind the following “conjugated” variant of the countable dense homo-
geneity: Let Φ be a bijection of a space X such that int(Fix(Φ)) = ∅. We
say that X is countable dense homogeneous with respect to conjugates of Φ
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(abbreviated Φ∗-CDH) if for any two countable dense sets A and B of X,
there exists a homeomorphism h of X such that h−1(Φ(h(A))) = B.

As shown in [vM1], every homeomorphism of Y which is the identity
on a nonempty open subset (more generally, on a non-Z-set in Y ) must be
the identity. It follows that Y is not strongly locally homogeneous. (Recall
that X is strongly locally homogeneous if every x ∈ X has a neighborhood
U so that for any x, x′ ∈ U there exists a homeomorphism h that moves x
to x′ and is the identity outside U .) By a result of van Mill [vM2], every
strongly locally homogeneous Polish space X admits a transitive action of
a Polish group (and, hence, X is a coset space). So, Theorem 1.1 shows
that, beyond the class of strongly locally homogeneous spaces, there are
homogeneous coset spaces with a nice local structure. On the other hand,
in [vM2], van Mill has constructed a homogeneous Polish space Z which is
not a coset space. The space Z, however, has a very bad local structure and,
in particular, is far from being an AR. Possibly, as a rule, a homogeneous
Polish space X with a nice local structure must be a coset space. (The referee
has kindly informed us that, recently, van Mill has constructed a counterpart
of the space Z which can be identified with a convex set in `2. This shows
that, in our vague statement above, the AR-property is not strong enough
to guarantee that a homogeneous X is a coset space.)

As noted in [vM1], the space Y admits a topological copy S, which is a
convex subset of the infinite-dimensional Hilbert space H; moreover, S × S
is homeomorphic to H.

2. The space Y

Definition 2.1. Let P be a compactum. A countable collection P in the
Hilbert cube Q is Z-embedding-dense for P if P consists of pairwise disjoint
topological copies of P which are Z-sets and such that every map α : P → Q
can be approximated by an embedding e : P → Q with e(P ) ∈ P.

Employing the fact that the space of mappings of P into the Hilbert cube
Q is separable and the basic facts on Z-sets (see, e.g., [To]) one can easily
construct a Z-embedding-dense collection P for an arbitrary compactum P
(see [vM1, Lemma 3.1]).

Letting P be the Hilbert cube itself, choose any Z-embedding-dense col-
lection P = {P1, P2, . . . } and let

Y = Q \
∞⋃
k=1

Pk.

It is easily seen that Y is Polish and, as a complement of a countable union
of Z-sets, is an AR (see, e.g., [To]).



A Polish AR-Space with no Nontrivial Isotopy 69

3. No nontrivial isotopy on Y . Let (T, ∗) be a pointed nontrivial
continuum, where ∗ is a fixed point of T . Write P ′k = Pk × T and consider
the collection P ′ = {P ′1, P ′2, . . . } in Q′ = Q× T . Let

Y ′ = Q′ \
∞⋃
k=1

P ′k ⊂ Q′.

Definition 3.1. A map h : Y ′ → Y ′ is (n,m)-continuous if the natural
extension

ĥ : (Y ′ ∪ P ′n)/{P ′n} → (Y ′ ∪ P ′m)/{P ′m}
is continuous.

It was shown in [vM1] that, for a homeomorphism h : Y → Y and n,
there exists m such that the obvious counterpart of ĥ, that is, the map
(Y ∪Pn)/{Pn} → (Y ∪Pm)/{Pm}, is continuous. Moreover, the assignment
n 7→ m is a permutation. A similar fact holds for the space Y ′.

Proposition 3.2. For every isotopy (ht) : Y → Y , t ∈ T , with h∗ = id,
there exists a permutation p : N → N such that h : Y ′ → Y ′ given by
h(y, t) = (ht(y), t), (y, t) ∈ Y ′, is (n, p(n))-continuous.

Proof. We follow the proof of [vM1, Proposition 3.4].
Let M be the closure of the graph of h in the product Q′ × Q′ and let

π1, π2 be the restrictions to M of the respective projections of Q′×Q′ → Q′.
Then M is a continuum, both π1 and π2 are surjections, and π−1

1 (
⋃
P ′) =

π−1
2 (

⋃
P ′). Moreover, modifying the argument of [ACvM, Lemma 3.6], one

sees that both π1 and π2 are monotone. To see that π1 is monotone fix
(x, t) ∈ Q′. Suppose π−1

1 (x, t) ⊂ U ∪V for some nonempty open and disjoint
subsets of M . Since π1 is closed, there exists an open connected set W ⊂ Q
with x ∈ W and π−1

1 (W × {t}) ⊂ U ∪ V . It follows that (W \ Y ) × {t} =
[(W ×{t})∩π1(U ∩M)]∪ [(W ×{t})∩π1(V ∩M)], which yields a separation
of a connected set W \ Y , a contradiction.

Now, using the monotonicity of π1 and π2 and the Sierpiński theorem,
one finds m such that π−1

1 (P ′n) = π−1
2 (P ′m). Let p(n) = m; clearly, p is a

permutation.
Suppose {yk} is a sequence in Y ′ such that limk→∞ d(yk, P ′n) = 0. It

follows that limk→∞ d((yk, h(yk)), π−1
1 (P ′n)) = 0. Since π−1

1 (P ′n) = π−1
2 (P ′m),

we have limk→∞ d((yk, h(yk)), π−1
2 (P ′m)) = 0. This implies

lim
k→∞

d(π2(yk, h(yk)), P ′m) = 0.

Thus {h(yk)} converges to P ′m in (Y ′ ∪ P ′m)/{P ′m}.

Theorem 3.3. Let (ht) : Y → Y , t ∈ T , be an isotopy with h∗ = id.
Then ht = id for all t ∈ T .
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Proof. Suppose ht0(y0) 6= y0 for some t0 6= ∗. Write h(y, t) = (ht(y), t)
for (y, t) ∈ Y ′. Pick α : Q→ Q with

y0 ∈ α(Q) and ht0(y0) 6∈ α(Q).

Enlarge y0 to an open neighborhood W̃ in Q such that, for W = W̃ ∩ Y ,

ht0(W ) ∩ α(Q) = ∅.

Since y0 ∈ α(Q) ∩ W̃ and α(Q) ∩ ht0(W ) = ∅, there exists an embedding
en : Q→ Pn so close to α that

Pn ∩ W̃ 6= ∅ and Pn ∩ ht0(W ) = ∅.
For e′n(x, t) = (en(x), t), (x, t) ∈ Q′, we have e′n(Q′)∩ (Q×{∗}) 6= ∅, that is,

P ′n ∩ (Q× {∗}) 6= ∅.
Since h = id on (Q × {∗}) ∩ Y ′, h is (n, n)-continuous (that is, p(n) = n),
which contradicts the fact that

P ′n ∩W × {t0} 6= ∅ and h(W × {t0}) ∩ P ′p(n) = h(W × {t0}) ∩ P ′n = ∅.
Corollary 3.4. The space Y admits no nontrivial flow. More gener-

ally , if a group G acts on Y then, for every g ∈ G that can be joined to the
unit e ∈ G by a continuum, we have gy = y for every y ∈ Y .

4. A transitive action of a Polish group on Y . Let H(Q) be the
group of homeomorphisms of the Hilbert cube Q. Consider

H(Q|Y ) = {h ∈ H(Q) | (∀n ∈ N) h(Pn) = Pn} = {h ∈ H(Q) | h(Y ) = Y },
a subgroup of H(Q). It is easily seen that the group H(Q|Y ) acts tran-
sitively on Y . However, H(Q|Y ) with the topology inherited from H(Q)
is not completely metrizable (actually, H(Q|Y ) is a genuine Fσδ-subset of
H(Q)). It is clear that if a group G acts on a space X, then G equipped
with a stronger compatible topology (that is, giving rise to a topological
group) will act on X as well. If such a stronger Polish topology exists on G
then G is referred to as Polishable. Below we show that this is the case for
G = H(Q|Y ); this fact also follows from a general condition for Polishability
established in [vM2].

Theorem 4.1. The group H(Q|Y ) is Polishable.

Proof. Let Aut(Z) be the group of permutations of the integers with
the pointwise convergence topology; Aut(Z) is a Polish topological group.
Consider the group homomorphism ϕ : H(Q|Y )→ Aut(Z) given by ϕ(h) =
p(h) ∈ Aut(Z), h ∈ H(Q|Y ), where the value p(n) = m is determined by
h(Pn) = Pm. Then the graph Γ (ϕ) = Γ is a subgroup of H(Q) × Aut(Z).
Since (h, ϕ(h)) 7→ h is continuous from Γ onto H(Q|Y ), it is enough to
show that Γ is closed in H(Q) × Aut(Z). To see this consider a sequence
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{hk}∞k=1 ⊂ H(Q|Y ) that converges in H(Q) such that {ϕ(hk)} converges
in Aut(Z). It follows that, for every n, the sequence {ϕ(hk)(n)}∞k=1 stabilizes,
that is, hk(Pn) = Pm for some m and all but finitely many k. Thus, letting
h = limk→∞ hk, we have h(Pn) = Pm. Now, it is easily seen that h ∈ H(Q|Y )
and ϕ(h) = limk→∞ ϕ(hk); hence, (h, ϕ(h)) ∈ Γ .

Recall that, by the Effros theorem [E], if a Polish topological group G
acts transitively on a Polish space X then G/Gx is homeomorphic to X,
where Gx = {g ∈ G | gx = x} is the stabilizer of x (x may be chosen
arbitrarily in X). Hence, in such a case, X is a coset space. The above
theorem yields:

Corollary 4.2. The space Y admits a transitive action of a Polish
group, and hence is a coset space.

Remark 1. According to Corollary 3.4, the group H(Q|Y ) neither with
its original topology nor with the above Polish topology contains a nontrivial
continuum.

5. Different kinds of homogeneity of Y . The fact that Y is CDH
was verified in [vM1] by an application of the well-known back-and-forth
technique. (Actually, it is shown that, for any countable dense sets A,B ⊂ Y ,
there exists h ∈ H(Q|Y ) with h(A) = B.) This same technique yields the
compact homogeneity of Y . Let K and L be compacta in Y and h a hom-
eomorphism of K onto L. Observe that K and L are Z-sets in the Hilbert
cube Q. So, h can be extended to a homeomorphism h0 of Q. Employing
the fact that elements of P are Z-sets in Q (and are homeomorphic to each
other), we can modify h0 step by step to a homeomorphism hn of Q that
agrees with hn−1 on K ∪ P1 ∪ · · · ∪ Pn and sends it into L ∪

⋃
P, and

whose inverse h−1
n agrees with h−1

n−1 on L ∪ P1 ∪ · · · ∪ Pn and sends it into
K ∪

⋃
P. This can be achieved so that limhn = h is a homeomorphism

of Q. Then h(Y ) = Y (hence, h ∈ H(Q|Y )) and h|K = h. This shows (3) of
Theorem 1.1.

Remark 2. The homeomorphism extension property fails for local com-
pacta of Y . Recently van Mill [vM3] showed that the Hilbert cube Q contains
a countable compact set ∆ so that every homeomorphism of Y which re-
stricts to the identity on ∆ ∩ Y is necessarily the identity on Y . Moreover,
∆ \Y is a convergent sequence space and D = ∆∩Y is (countable) discrete
in Y (hence, D is necessarily a Z-set in Y ). Pick y, y′ ∈ Y \∆, y 6= y′. Then
the homeomorphism h of D ∪ {y} onto D ∪ {y′} which is the identity on D
and sends y to y′ cannot be extended to a homeomorphism of Y .

Before we give the proof of (4) of Theorem 1.1 below, let us comment
on the Φ∗-CDH property. The requirement that int(Fix(Φ)) = ∅ is natural
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if one expects the existence of h for every choice of A and B. Formally, the
CDH and Φ∗-CDH properties are incomparable. Obviously, for a homeo-
morphism Φ of X with int(Fix(Φ)) = ∅, the Φ∗-CDH property implies the
CDH property. To see this in a more general setting let a group G act on
X so that, for some g0 ∈ G, g0x = Φ(x) is as required. By the definition of
Φ∗-CDH, we can find a homeomorphism h of X so that h−1 ◦ g0 ◦h(A) = B.
Then, for the conjugated action g ∗ x = h−1(g(h(x))) of G on X, we have
g0 ∗A = B.

Proposition 5.1. Fix any bijection Φ of Y with int(Fix(Φ)) = ∅ (in par-
ticular , any nonidentity homeomorphism of Y ). Then, for any two countable
dense sets A and B in Y , there exists a homeomorphism h of Q such that
Φ(h(A)) = h(B) and h(

⋃
P) =

⋃
P. In particular , Y is Φ∗-CDH.

Proof. Define Φ(x) = x for x ∈ Q \ Y . Enumerate A = {ai}∞i=1 and
B = {bi}∞i=1. We will inductively construct, for every n ≥ 1, towers of finite
subsets {An} and {Bn} of A and B, respectively, a finite subfamily Pn of P,
and a homeomorphism hn ∈ H(Q) such that

(1) {a1, . . . , an} ⊂ An and {b1, . . . , bn} ⊂ Bn;
(2) Φ(hn({a1, . . . , an})) ⊂ hn(Bn) and Φ−1(hn({b1, . . . , bn})) ⊂ hn(An);

furthermore, Φ(hn(An)) = hn(Bn);
(3) {P1, . . . , Pn} ⊂ Pn;
(4) {hn(P1), . . . , hn(Pn)} ⊂ Pn and {P1, . . . , Pn} ⊂ hn(Pn);
(5) hn|An−1 ∪Bn−1 ∪

⋃
Pn−1 = hn−1|An−1 ∪Bn−1 ∪

⋃
Pn−1;

(6) d(hn−1, hn) < 2−1−n.

Clearly, h = limhn is then as required.

Inductive construction. Define h0 = id and let A0 = B0 = P0 = ∅.
Suppose that An−1, Bn−1, Pn−1, and hn−1 have been constructed for n ≥ 1
so that (1)–(6) are satisfied.

Assume an ∈ A \ (An−1 ∪ Bn−1) and let c = Φ(hn−1(an)). It follows
that c 6∈ hn−1(Bn−1). If c 6∈ hn−1(An−1) and c 6= hn−1(an) (the latter
condition, in particular, implies hn−1(an) ∈ Y ), we set g(1) = hn−1. If, how-
ever, c ∈ hn−1(An−1) or c = hn−1(an), then there exists a homeomorphism
g(1) such that hn−1|An−1 ∪ Bn−1 ∪

⋃
Pn−1 = g(1)|An−1 ∪ Bn−1 ∪

⋃
Pn−1,

Φ(g(1)(an)) ∈ Y \ hn−1(An−1 ∪Bn−1), and Φ(g(1)(an)) 6= g(1)(an); to obtain
the latter condition use the fact that int(Fix(Φ)) = ∅. Moreover, g(1) can be
made as close to hn−1 as we wish. Let A′ = An−1 ∪{an}. Note that, in both
cases, we have Φ(g(1)(an)) ∈ Y \g(1)(A′∪Bn−1). Now, there exists a homeo-
morphism g(2) (as close to g(1) as we wish) such that
g(1)|A′ ∪Bn−1 ∪

⋃
Pn−1 = g(2)|A′ ∪Bn−1 ∪

⋃
Pn−1 and g(2)(b′) =Φ(g(1)(an))

for a certain b′ ∈ B; it follows that b′ 6∈ A′ ∪Bn−1.
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Let B′ = Bn−1 ∪ {b′}. Clearly, we have Φ(g(2)(A′)) = g(2)(B′). Assume
bn ∈ B \ (A′ ∪ B′) and let d = Φ−1(g(2)(bn)). It follows that d 6∈ g(2)(A′).
If d 6∈ g(2)(B′) and d 6= g(2)(bn) (the latter condition, in particular, implies
g(2)(bn) ∈ Y ), we set g(3) = g(2). If d ∈ g(2)(B′) or d = g(2)(bn), then there
exists a homeomorphism g(3) such that we have g(3)|A′ ∪ B′ ∪

⋃
Pn−1 =

g(2)|A′∪B′∪
⋃
Pn−1, Φ−1(g(3)(bn)) ∈ Y \ g(3)(A′∪B′), and Φ−1(g(3)(bn)) 6=

g(3)(bn). Moreover, g(3) can be made as close to g(2) as we wish. In both
cases, we have Φ−1(g(3)(bn)) ∈ Y \ g(3)(A′ ∪B′ ∪ {bn}). Now, there exists a
homeomorphism g(4) (as close to g(3) as we wish) such that g(3)|A′ ∪ B′ ∪
{bn} ∪

⋃
Pn−1 = g(4)|A′ ∪B′ ∪ {bn} ∪

⋃
Pn−1 with g(4)(a′) = Φ−1(g(3)(bn))

for a certain a′ ∈ A; it follows that a′ 6∈ A′∪B′∪{bn}. We let An = A′∪{a′}
and Bn = B′ ∪ {bn}.

Finally, assuming Pn 6∈ Pn−1, we can find a homeomorphism g1 as close
to g(4) as we wish and such that g1|An∪Bn∪

⋃
Pn−1 = g(4)|An∪Bn∪

⋃
Pn−1

and g1(Pn) ∈ P. Similarly, if g−1
1 (Pn) 6∈ Pn−1, we can find a homeomorphism

g2 as close to g1 as we wish and such that g2|An ∪ Bn ∪
⋃
Pn−1 ∪ Pn =

g1|An ∪ Bn ∪
⋃
Pn−1 ∪ Pn and g2(P ) = Pn for some P ∈ P. Let Pn =

Pn−1 ∪ {g1(Pn)} ∪ {P}. The inductive construction is completed by letting
hn = g2.

Proposition 5.1, together with the comments preceding its statement,
yields

Corollary 5.2. For a nontrivial action of a group G on the space Y
and countable dense subsets A and B of Y there exists g0 ∈ G so that , for a
certain homeomorphism h of X, the conjugated action g ∗ x = h−1(g(h(x)))
sends A onto B when g = g0.

Remark 3. In Proposition 5.1, the homeomorphism h can be chosen
as close to the identity in H(Q) as we wish. As a consequence, for count-
able dense subsets A and B of Y , any homeomorphism g of Y can be ap-
proximated by conjugations h−1 ◦ g ◦ h that send A onto B. However, this
approximation is not in the limitation topology on the group of homeo-
morphisms H(Y ) of Y because h ∈ H(Q|A) is not necessarily close to the
identity in the limitation topology. Actually, it can be shown that Y is not
homogeneous “via small homeomorphisms”. More precisely, there exists a
continuous function ε : Y → (0,∞) such any homeomorphism h of Y which
satisfies d(h(x), x) < ε(x) for every x ∈ Y must be the identity on Y (that
is, if h is in the ε-neighborhood of the identity in the limitation topology,
then h must be the identity itself).

6. Other counterparts of Y . The most elementary example that can
be obtained via the procedure described in Section 2 is the space Q \ A,
where A is a countable dense subset of Q; simply, apply the procedure
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to a one-point space P . The resulting space, however, is strongly locally
homogeneous. On the other hand, choosing a countable Z-embedding-dense
collection P in the Hilbert cube Q for P = [0, 1], we obtain the space Q\

⋃
P

which is a counterpart of the space Y . This space (which can be checked
to be topologically different from Y ) shares all the properties of Y from
Theorem 1.1.

In case P is a compactum with dim(P ) ≤ k, Zk-embedding-dense col-
lections can be constructed in the interior of the (2k + 1)-dimensional cube
I2k+1, which replaces the Hilbert cube Q (for the definition of a Zk-set
see [To]). In particular, there exists a Z1-embedding-dense collection I =
{In}∞n=1 in İm, the interior of Im for m ≥ 4. Actually, we can assume
that each In is a finite union of line segments. Then the resulting space
YI = Im \

⋃∞
n=1 In seems to share all the properties of Y listed in Theo-

rem 1.1 with the exception of (3). Obviously, YI is not an AR-space; yet,
it must be locally connected, connected, and l-connected for some l. The
following counterpart of property (3) holds: YI has the homeomorphism ex-
tension property for compacta in İm which are Z1-sets in Im. The tricky
case of m = 3 will be discussed in the forthcoming paper by S. Spież and
the author.
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