A Polish AR-Space with no Nontrivial Isotopy

by
Tadeusz DOBROWOLSKI
Presented by Czestaw BESSAGA

Summary. The Polish space Y constructed in [vM1] admits no nontrivial isotopy. Yet, there exists a Polish group that acts transitively on Y.

1. Introduction. We consider separable metric spaces only.

Theorem 1.1. The countable dense homogeneous Polish $A R$-space Y constructed in [vM1] has the following properties:
(1) Y admits no nontrivial isotopy with a continuum as the parameter set;
(2) Y admits a transitive action of a Polish group and, hence, Y is a coset space;
(3) Y has the homeomorphism extension property for compacta (that is, Y is compactly homogeneous);
(4) for any bijection Φ of Y with $\operatorname{int}(\operatorname{Fix}(\Phi))=\emptyset$ (in particular, by a result of van Mill [vM1], for any nonidentity homeomorphism of Y), Y is countable dense homogeneous with respect to conjugates of Φ.

Recall that a space X is countable dense homogeneous (abbreviated $\mathrm{CDH})$ if for any countable dense subsets A and B of X there exists a homeomorphism h of X such that $h(A)=B$; by a result of Bennett [B], such a connected X is necessarily homogeneous. In (4) of Theorem 1.1, we have in mind the following "conjugated" variant of the countable dense homogeneity: Let Φ be a bijection of a space X such that $\operatorname{int}(\operatorname{Fix}(\Phi))=\emptyset$. We say that X is countable dense homogeneous with respect to conjugates of Φ

[^0](abbreviated Φ^{*} - CDH) if for any two countable dense sets A and B of X, there exists a homeomorphism h of X such that $h^{-1}(\Phi(h(A)))=B$.

As shown in [vM1], every homeomorphism of Y which is the identity on a nonempty open subset (more generally, on a non- Z-set in Y) must be the identity. It follows that Y is not strongly locally homogeneous. (Recall that X is strongly locally homogeneous if every $x \in X$ has a neighborhood U so that for any $x, x^{\prime} \in U$ there exists a homeomorphism h that moves x to x^{\prime} and is the identity outside U.) By a result of van Mill [vM2], every strongly locally homogeneous Polish space X admits a transitive action of a Polish group (and, hence, X is a coset space). So, Theorem 1.1 shows that, beyond the class of strongly locally homogeneous spaces, there are homogeneous coset spaces with a nice local structure. On the other hand, in [vM2], van Mill has constructed a homogeneous Polish space Z which is not a coset space. The space Z, however, has a very bad local structure and, in particular, is far from being an AR. Possibly, as a rule, a homogeneous Polish space X with a nice local structure must be a coset space. (The referee has kindly informed us that, recently, van Mill has constructed a counterpart of the space Z which can be identified with a convex set in ℓ_{2}. This shows that, in our vague statement above, the AR-property is not strong enough to guarantee that a homogeneous X is a coset space.)

As noted in [vM1], the space Y admits a topological copy S, which is a convex subset of the infinite-dimensional Hilbert space H; moreover, $S \times S$ is homeomorphic to H.

2. The space Y

Definition 2.1. Let P be a compactum. A countable collection \mathcal{P} in the Hilbert cube Q is Z-embedding-dense for P if \mathcal{P} consists of pairwise disjoint topological copies of P which are Z-sets and such that every map $\alpha: P \rightarrow Q$ can be approximated by an embedding $e: P \rightarrow Q$ with $e(P) \in \mathcal{P}$.

Employing the fact that the space of mappings of P into the Hilbert cube Q is separable and the basic facts on Z-sets (see, e.g., $[\mathrm{To}]$) one can easily construct a Z-embedding-dense collection \mathcal{P} for an arbitrary compactum P (see [vM1, Lemma 3.1]).

Letting P be the Hilbert cube itself, choose any Z-embedding-dense collection $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots\right\}$ and let

$$
Y=Q \backslash \bigcup_{k=1}^{\infty} P_{k} .
$$

It is easily seen that Y is Polish and, as a complement of a countable union of Z-sets, is an AR (see, e.g., [To]).
3. No nontrivial isotopy on Y. Let $(T, *)$ be a pointed nontrivial continuum, where $*$ is a fixed point of T. Write $P_{k}^{\prime}=P_{k} \times T$ and consider the collection $\mathcal{P}^{\prime}=\left\{P_{1}^{\prime}, P_{2}^{\prime}, \ldots\right\}$ in $Q^{\prime}=Q \times T$. Let

$$
Y^{\prime}=Q^{\prime} \backslash \bigcup_{k=1}^{\infty} P_{k}^{\prime} \subset Q^{\prime}
$$

Definition 3.1. A map $h: Y^{\prime} \rightarrow Y^{\prime}$ is (n, m)-continuous if the natural extension

$$
\hat{h}:\left(Y^{\prime} \cup P_{n}^{\prime}\right) /\left\{P_{n}^{\prime}\right\} \rightarrow\left(Y^{\prime} \cup P_{m}^{\prime}\right) /\left\{P_{m}^{\prime}\right\}
$$

is continuous.
It was shown in [vM1] that, for a homeomorphism $h: Y \rightarrow Y$ and n, there exists m such that the obvious counterpart of \hat{h}, that is, the map $\left(Y \cup P_{n}\right) /\left\{P_{n}\right\} \rightarrow\left(Y \cup P_{m}\right) /\left\{P_{m}\right\}$, is continuous. Moreover, the assignment $n \mapsto m$ is a permutation. A similar fact holds for the space Y^{\prime}.

Proposition 3.2. For every isotopy $\left(h_{t}\right): Y \rightarrow Y, t \in T$, with $h_{*}=\mathrm{id}$, there exists a permutation $p: \mathbb{N} \rightarrow \mathbb{N}$ such that $h: Y^{\prime} \rightarrow Y^{\prime}$ given by $h(y, t)=\left(h_{t}(y), t\right),(y, t) \in Y^{\prime}$, is $(n, p(n))$-continuous.

Proof. We follow the proof of [vM1, Proposition 3.4].
Let M be the closure of the graph of h in the product $Q^{\prime} \times Q^{\prime}$ and let π_{1}, π_{2} be the restrictions to M of the respective projections of $Q^{\prime} \times Q^{\prime} \rightarrow Q^{\prime}$. Then M is a continuum, both π_{1} and π_{2} are surjections, and $\pi_{1}^{-1}\left(\bigcup \mathcal{P}^{\prime}\right)=$ $\pi_{2}^{-1}\left(\cup \mathcal{P}^{\prime}\right)$. Moreover, modifying the argument of [ACvM, Lemma 3.6], one sees that both π_{1} and π_{2} are monotone. To see that π_{1} is monotone fix $(x, t) \in Q^{\prime}$. Suppose $\pi_{1}^{-1}(x, t) \subset U \cup V$ for some nonempty open and disjoint subsets of M. Since π_{1} is closed, there exists an open connected set $W \subset Q$ with $x \in W$ and $\pi_{1}^{-1}(W \times\{t\}) \subset U \cup V$. It follows that $(W \backslash Y) \times\{t\}=$ $\left[(W \times\{t\}) \cap \pi_{1}(U \cap M)\right] \cup\left[(W \times\{t\}) \cap \pi_{1}(V \cap M)\right]$, which yields a separation of a connected set $W \backslash Y$, a contradiction.

Now, using the monotonicity of π_{1} and π_{2} and the Sierpiński theorem, one finds m such that $\pi_{1}^{-1}\left(P_{n}^{\prime}\right)=\pi_{2}^{-1}\left(P_{m}^{\prime}\right)$. Let $p(n)=m$; clearly, p is a permutation.

Suppose $\left\{y_{k}\right\}$ is a sequence in Y^{\prime} such that $\lim _{k \rightarrow \infty} d\left(y_{k}, P_{n}^{\prime}\right)=0$. It follows that $\lim _{k \rightarrow \infty} d\left(\left(y_{k}, h\left(y_{k}\right)\right), \pi_{1}^{-1}\left(P_{n}^{\prime}\right)\right)=0$. Since $\pi_{1}^{-1}\left(P_{n}^{\prime}\right)=\pi_{2}^{-1}\left(P_{m}^{\prime}\right)$, we have $\lim _{k \rightarrow \infty} d\left(\left(y_{k}, h\left(y_{k}\right)\right), \pi_{2}^{-1}\left(P_{m}^{\prime}\right)\right)=0$. This implies

$$
\lim _{k \rightarrow \infty} d\left(\pi_{2}\left(y_{k}, h\left(y_{k}\right)\right), P_{m}^{\prime}\right)=0
$$

Thus $\left\{h\left(y_{k}\right)\right\}$ converges to P_{m}^{\prime} in $\left(Y^{\prime} \cup P_{m}^{\prime}\right) /\left\{P_{m}^{\prime}\right\}$.
Theorem 3.3. Let $\left(h_{t}\right): Y \rightarrow Y, t \in T$, be an isotopy with $h_{*}=\mathrm{id}$. Then $h_{t}=\mathrm{id}$ for all $t \in T$.

Proof. Suppose $h_{t_{0}}\left(y_{0}\right) \neq y_{0}$ for some $t_{0} \neq *$. Write $h(y, t)=\left(h_{t}(y), t\right)$ for $(y, t) \in Y^{\prime}$. Pick $\alpha: Q \rightarrow Q$ with

$$
y_{0} \in \alpha(Q) \quad \text { and } \quad h_{t_{0}}\left(y_{0}\right) \notin \alpha(Q) .
$$

Enlarge y_{0} to an open neighborhood \widetilde{W} in Q such that, for $W=\widetilde{W} \cap Y$,

$$
\overline{h_{t_{0}}(W)} \cap \alpha(Q)=\emptyset .
$$

Since $y_{0} \in \alpha(Q) \cap \widetilde{W}$ and $\alpha(Q) \cap \overline{h_{t_{0}}(W)}=\emptyset$, there exists an embedding $e_{n}: Q \rightarrow P_{n}$ so close to α that

$$
P_{n} \cap \widetilde{W} \neq \emptyset \quad \text { and } \quad P_{n} \cap \overline{h_{t_{0}}(W)}=\emptyset .
$$

For $e_{n}^{\prime}(x, t)=\left(e_{n}(x), t\right),(x, t) \in Q^{\prime}$, we have $e_{n}^{\prime}\left(Q^{\prime}\right) \cap(Q \times\{*\}) \neq \emptyset$, that is,

$$
P_{n}^{\prime} \cap(Q \times\{*\}) \neq \emptyset .
$$

Since $h=\mathrm{id}$ on $(Q \times\{*\}) \cap Y^{\prime}, h$ is (n, n)-continuous (that is, $p(n)=n$), which contradicts the fact that
$P_{n}^{\prime} \cap \overline{W \times\left\{t_{0}\right\}} \neq \emptyset \quad$ and $\overline{h\left(W \times\left\{t_{0}\right\}\right)} \cap P_{p(n)}^{\prime}=\overline{h\left(W \times\left\{t_{0}\right\}\right)} \cap P_{n}^{\prime}=\emptyset$.
Corollary 3.4. The space Y admits no nontrivial flow. More generally, if a group G acts on Y then, for every $g \in G$ that can be joined to the unit $e \in G$ by a continuum, we have $g y=y$ for every $y \in Y$.
4. A transitive action of a Polish group on Y. Let $H(Q)$ be the group of homeomorphisms of the Hilbert cube Q. Consider

$$
H(Q \mid Y)=\left\{h \in H(Q) \mid(\forall n \in \mathbb{N}) h\left(P_{n}\right)=P_{n}\right\}=\{h \in H(Q) \mid h(Y)=Y\}
$$

a subgroup of $H(Q)$. It is easily seen that the group $H(Q \mid Y)$ acts transitively on Y. However, $H(Q \mid Y)$ with the topology inherited from $H(Q)$ is not completely metrizable (actually, $H(Q \mid Y)$ is a genuine $F_{\sigma \delta}$-subset of $H(Q))$. It is clear that if a group G acts on a space X, then G equipped with a stronger compatible topology (that is, giving rise to a topological group) will act on X as well. If such a stronger Polish topology exists on G then G is referred to as Polishable. Below we show that this is the case for $G=H(Q \mid Y)$; this fact also follows from a general condition for Polishability established in [vM2].

Theorem 4.1. The group $H(Q \mid Y)$ is Polishable.
Proof. Let $\operatorname{Aut}(\mathbb{Z})$ be the group of permutations of the integers with the pointwise convergence topology; $\operatorname{Aut}(\mathbb{Z})$ is a Polish topological group. Consider the group homomorphism $\varphi: H(Q \mid Y) \rightarrow \operatorname{Aut}(\mathbb{Z})$ given by $\varphi(h)=$ $p(h) \in \operatorname{Aut}(\mathbb{Z}), h \in H(Q \mid Y)$, where the value $p(n)=m$ is determined by $h\left(P_{n}\right)=P_{m}$. Then the graph $\Gamma(\varphi)=\Gamma$ is a subgroup of $H(Q) \times \operatorname{Aut}(\mathbb{Z})$. Since $(h, \varphi(h)) \mapsto h$ is continuous from Γ onto $H(Q \mid Y)$, it is enough to show that Γ is closed in $H(Q) \times \operatorname{Aut}(\mathbb{Z})$. To see this consider a sequence
$\left\{h_{k}\right\}_{k=1}^{\infty} \subset H(Q \mid Y)$ that converges in $H(Q)$ such that $\left\{\varphi\left(h_{k}\right)\right\}$ converges in $\operatorname{Aut}(\mathbb{Z})$. It follows that, for every n, the sequence $\left\{\varphi\left(h_{k}\right)(n)\right\}_{k=1}^{\infty}$ stabilizes, that is, $h_{k}\left(P_{n}\right)=P_{m}$ for some m and all but finitely many k. Thus, letting $h=\lim _{k \rightarrow \infty} h_{k}$, we have $h\left(P_{n}\right)=P_{m}$. Now, it is easily seen that $h \in H(Q \mid Y)$ and $\varphi(h)=\lim _{k \rightarrow \infty} \varphi\left(h_{k}\right)$; hence, $(h, \varphi(h)) \in \Gamma$.

Recall that, by the Effros theorem [E], if a Polish topological group G acts transitively on a Polish space X then G / G_{x} is homeomorphic to X, where $G_{x}=\{g \in G \mid g x=x\}$ is the stabilizer of x (x may be chosen arbitrarily in X). Hence, in such a case, X is a coset space. The above theorem yields:

Corollary 4.2. The space Y admits a transitive action of a Polish group, and hence is a coset space.

Remark 1. According to Corollary 3.4, the group $H(Q \mid Y)$ neither with its original topology nor with the above Polish topology contains a nontrivial continuum.
5. Different kinds of homogeneity of Y. The fact that Y is CDH was verified in [vM1] by an application of the well-known back-and-forth technique. (Actually, it is shown that, for any countable dense sets $A, B \subset Y$, there exists $h \in H(Q \mid Y)$ with $h(A)=B$.) This same technique yields the compact homogeneity of Y. Let K and L be compacta in Y and h a homeomorphism of K onto L. Observe that K and L are Z-sets in the Hilbert cube Q. So, h can be extended to a homeomorphism h_{0} of Q. Employing the fact that elements of \mathcal{P} are Z-sets in Q (and are homeomorphic to each other), we can modify h_{0} step by step to a homeomorphism h_{n} of Q that agrees with h_{n-1} on $K \cup P_{1} \cup \cdots \cup P_{n}$ and sends it into $L \cup \bigcup \mathcal{P}$, and whose inverse h_{n}^{-1} agrees with h_{n-1}^{-1} on $L \cup P_{1} \cup \cdots \cup P_{n}$ and sends it into $K \cup \bigcup \mathcal{P}$. This can be achieved so that $\lim h_{n}=\bar{h}$ is a homeomorphism of Q. Then $\bar{h}(Y)=Y$ (hence, $\bar{h} \in H(Q \mid Y)$) and $\bar{h} \mid K=h$. This shows (3) of Theorem 1.1.

Remark 2. The homeomorphism extension property fails for local compacta of Y. Recently van Mill [vM3] showed that the Hilbert cube Q contains a countable compact set Δ so that every homeomorphism of Y which restricts to the identity on $\Delta \cap Y$ is necessarily the identity on Y. Moreover, $\Delta \backslash Y$ is a convergent sequence space and $D=\Delta \cap Y$ is (countable) discrete in Y (hence, D is necessarily a Z-set in Y). Pick $y, y^{\prime} \in Y \backslash \Delta, y \neq y^{\prime}$. Then the homeomorphism h of $D \cup\{y\}$ onto $D \cup\left\{y^{\prime}\right\}$ which is the identity on D and sends y to y^{\prime} cannot be extended to a homeomorphism of Y.

Before we give the proof of (4) of Theorem 1.1 below, let us comment on the Φ^{*} - CDH property. The requirement that $\operatorname{int}(\operatorname{Fix}(\Phi))=\emptyset$ is natural
if one expects the existence of h for every choice of A and B. Formally, the CDH and $\Phi^{*}-\mathrm{CDH}$ properties are incomparable. Obviously, for a homeomorphism Φ of X with $\operatorname{int}(\operatorname{Fix}(\Phi))=\emptyset$, the Φ^{*} - CDH property implies the CDH property. To see this in a more general setting let a group G act on X so that, for some $g_{0} \in G, g_{0} x=\Phi(x)$ is as required. By the definition of $\Phi^{*}-\mathrm{CDH}$, we can find a homeomorphism h of X so that $h^{-1} \circ g_{0} \circ h(A)=B$. Then, for the conjugated action $g * x=h^{-1}(g(h(x)))$ of G on X, we have $g_{0} * A=B$.

Proposition 5.1. Fix any bijection Φ of Y with $\operatorname{int}(\operatorname{Fix}(\Phi))=\emptyset$ (in particular, any nonidentity homeomorphism of Y). Then, for any two countable dense sets A and B in Y, there exists a homeomorphism h of Q such that $\Phi(h(A))=h(B)$ and $h(\bigcup \mathcal{P})=\bigcup \mathcal{P}$. In particular, Y is $\Phi^{*}-\mathrm{CDH}$.

Proof. Define $\Phi(x)=x$ for $x \in Q \backslash Y$. Enumerate $A=\left\{a_{i}\right\}_{i=1}^{\infty}$ and $B=\left\{b_{i}\right\}_{i=1}^{\infty}$. We will inductively construct, for every $n \geq 1$, towers of finite subsets $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ of A and B, respectively, a finite subfamily \mathcal{P}_{n} of \mathcal{P}, and a homeomorphism $h_{n} \in H(Q)$ such that
(1) $\left\{a_{1}, \ldots, a_{n}\right\} \subset A_{n}$ and $\left\{b_{1}, \ldots, b_{n}\right\} \subset B_{n}$;
(2) $\Phi\left(h_{n}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)\right) \subset h_{n}\left(B_{n}\right)$ and $\Phi^{-1}\left(h_{n}\left(\left\{b_{1}, \ldots, b_{n}\right\}\right)\right) \subset h_{n}\left(A_{n}\right)$; furthermore, $\Phi\left(h_{n}\left(A_{n}\right)\right)=h_{n}\left(B_{n}\right)$;
(3) $\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathcal{P}_{n}$;
(4) $\left\{h_{n}\left(P_{1}\right), \ldots, h_{n}\left(P_{n}\right)\right\} \subset \mathcal{P}_{n}$ and $\left\{P_{1}, \ldots, P_{n}\right\} \subset h_{n}\left(\mathcal{P}_{n}\right)$;
(5) $h_{n}\left|A_{n-1} \cup B_{n-1} \cup \bigcup \mathcal{P}_{n-1}=h_{n-1}\right| A_{n-1} \cup B_{n-1} \cup \bigcup \mathcal{P}_{n-1}$;
(6) $d\left(h_{n-1}, h_{n}\right)<2^{-1-n}$.

Clearly, $h=\lim h_{n}$ is then as required.
Inductive construction. Define $h_{0}=$ id and let $A_{0}=B_{0}=\mathcal{P}_{0}=\emptyset$. Suppose that $A_{n-1}, B_{n-1}, \mathcal{P}_{n-1}$, and h_{n-1} have been constructed for $n \geq 1$ so that (1)-(6) are satisfied.

Assume $a_{n} \in A \backslash\left(A_{n-1} \cup B_{n-1}\right)$ and let $c=\Phi\left(h_{n-1}\left(a_{n}\right)\right)$. It follows that $c \notin h_{n-1}\left(B_{n-1}\right)$. If $c \notin h_{n-1}\left(A_{n-1}\right)$ and $c \neq h_{n-1}\left(a_{n}\right)$ (the latter condition, in particular, implies $h_{n-1}\left(a_{n}\right) \in Y$, we set $g^{(1)}=h_{n-1}$. If, however, $c \in h_{n-1}\left(A_{n-1}\right)$ or $c=h_{n-1}\left(a_{n}\right)$, then there exists a homeomorphism $g^{(1)}$ such that $h_{n-1}\left|A_{n-1} \cup B_{n-1} \cup \bigcup \mathcal{P}_{n-1}=g^{(1)}\right| A_{n-1} \cup B_{n-1} \cup \bigcup \mathcal{P}_{n-1}$, $\Phi\left(g^{(1)}\left(a_{n}\right)\right) \in Y \backslash h_{n-1}\left(A_{n-1} \cup B_{n-1}\right)$, and $\Phi\left(g^{(1)}\left(a_{n}\right)\right) \neq g^{(1)}\left(a_{n}\right)$; to obtain the latter condition use the fact that $\operatorname{int}(\operatorname{Fix}(\Phi))=\emptyset$. Moreover, $g^{(1)}$ can be made as close to h_{n-1} as we wish. Let $A^{\prime}=A_{n-1} \cup\left\{a_{n}\right\}$. Note that, in both cases, we have $\Phi\left(g^{(1)}\left(a_{n}\right)\right) \in Y \backslash g^{(1)}\left(A^{\prime} \cup B_{n-1}\right)$. Now, there exists a homeomorphism $g^{(2)}$ (as close to $g^{(1)}$ as we wish) such that $g^{(1)}\left|A^{\prime} \cup B_{n-1} \cup \bigcup \mathcal{P}_{n-1}=g^{(2)}\right| A^{\prime} \cup B_{n-1} \cup \bigcup \mathcal{P}_{n-1}$ and $g^{(2)}\left(b^{\prime}\right)=\Phi\left(g^{(1)}\left(a_{n}\right)\right)$ for a certain $b^{\prime} \in B$; it follows that $b^{\prime} \notin A^{\prime} \cup B_{n-1}$.

Let $B^{\prime}=B_{n-1} \cup\left\{b^{\prime}\right\}$. Clearly, we have $\Phi\left(g^{(2)}\left(A^{\prime}\right)\right)=g^{(2)}\left(B^{\prime}\right)$. Assume $b_{n} \in B \backslash\left(A^{\prime} \cup B^{\prime}\right)$ and let $d=\Phi^{-1}\left(g^{(2)}\left(b_{n}\right)\right)$. It follows that $d \notin g^{(2)}\left(A^{\prime}\right)$. If $d \notin g^{(2)}\left(B^{\prime}\right)$ and $d \neq g^{(2)}\left(b_{n}\right)$ (the latter condition, in particular, implies $\left.g^{(2)}\left(b_{n}\right) \in Y\right)$, we set $g^{(3)}=g^{(2)}$. If $d \in g^{(2)}\left(B^{\prime}\right)$ or $d=g^{(2)}\left(b_{n}\right)$, then there exists a homeomorphism $g^{(3)}$ such that we have $g^{(3)} \mid A^{\prime} \cup B^{\prime} \cup \bigcup \mathcal{P}_{n-1}=$ $g^{(2)} \mid A^{\prime} \cup B^{\prime} \cup \bigcup \mathcal{P}_{n-1}, \Phi^{-1}\left(g^{(3)}\left(b_{n}\right)\right) \in Y \backslash g^{(3)}\left(A^{\prime} \cup B^{\prime}\right)$, and $\Phi^{-1}\left(g^{(3)}\left(b_{n}\right)\right) \neq$ $g^{(3)}\left(b_{n}\right)$. Moreover, $g^{(3)}$ can be made as close to $g^{(2)}$ as we wish. In both cases, we have $\Phi^{-1}\left(g^{(3)}\left(b_{n}\right)\right) \in Y \backslash g^{(3)}\left(A^{\prime} \cup B^{\prime} \cup\left\{b_{n}\right\}\right)$. Now, there exists a homeomorphism $g^{(4)}$ (as close to $g^{(3)}$ as we wish) such that $g^{(3)} \mid A^{\prime} \cup B^{\prime} \cup$ $\left\{b_{n}\right\} \cup \bigcup \mathcal{P}_{n-1}=g^{(4)} \mid A^{\prime} \cup B^{\prime} \cup\left\{b_{n}\right\} \cup \bigcup \mathcal{P}_{n-1}$ with $g^{(4)}\left(a^{\prime}\right)=\Phi^{-1}\left(g^{(3)}\left(b_{n}\right)\right)$ for a certain $a^{\prime} \in A$; it follows that $a^{\prime} \notin A^{\prime} \cup B^{\prime} \cup\left\{b_{n}\right\}$. We let $A_{n}=A^{\prime} \cup\left\{a^{\prime}\right\}$ and $B_{n}=B^{\prime} \cup\left\{b_{n}\right\}$.

Finally, assuming $P_{n} \notin \mathcal{P}_{n-1}$, we can find a homeomorphism g_{1} as close to $g^{(4)}$ as we wish and such that $g_{1}\left|A_{n} \cup B_{n} \cup \bigcup \mathcal{P}_{n-1}=g^{(4)}\right| A_{n} \cup B_{n} \cup \bigcup \mathcal{P}_{n-1}$ and $g_{1}\left(P_{n}\right) \in \mathcal{P}$. Similarly, if $g_{1}^{-1}\left(P_{n}\right) \notin \mathcal{P}_{n-1}$, we can find a homeomorphism g_{2} as close to g_{1} as we wish and such that $g_{2} \mid A_{n} \cup B_{n} \cup \bigcup \mathcal{P}_{n-1} \cup P_{n}=$ $g_{1} \mid A_{n} \cup B_{n} \cup \bigcup \mathcal{P}_{n-1} \cup P_{n}$ and $g_{2}(P)=P_{n}$ for some $P \in \mathcal{P}$. Let $\mathcal{P}_{n}=$ $\mathcal{P}_{n-1} \cup\left\{g_{1}\left(P_{n}\right)\right\} \cup\{P\}$. The inductive construction is completed by letting $h_{n}=g_{2}$.

Proposition 5.1, together with the comments preceding its statement, yields

Corollary 5.2. For a nontrivial action of a group G on the space Y and countable dense subsets A and B of Y there exists $g_{0} \in G$ so that, for a certain homeomorphism h of X, the conjugated action $g * x=h^{-1}(g(h(x)))$ sends A onto B when $g=g_{0}$.

Remark 3. In Proposition 5.1, the homeomorphism h can be chosen as close to the identity in $H(Q)$ as we wish. As a consequence, for countable dense subsets A and B of Y, any homeomorphism g of Y can be approximated by conjugations $h^{-1} \circ g \circ h$ that send A onto B. However, this approximation is not in the limitation topology on the group of homeomorphisms $H(Y)$ of Y because $h \in H(Q \mid A)$ is not necessarily close to the identity in the limitation topology. Actually, it can be shown that Y is not homogeneous "via small homeomorphisms". More precisely, there exists a continuous function $\varepsilon: Y \rightarrow(0, \infty)$ such any homeomorphism h of Y which satisfies $d(h(x), x)<\varepsilon(x)$ for every $x \in Y$ must be the identity on Y (that is, if h is in the ε-neighborhood of the identity in the limitation topology, then h must be the identity itself).
6. Other counterparts of Y. The most elementary example that can be obtained via the procedure described in Section 2 is the space $Q \backslash A$, where A is a countable dense subset of Q; simply, apply the procedure
to a one-point space P. The resulting space, however, is strongly locally homogeneous. On the other hand, choosing a countable Z-embedding-dense collection \mathcal{P} in the Hilbert cube Q for $P=[0,1]$, we obtain the space $Q \backslash \bigcup \mathcal{P}$ which is a counterpart of the space Y. This space (which can be checked to be topologically different from Y) shares all the properties of Y from Theorem 1.1.

In case P is a compactum with $\operatorname{dim}(P) \leq k, Z_{k}$-embedding-dense collections can be constructed in the interior of the $(2 k+1)$-dimensional cube $I^{2 k+1}$, which replaces the Hilbert cube Q (for the definition of a Z_{k}-set see $[\mathrm{To}])$. In particular, there exists a Z_{1}-embedding-dense collection $\mathcal{I}=$ $\left\{I_{n}\right\}_{n=1}^{\infty}$ in \dot{I}^{m}, the interior of I^{m} for $m \geq 4$. Actually, we can assume that each I_{n} is a finite union of line segments. Then the resulting space $Y_{I}=I^{m} \backslash \bigcup_{n=1}^{\infty} I_{n}$ seems to share all the properties of Y listed in Theorem 1.1 with the exception of (3). Obviously, Y_{I} is not an AR-space; yet, it must be locally connected, connected, and l-connected for some l. The following counterpart of property (3) holds: Y_{I} has the homeomorphism extension property for compacta in \dot{I}^{m} which are Z_{1}-sets in I^{m}. The tricky case of $m=3$ will be discussed in the forthcoming paper by S. Spiez and the author.

References

$[\mathrm{ACvM}]$ R. D. Anderson, D. W. Curtis, and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982), 311-321.
[B] R. Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972), 189194.
[E] E. G. Effros, Transformation groups and C^{*}-algebras, Ann. of Math. 81 (1965), 38-55.
[vM1] J. van Mill, On countable dense and strong local homogeneity, Bull. Polish Acad. Sci. Math. 53 (2005), 401-408.
[vM2] -, Homogeneous spaces and transitive actions by Polish groups, Israel J. Math., to appear.
[vM3] -, A countable dense homogeneous space with a dense rigid open subspace, Fund. Math. 200 (2008), to appear.
[To] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of ℓ_{2}-manifolds, ibid. 101 (1978), 93-110.

Tadeusz Dobrowolski
Department of Mathematics Pittsburg State University Pittsburg, KS 66762, U.S.A.
E-mail: tdobrowo@mail.pittstate.edu

Faculty of Mathematics and Natural Sciences
Cardinal Stefan Wyszyński University
Dewajtis 5, 01-815 Warszawa, Poland

[^0]: 2000 Mathematics Subject Classification: 57N37, 57S05, 54H15, 22F30.
 Key words and phrases: isotopy, countable dense homogeneous, Polish space, transitive action.

