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Summary. We study a system of pseudodifferential equations which is elliptic in the
Petrovskĭı sense on a closed smooth manifold. We prove that the operator generated by
the system is a Fredholm operator in a refined two-sided scale of Hilbert function spaces.
Elements of this scale are special isotropic spaces of Hörmander–Volevich–Paneah.

1. Introduction. In this article we consider a system of linear pseu-
dodifferential equations elliptic in the Petrovskĭı sense on a closed smooth
manifold. It is known (see [1, 11] ) that the operator A corresponding to this
system is bounded and Fredholm on appropriate pairs of Sobolev spaces. We
investigate this operator on the Hilbert scale of special isotropic Hörmander–
Volevich– Paneah spaces [9, 10, 23, 25]

(1) Hs,ϕ := H
〈·〉sϕ(〈·〉)
2 , 〈ξ〉 := (1 + |ξ|2)1/2.

Here, s ∈ R and ϕ is a function parameter slowly varying at +∞ in the
Karamata sense. In particular, every standard function

ϕ(t) = (log t)r1(log log t)r2 . . . (log . . . log t)rn , {r1, . . . , rn} ⊂ R, n ∈ N,
is admissible. This scale was introduced and investigated by the authors in
[15, 16]. It contains the Sobolev scale {Hs} ≡ {Hs,1} and is considerably
finer. Therefore the collection of spaces (1) is called a refined scale (with
respect to the Sobolev scale).

Spaces of the form (1) arise naturally in different spectral problems: con-
vergence of spectral expansions of self-adjoint elliptic operators almost ev-
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erywhere, or in the norm of Lp with p > 2 or C (see survey [2]); spectral
asymptotics of general self-adjoint elliptic operators in a bounded domain;
the Weyl formula with a sharp estimate of the remainder (see [13, 14]), and
others. They may be expected to be useful in other “fine” questions. Due
to their interpolation properties, the spaces Hs,ϕ occupy a special position
among the spaces of generalized smoothness which are actively investigated
and used today (see survey [12], recent articles [8, 6] and the bibliography
therein).

The main result of this article is Theorem 1 on the boundedness and the
Fredholm property of an elliptic operator on the scale (1). The refined local
smoothness of a solution of the elliptic system is obtained as an important
application (Theorem 4). Also some auxiliary results are given which may be
of independent interest. The case of scalar elliptic operators was investigated
earlier by the authors in [16–21].

2. The statement of the problem. Let Γ be a closed (compact and
without boundary) infinitely smooth manifold of dimension n ≥ 1. We sup-
pose that a certain C∞-density dx is defined on Γ . By D′(Γ ) we denote
the linear topological space of all distributions on Γ , that is, D′(Γ ) is the
space antidual to the space C∞(Γ ) with respect to the extension of the inner
product in L2(Γ, dx) by continuity. This extension is denoted by (f, w)Γ for
f ∈ D′(Γ ), w ∈ C∞(Γ ).

We consider a system of linear equations

(2)
p∑

k=1

Aj,kuk = fj on Γ, j = 1, . . . , p.

Here, p ∈ N and Aj,k, j, k = 1, . . . , p, are scalar classical (polyhomogeneous)
pseudodifferential operators of arbitrary real orders defined on Γ (see e.g.
[1, Sec. 2.1]). The complete symbol of the pseudodifferential operator Aj,k is
an infinitely smooth complex-valued function on the cotangent bundle T ∗Γ .
The principal symbol of Aj,k is a positively homogeneous function of order
ordAj,k on every fiber T ∗xΓ \{0}, x ∈ Γ . The principal symbol is assumed not
to be identically zero. We consider equations (2) in the sense of distribution
theory, so that uk, fj ∈ D′(Γ ). For every k = 1, . . . , p we put

mk := max{ordA1,k, . . . , ordAp,k}.
Let us assume the system (2) to be elliptic in the Petrovskĭı sense, that

is,
det (a(0)

j,k(x, ξ))
p
j,k=1 6= 0 for each x ∈ Γ, ξ ∈ T ∗xΓ \ {0}.

Here, a(0)
j,k(x, ξ) is the principal symbol of Aj,k if ordAj,k = mk, and a

(0)
j,k(x, ξ)

≡ 0 if ordAj,k < mk.
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Let us rewrite the system (2) in matrix form: Au = f on Γ , where A :=
(Aj,k) is a square p× p matrix, and u = col(u1, . . . , up), f = col(f1, . . . , fp)
are function columns. The mapping u 7→ Au is a continuous linear operator
on (D′(Γ ))p. We investigate the restrictions of this operator to spaces of the
refined scale over Γ .

3. Auxiliary results. We denote byM the set of all Borel measurable
functions ϕ : [1,+∞)→ (0,+∞) such that ϕ and 1/ϕ are bounded on every
compact interval [1, b], and ϕ is slowly varying at +∞ in the Karamata
sense, that is,

lim
t→+∞

ϕ(λt)/ϕ(t) = 1 for each λ > 0.

Let s ∈ R and ϕ ∈ M. We denote by Hs,ϕ(Rn) the set of all tempered
distributions u whose Fourier transform û is a locally Lebesgue integrable
function in Rn which satisfies the condition�

〈ξ〉2sϕ2(〈ξ〉)|û(ξ)|2 dξ <∞.

Here, the integral is over Rn, and 〈ξ〉 := (1 + ξ21 + · · ·+ ξ2n)
1/2. In Hs,ϕ(Rn)

we define the inner product

(u, v)Hs,ϕ(Rn) :=
�
〈ξ〉2sϕ2(〈ξ〉)û(ξ) v̂(ξ) dξ.

The space Hs,ϕ(Rn) is a special isotropic Hilbert case of the spaces in-
troduced by L. Hörmander [9, Sec. 2.2], [10, Sec. 10.1] and L. R. Volevich
and B. P. Paneah [25, Sec. 2], [23, Sec. 1.4.2]. In the simplest case where
ϕ(·) ≡ 1 the space Hs,ϕ(Rn) coincides with the Sobolev space Hs(Rn). It
follows from the inclusions⋃

ε>0

Hs+ε(Rn) =: Hs+(Rn) ⊂ Hs,ϕ(Rn) ⊂ Hs−(Rn) :=
⋂
ε>0

Hs−ε(Rn)

that in the collection of spaces

(3) {Hs,ϕ(Rn) : s ∈ R, ϕ ∈M}
the function parameter ϕ defines an additional (subpower) smoothness with
respect to the basic (power) s-smoothness. In other words, ϕ refines the
power smoothness.

The refined scale over the manifold Γ is constructed from the scale (3) in
the usual way. Let us choose a finite C∞ atlas on Γ consisting of local charts
αj : Rn ↔ Uj , j = 1, . . . , r. Here the open sets Uj form a finite covering
of Γ . Let χj ∈ C∞(Γ ), j = 1, . . . , r, form a partition of unity on Γ with
suppχj ⊂ Uj .

We set

Hs,ϕ(Γ ) := {h ∈ D′(Γ ) : (χjh) ◦ αj ∈ Hs,ϕ(Rn), j = 1, . . . , r}.
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Here, (χjh) ◦ αj is the representation of the distribution χjh in the local
chart αj . The inner product in Hs,ϕ(Γ ) is defined by the formula

(f, g)Hs,ϕ(Γ ) :=
r∑
j=1

((χjf) ◦ αj , (χjg) ◦ αj)Hs,ϕ(Rn)

and induces the norm ‖h‖s,ϕ := (h, h)1/2s,ϕ .
The collection of function spaces

(4) {Hs,ϕ(Γ ) : s ∈ R, ϕ ∈M}

is called the refined scale over the manifold Γ . We note the following prop-
erties of this scale (see [16, Theorems 3.5, 3.6] or [21, Theorem 3.6]).

Proposition 1. Let s ∈ R and ϕ,ϕ1 ∈M.

(i) Hs,ϕ(Γ ) is a separable Hilbert space, independent (up to equivalent
norms) of the choice of the atlas and the partition of unity.

(ii) The imbedding Hs,ϕ(Γ ) ↪→ D′(Γ ) is continuous.
(iii) C∞(Γ ) is dense in Hs,ϕ(Γ ).
(iv) For each ε > 0 the following compact and dense imbeddings hold :

Hs+ε(Γ ) ↪→ Hs,ϕ(Γ ) ↪→ Hs−ε(Γ ) and Hs+ε,ϕ1(Γ ) ↪→ Hs,ϕ(Γ ).

(v) If ϕ/ϕ1 is bounded in a neighborhood of +∞, then we have a con-
tinuous dense imbedding Hs,ϕ1(Γ ) ↪→ Hs,ϕ(Γ ). It is compact if
ϕ(t)/ϕ1(t)→ 0 as t→ +∞.

(vi) Hs,ϕ(Γ ) and H−s,1/ϕ(Γ ) are mutually dual (up to equivalent norms)
with respect to the sesquilinear form (· , ·)Γ .

In connection with assertion (vi) we note that ϕ ∈ M ⇔ 1/ϕ ∈ M.
Hence the space H−s,1/ϕ(Γ ) is well defined.

The refined scale (4) admits the following alternative intrinsic description
[21, Theorem 3.8]. Let the Riemannian structure on the manifold Γ which
defines the density dx be given (it is always possible), and let ∆Γ be the
Beltrami–Laplace operator on Γ . For s ∈ R and ϕ ∈ M, we define the
function

ϕs(t) :=
{
ts/2ϕ(t1/2) for t ≥ 1,
ϕ(1) for 0 < t < 1.

We consider the operator ϕs(1 − ∆Γ ) in the space L2(Γ, dx) as a Borel
function of the self-adjoint operator 1−∆Γ .

Proposition 2. For any s ∈ R and ϕ ∈ M, the space Hs,ϕ(Γ )
coincides with the completion of C∞(Γ ) with respect to the norm u 7→
‖ϕs(1−∆Γ )u‖L2(Γ,dx) which is equivalent to the norm ‖u‖s,ϕ.
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The following refinement of the classical Sobolev theorem characterizes
separating possibilities of the refined scale [16, Theorem 3.6, Remark 3.3].

Proposition 3. Let ϕ ∈M and let % ≥ 0 be an integer. The inequality

(5)
+∞�

1

dt

tϕ2(t)
<∞

is equivalent to the continuous imbedding H%+n/2,ϕ(Γ ) ↪→ C%(Γ ). The con-
tinuity of this imbedding implies its compactness.

4. The main results. We denote by A+ the matrix pseudodifferen-
tial operator formally adjoint to A with respect to the inner product in
(L2(Γ, dx))p. We set

N := {u ∈ (C∞(Γ ))p : Au = 0 on Γ},
N+ := {v ∈ (C∞(Γ ))p : A+v = 0 on Γ}.

The ellipticity of the system (2) implies that the spaces N and N+ are
finite-dimensional [1, Sec. 3.2].

We recall the following: a bounded linear operator T : X → Y between
Banach spaces is called Fredholm if its kernel is finite-dimensional and its
range T (X) is closed in Y and has finite codimension therein. The Fredholm
operator T has finite index indT := dimkerT − dim(Y/T (X)).

Theorem 1. For any s ∈ R and ϕ ∈ M the mapping u 7→ Au, u ∈
(D′(Γ ))p, restricts to a bounded linear operator

(6) A :
p∏

k=1

Hs+mk,ϕ(Γ )→ (Hs,ϕ(Γ ))p.

This operator is Fredholm, has kernel N and range

(7)
{
f ∈ (Hs,ϕ(Γ ))p :

p∑
j=1

(fj , vj)Γ = 0 ∀(v1, . . . , vp) ∈ N+
}
.

The index of the operator (6) is equal to dimN−dimN+ and is independent
of s and ϕ.

This theorem specifies, with regard to the refined scale (4), the known
propositions on solvability of elliptic systems in the Sobolev scale (see
[1, Theorem 3.2.1], [11, Theorems 19.2.1, 19.5.3]).

According to Theorem 1, N+ is the defect subspace of the operator (6).
Let us note [3], [1, Sec. 2.3 f] that in the scalar case (p = 1) the index of (6) is
0 if dimΓ ≥ 2. Another sufficient condition for this property is the ellipticity
of the system with a parameter on a certain rayK := {λ ∈ C : arg λ = const}
[1, Sec. 4].
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Theorem 2. For any s ∈ R, ϕ ∈ M and σ > 0, the following a priori
estimate holds true:

p∑
k=1

‖uk‖s+mk,ϕ ≤ c
( p∑
j=1

‖fj‖s,ϕ +
p∑

k=1

‖uk‖s+mk−σ,ϕ
)
.

Here, the number c > 0 is independent of the vector-functions u and f = Au.

If the spaces N and N+ are trivial, then the operator (6) is a topological
isomorphism. Generally, it is convenient to define the isomorphism with the
help of two projectors. We decompose the spaces on which (6) acts into the
following direct sums of (closed) subspaces:

p∏
k=1

Hs+mk,ϕ(Γ ) = N u
{
u :

p∑
k=1

(uk, wk)Γ = 0 ∀(w1, . . . , wp) ∈ N
}
,

(Hs,ϕ(Γ ))p = N+ uA((Hs,ϕ(Γ ))p).

Denote by P and P+ respectively the oblique projectors of these spaces onto
the second terms in the sums. The projectors are independent of s and ϕ.

Theorem 3. For any s ∈ R and ϕ ∈ M, the restriction of the oper-
ator (6) to the subspace P (

∏p
k=1H

s+mk,ϕ(Γ )) establishes a topological iso-
morphism

(8) A : P
( p∏
k=1

Hs+mk,ϕ(Γ )
)
↔ P+((Hs,ϕ(Γ ))p).

5. The proofs. We start from the following lemma. Denote by Ψ r(Γ )
the set of all (not necessarily classical) pseudodifferential operators on Γ of
order ≤ r ∈ R.

Lemma 1. Let r ∈ R and T ∈ Ψ r(Γ ). Then the restriction of the map-
ping u 7→ Tu, u ∈ D′(Γ ), to the space Hσ,ϕ(Γ ) is a bounded operator

(9) T : Hσ,ϕ(Γ )→ Hσ−r,ϕ(Γ ) for every σ ∈ R, ϕ ∈M.

This lemma is known for ϕ ≡ 1 (the Sobolev scale) [1, Theorem 2.1.2].
We deduce the general case by interpolation with a function parameter. We
recall the definition of this interpolation (see [7, 24, 15, 21]).

Let X := [X0, X1] be an ordered couple of separable complex Hilbert
spaces such that there is a continuous dense imbedding X1 ↪→ X0. We call
such a couple admissible. For the couple X there exists an isometric iso-
morphism J : X1 ↔ X0 such that J is a self-adjoint positive operator on
X0 with domain X1. This operator is uniquely determined by the couple X.
Let ψ : (0,+∞) → (0,+∞) be a Borel measurable function. We denote by
[X0, X1]ψ or simply by Xψ the domain of the operator ψ(J) endowed with
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the graph inner product and the corresponding norm:

(u, v)Xψ := (u, v)X0 + (ψ(J)u, ψ(J)v)X0 , ‖u‖Xψ = (u, u)1/2Xψ
.

The space Xψ is a separable Hilbert space.
The function ψ is called an interpolation parameter if the following con-

dition is fulfilled for all admissible couples X = [X0, X1], Y = [Y0, Y1] of
Hilbert spaces and any linear mapping T given on X0: if the restriction of
T to Xj is a bounded operator T : Xj → Yj for each j = 0, 1, then the
restriction of T to Xψ is also a bounded operator T : Xψ → Yψ.

We need the following interpolation property of the refined scale on Γ
(see [16, Theorem 3.5] or [21, Theorem 3.5]). Let ϕ ∈M and ε > 0. We set

ψ(t) :=
{
t1/2ϕ(t1/(2ε)) for t ≥ 1,
ϕ(1) for 0 < t < 1.

Then ψ is an interpolation parameter and

(10) [Hσ−ε(Γ ), Hσ+ε(Γ )]ψ = Hσ,ϕ(Γ ) for all σ ∈ R

with the equivalence of norms.

Proof of Lemma 1. Fix σ ∈ R and ϕ ∈ M. We consider the bounded
linear operators on Sobolev spaces:

(11) T : Hσ∓1(Γ )→ Hσ−r∓1(Γ ).

According to interpolation formula (10) with ε = 1 we get from (11) the
existence and boundedness of the operator (9):

T : Hσ,ϕ(Γ ) = [Hσ−1(Γ ), Hσ+1(Γ )]ψ
→ [Hσ−r−1(Γ ), Hσ−r+1(Γ )]ψ = Hσ−r,ϕ(Γ ).

Proof of Theorem 1. Let s ∈ R and ϕ ∈ M. The existence and bound-
edness of the operator (6) results from the condition Aj,k ∈ Ψmk(Γ ) and
Lemma 1 for σ := s+mk. We deduce the Fredholm property of this operator
from the following known fact (see [1, Theorem 3.2.1], [11, Theorem 19.5.3]).
Since the system (2) is elliptic in the Petrovskĭı sense, there exists a matrix
pseudodifferential operator B = (Bk,j)

p
k,j=1 such that Bk,j ∈ Ψ−mk(Γ ) and

(12) BA = I + T1, AB = I + T2,

where T1, T2 are matrix pseudodifferential operators whose elements belong
to Ψ−∞(Γ ) :=

⋂
r∈R Ψ

r(Γ ). As usual, I is the identity operator on (D′(Γ ))p.
The operator B is called a parametrix for A. According to Lemma 1 it is a
bounded operator

(13) B : (Hs,ϕ(Γ ))p →
p∏

k=1

Hs+mk,ϕ(Γ ).
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Write T1 =(T j,k1 )pj,k=1 and T2 =(T k,j2 )pk,j=1. Since T
j,k
1 ∈Ψmk−mj−%(Γ ) and

T k,j2 ∈Ψ−%(Γ ) for every %>0, by Lemma 1 we have the bounded operators

T1 :
p∏

k=1

Hs+mk,ϕ(Γ )→
p∏
j=1

Hs+mj+%,ϕ(Γ ) for % > 0,(14)

T2 : (Hs,ϕ(Γ ))p → (Hs+%,ϕ(Γ ))p for % > 0.(15)

In addition, according to Proposition 1(iv) we have compact imbeddings
p∏
j=1

Hs+mj+%,ϕ(Γ ) ↪→
p∏

k=1

Hs+mk,ϕ(Γ ) for % > 0,

(Hs+%,ϕ(Γ ))p ↪→ (Hs,ϕ(Γ ))p for % > 0.

It follows that T1 is compact on
∏p
j=1H

s+mj ,ϕ(Γ ), and T2 is compact on
(Hs,ϕ(Γ ))p.

Thus we have equalities (12), where B is bounded whereas T1, T2 are
compact on the spaces specified above. It is known (see [1, Theorem 2.3.2],
[11, Corollary 19.1.9]) that this is equivalent to the Fredholm property of (6).

Denote by Ns,ϕ the kernel of (6) and by N+
s,ϕ the kernel of the adjoint

to (6). Let us show that Ns,ϕ = N and N+
s,ϕ = N+.

Let u ∈ Ns,ϕ. In view of (12), (14),

u = BAu− T1u = −T1u ∈
p∏
j=1

Hs+mj+%,ϕ(Γ ) for % > 0.

Hence u ∈ C∞(Γ ) by Proposition 3. So Ns,ϕ ⊆ N . The inverse inclusion is
evident. Thus we have Ns,ϕ = N .

Further, according to Proposition 2(vi) we can identify the operators
adjoint to (6), (13), (15) with the matrix pseudodifferential operators A+,
B+, T+

2 formally adjoint to A, B, T2 with respect to the inner product in
(L2(Γ, dx))p. In this sense N+

s,ϕ is the kernel of the operator

A+ : (H−s,1/ϕ(Γ ))p →
p∏

k=1

H−s−mk,1/ϕ(Γ ).

Therefore N+ ⊆ N+
s,ϕ ⊂ (H−s,1/ϕ(Γ ))p. To prove the inclusion N+

s,ϕ ⊆ N+,
let f ∈ N+

s,ϕ. Passing to adjoint operators in the second equality of (12) we
can write

f = B+A+f − T+
2 f = −T+

2 f.

Since all elements of the matrix T+
2 are in Ψ−∞(Γ ), by Lemma 1 we have

the bounded operator

T+
2 : (H−s,1/ϕ(Γ ))p → (H−s+%,1/ϕ(Γ ))p for % > 0.

Proposition 3 now yields f ∈ (C∞(Γ ))p. Hence f ∈ N , so that N+
s,ϕ ⊆ N+.

Thus N+
s,ϕ = N+.
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Now it is easy to complete the proof of Theorem 1. The range of the
operator (6) coincides with the set (7) because the range is closed and N+

is the kernel of the adjoint to (6) (with respect to the inner product in
(L2(Γ, dx))p). The index of (6) is equal to dimN − dimN+ as the spaces
(Hs,ϕ(Γ ))p/A(Hs,ϕ(Γ ))p and N+ have the same dimension.

Theorem 1 is proved.

Proof of Theorem 2. This theorem follows from the first equality of (12).
Indeed, let s ∈ R, ϕ ∈M and σ > 0. Denote by ‖ · ‖′s,ϕ, ‖ · ‖′′s,ϕ and ‖ · ‖′s−σ,ϕ
the norms in

p∏
k=1

Hs+mk,ϕ(Γ ), (Hs,ϕ(Γ ))p and
p∏

k=1

Hs+mk−σ,ϕ(Γ )

respectively. For any u ∈ (D′(Γ ))p and f = Au we have

(16) ‖u‖′s,ϕ = ‖Bf−T1u‖′s,ϕ≤ ‖Bf‖′s,ϕ+‖T1u‖′s,ϕ≤ c0‖f‖′′s,ϕ+c1‖u‖′s−σ,ϕ.
Here, c0 is the norm of the bounded operator (13), and c1 is the norm of the
operator

T1 :
p∏

k=1

Hs+mk−σ,ϕ(Γ )→
p∏

k=1

Hs+mk,ϕ(Γ ).

The last operator is bounded by Lemma 1 because all elements of the matrix
T1 belong to Ψ−∞(Γ ). Inequality (16) is equivalent to Theorem 2 (we use
non-Hilbertian norms in this theorem to avoid an awkward formula).

Finally, Theorem 3 is a direct consequence of Theorem 1.

6. An application. Let Γ0 be an open nonempty subset of the mani-
fold Γ . We define

Hs,ϕ
loc (Γ0) := {f ∈ D′(Γ ) : χf ∈ Hs,ϕ(Γ ) ∀χ ∈ C∞(Γ ), suppχ ⊆ Γ0}.

Theorem 4. Assume that u ∈ (D′(Γ ))p is a solution of the equation
Au = f on Γ0, where f ∈ (Hs,ϕ

loc (Γ0))p for some s ∈ R and ϕ ∈ M. Then
u ∈

∏p
k=1H

s+mk,ϕ
loc (Γ0).

This theorem specifies, with regard to the refined scale (4), the known
propositions on local increase of interior smoothness of an elliptic system
solution in the Sobolev scale (see [5, 9, 4]). Note that the refined local
smoothness ϕ of the right-hand side of the elliptic system is inherited by
its solution.

First we prove Theorem 4 in the global case where Γ0 = Γ .

Lemma 2. Let s ∈ R, ϕ ∈M and u ∈ (D′(Γ ))p. Then

Au ∈ (Hs,ϕ(Γ ))p ⇒ u ∈
p∏

k=1

Hs+mk,ϕ(Γ ).
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Proof. Assume that Au ∈ (Hs,ϕ(Γ ))p. In view of (12), (13) we have

u = BAu− T1u, BAu ∈
p∏

k=1

Hs+mk,ϕ(Γ ).

In addition, since all elements of the matrix T1 are in Ψ−∞(Γ ), we have
T1u ∈ (C∞(Γ ))p (see [1, Sec. 2.1]). Lemma 2 is proved.

Proof of Theorem 4. Let us show that the condition f ∈ (Hs,ϕ
loc (Γ0))p

implies the following local smoothness increase of the solution u: for every
r ≥ 1,

(17) u ∈
p∏

k=1

Hs−r+mk,ϕ
loc (Γ0) ⇒ u ∈

p∏
k=1

Hs−r+1+mk,ϕ
loc (Γ0).

Choose χ, η ∈ C∞(Γ ) such that suppχ, supp η ⊆ Γ0 and η = 1 in a neigh-
borhood of suppχ. Interchanging the matrix pseudodifferential operator A
and the operator of multiplication by χ we can write

Aχu = Aχηu = χAηu+A′ηu = χAu+ χA(η − 1)u+A′ηu(18)
= χf + χA(η − 1)u+A′ηu on Γ.

Here, the matrix pseudodifferential operator A′ = (A′j,k)
p
j,k=1 is the commu-

tator of these operators. Since A′j,k ∈ Ψmk−1(Γ ), there exists (by Lemma 1)
the bounded operator

A′ :
p∏

k=1

Hs−r+mk,ϕ(Γ )→ (Hs−r+1,ϕ(Γ ))p.

Therefore

(19) u ∈
p∏

k=1

Hs−r+mk,ϕ
loc (Γ0) ⇒ A′ηu ∈ (Hs−r+1,ϕ(Γ ))p.

Further, since f ∈ (Hs,ϕ
loc (Γ0))p, in view of Proposition 1(iv) we have

(20) χf ∈ (Hs,ϕ(Γ ))p ↪→ (Hs−r+1,ϕ(Γ ))p.

In addition, since the supports of the functions χ and η − 1 are disjoint,

(21) χA(η − 1)u ∈ (C∞(Γ ))p.

It follows from (18)–(21) that

u ∈
p∏

k=1

Hs−r+mk,ϕ
loc (Γ0) ⇒ Aχu ∈ (Hs−r+1,ϕ(Γ ))p.

Next, according to Lemma 1 we have

Aχu ∈ (Hs−r+1,ϕ(Γ ))p ⇒ χu ∈
p∏

k=1

Hs−r+1+mk,ϕ(Γ ).
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The implication (17) is a consequence of the last two implications because
χ ∈ C∞(Γ ) with suppχ ⊆ Γ0 is arbitrary.

Now it is easy to deduce Theorem 4 from the implication (17). Since Γ is
compact, D′(Γ ) is the union of the Sobolev spaces Hσ(Γ ), σ ∈ R. So, there
is a sufficiently large integer r0 > 0 such that

u ∈
p∏

k=1

Hs−r0+1+mk(Γ ) ⊂
p∏

k=1

Hs−r0+mk,ϕ
loc (Γ0).

From this by applying (17) for r = r0, r0 − 1, . . . , 1 in succession, we deduce
Theorem 4:

u ∈
p∏

k=1

Hs−r0+mk,ϕ
loc (Γ0) ⇒ u ∈

p∏
k=1

Hs−r0+1+mk,ϕ
loc (Γ0)

⇒ · · · ⇒ u ∈
p∏

k=1

Hs+mk,ϕ
loc (Γ0).

Theorem 4 and Proposition 3 imply the following sufficient condition for
a fixed component uk of the solution of (2) to have continuous derivatives of
a prescribed order.

Theorem 5. Suppose that u, f ∈ (D′(Γ ))p satisfy the equation Au = f
on Γ0. Let % ≥ 0 and k = 1, . . . , p be integers, and let ϕ ∈ M satisfy the
inequality (5). Then

(fj ∈ H%−mk+n/2,ϕ
loc (Γ0), j = 1, . . . , p) ⇒ uk ∈ C%(Γ0).
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