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Summary. Results of Emmanuele and Drewnowski are used to study the containment
of c0 in the space Kw∗(X∗, Y ), as well as the complementation of the space Kw∗(X∗, Y )
of w∗-w compact operators in the space Lw∗(X∗, Y ) of w∗-w operators from X∗ to Y .

Definitions and notations. Throughout this paper X and Y will de-
note real Banach spaces and X∗ denotes the continuous linear dual of X. An
operator T : X → Y will be a continuous and linear function. By X ⊗λ Y
we denote the injective tensor product of X and Y . Notation is consistent
with that used in Diestel [5]. Let (en) be the Schauder basis of c0, (e∗n) be
the basis of `1, and (e2n) the unit vector basis of `2. The set of all contin-
uous linear transformations from X to Y will be denoted by L(X,Y ), and
the compact (resp. weakly compact) operators will be denoted by K(X,Y )
(resp. W (X,Y )). The w∗-w continuous (resp. w∗-w continuous compact)
maps from X∗ to Y will be denoted by Lw∗(X∗, Y ) (resp. Kw∗(X∗, Y )).

A bounded subset A of X is called a limited subset of X if each w∗-null
sequence in X∗ tends to 0 uniformly on A. If every limited subset of X is
relatively compact, then we say that X has the Gelfand–Phillips property. If
every weakly compact operator defined on X is completely continuous, then
we say that X has the Dunford–Pettis property (DPP); see [6] and [1] for
inventories of classical results related to the DPP.

Introduction. Numerous authors have studied the containment of c0
in the spaces of compact operators K(X,Y ) and Kw∗(X∗, Y ). This problem
has been studied together with the complementation of the space of com-
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pact operators Kw∗(X∗, Y ) (resp. K(X,Y )) in the space Lw∗(X∗, Y ) (resp.
L(X,Y )) and the containment of l∞ in Lw∗(X∗, Y ) (resp. L(X,Y )). See Ba-
tor and Lewis [2], Kalton [23], Emmanuele [13], Emmanuele and John [16],
Ghenciu [19], Lewis [25], and Tong and Wilken [31] for an indication of the
extensive literature that deals with these problems. The survey paper [29]
by Ruess is a valuable resource for the structure of the space of operators
Kw∗(X∗, Y ).

Theorem 4 of Kalton [23] states that `∞ embeds in K(X,Y ) if and only
if it embeds in X∗ or in Y . In [8] Drewnowski generalized Theorem 4 of
Kalton and proved that `∞ embeds in Kw∗(X∗, Y ) if and only if it em-
beds in X or in Y . In this paper we use techniques of Emmanuele [11] and
Drewnowski’s result [8] to obtain results about the complementation of the
space Kw∗(X∗, Y ) of compact w∗-w operators in the space Lw∗(X∗, Y ) of
bounded w∗-w operators. Applications to the complementation of the space
K(X,Y ) in W (X,Y ) are given. We also give sufficient conditions for the
containment of c0 in the space Kw∗(X∗, Y ), resp. K(X,Y ). Results in this
paper generalize results in [3], [11], [13], [14], [17], [20], [23], and [25].

Spaces of operators. We recall the following well-known isometries [29]:

1) Lw∗(X∗, Y ) ' Lw∗(Y ∗, X) and Kw∗(X∗, Y ) ' Kw∗(Y ∗, X) (T 7→ T ∗),
2) W (X,Y ) ' Lw∗(X∗∗, Y ) and K(X,Y ) ' Kw∗(X∗∗, Y ) (T 7→ T ∗∗).

It is known that if X is infinite-dimensional and c0 ↪→ L(X,Y ), then
`∞ ↪→ L(X,Y ) (see, e.g., [23] and [25]). Part (i) of the following theorem
generalizes this result, as well as Theorem 3 in [3].

Theorem 1.

(i) Suppose that X and Y are infinite-dimensional and S is a closed
linear subspace of L(X,Y ) which contains all the rank one operators
x∗ ⊗ y, x∗ ∈ X∗, y ∈ Y . If c0 ↪→ S and S is complemented in
L(X,Y ), then `∞ ↪→ S.

(ii) Suppose that X and Y fail to have the Schur property , and S is
a closed linear subspace of Lw∗(X∗, Y ) which contains all rank one
operators x ⊗ y, x ∈ X, y ∈ Y . If c0 ↪→ S and S is complemented
in Lw∗(X∗, Y ), then `∞ ↪→ S.

Proof. (i) Consider the following two cases.
Suppose first that c0 ↪→ Y and let (yn) be a copy of (en) in Y . Use the

Josefson–Nissenzweig theorem and choose a w∗-null normalized sequence
(x∗n) in X∗. Define J : `∞ → L(X,Y ) by

J(b)(x) =
∑

bnx
∗
n(x)yn, x ∈ X.

Then J is an isomorphism, and, if b is finitely supported, J(b) ∈ S.
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Now suppose that c0 X↪→ Y . Let B : c0 → S be an isomorphic embedding.
Note that

∑
|〈B(en)(x), y∗〉| <∞ for all x ∈ X and y∗ ∈ Y ∗. Since c0 X↪→ Y ,∑

B(en)(x) is unconditionally convergent in Y for all x ∈ X. Define µ by
µ(∅) = 0 and

µ(A) =
∑
n∈A

B(en) (strong operator topology)

for any non-empty subset A of N. Note that µ is bounded, finitely additive
and not strongly additive (‖µ({n})‖ X→ 0). Apply the Diestel–Faires theorem
to obtain `∞ ↪→ L(X,Y ), and observe that if A is a finite subset of N, then
µ(A) ∈ S.

Now suppose that S is complemented in L(X,Y ), and let P :L(X,Y )→ S
be a projection. Let ν(A) = P (χA) for A ⊆ N. The first part of the proof
shows that `∞ ↪→ L(X,Y ), thus ν is well-defined. Then ν : P(N) → S is
bounded and finitely additive. Moreover, ‖ν({n})‖ X→ 0. Therefore another
application of the Diestel–Faires theorem tells us that `∞ ↪→ S.

(ii) Assume first that c0 ↪→ Y . Let (xn) be a w-null normalized sequence
in X and (yn) be a copy of (en) in Y . Define φ : `∞ → Lw∗(X∗, Y ) by

φ(b)(x∗) =
∑

bnx
∗(xn)yn, x∗ ∈ X∗.

We note that the series converges unconditionally. To show that φ(b) is a
w∗-w operator, we need to prove that (φ(x∗α)) is w-null for each w∗-null net
(x∗α) in X∗. We can suppose that (x∗α) is a w∗-null net in BX∗ by results
about the bounded X topology (or BX topology) for X∗ ([10, Chapter V]).
Let ε > 0 and y∗ ∈ BY ∗ . Since

∑
yn is wuc, there is an n ∈ N such that∑∞

i=n+1 |y∗(yi)| < ε/(2‖b‖∞). Then∣∣∣ ∞∑
i=n+1

bix
∗
α(xi)y∗(yi)

∣∣∣ ≤ ‖b‖∞ ∞∑
i=n+1

|y∗(yi)| <
ε

2
.

On the other hand, limα
∑n

i=1 |bix∗α(xi)y∗(yi)| = 0 since (x∗α) is a w∗-null
net. Therefore, for α large,

|〈φ(b)(x∗α), y∗〉| ≤
∣∣∣ n∑
i=1

bix
∗
α(xi)y∗(yi)

∣∣∣+ ∣∣∣ ∞∑
i=n+1

bix
∗
α(xi)y∗(yi)

∣∣∣ < ε.

Hence φ(b) is a w∗-w operator. Further, if b ∈ `∞ is finitely supported,
φ(b) ∈ S. A result in [28] implies that `∞ ↪→ Lw∗(X∗, Y ) since ‖φ(en)‖ X→ 0.
Similarly, if c0 ↪→ X (and Y does not have the Schur property), then `∞ ↪→
Lw∗(X∗, Y ).

Without loss of generality assume that c0 X↪→ X,Y and let B : c0 → S be
an isomorphic embedding. Note that

∑
B(en)(x∗) is wuc, hence uncondition-

ally convergent for each x∗ ∈ X∗ (since c0 X↪→ Y ). Similarly,
∑
B(en)∗(y∗) is
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unconditionally convergent in X for each y∗ ∈ Y ∗. Then∑
B(en) (strong operator topology)

is a w∗-w operator fromX∗ to Y . Define µ : P(N)→ Lw∗(X∗, Y ) by µ(∅) = 0
and

µ(A) =
∑
n∈A

B(en) (strong operator topology)

ifA is a non-empty subset of N. Then µ is bounded (by the Uniform Bounded-
ness Principle) and finitely additive, but µ({n}) X→ 0. The σ-algebra version
of the Diestel–Faires theorem [7] implies that `∞ ↪→ Lw∗(X∗, Y ). Observe
that if A is a finite subset of N, then µ(A) ∈ S.

Now suppose that S is complemented in Lw∗(X∗, Y ), and let P :
Lw∗(X∗, Y ) → S be a projection. Let ν(A) = P (χA) for A ⊆ N. Then ν :
P(N)→ S is bounded and finitely additive. Moreover, ‖ν({n})‖ X→ 0. By an-
other application of the Diestel–Faires theorem we conclude that `∞ ↪→ S.

If X is infinite-dimensional and c0 ↪→ Lw∗(X∗, Y ), then Lw∗(X∗, Y ) may
fail to contain `∞. It is not difficult to check that c0 ↪→ Kw∗(`1, `1). In
fact, c0

c
↪→ Kw∗(`1, `1); see the closing remarks in this paper. However, since

Kw∗(`1, `1) = Lw∗(`1, `1), Drewnowski’s theorem makes it clear that `∞ X↪→
Lw∗(`1, `1).

Our first corollary points out that the exclusion of `∞ is not possible if
X and Y do not have the Schur property.

Corollary 2. Suppose that c0 ↪→ Lw∗(X∗, Y ) and X and Y do not
have the Schur property. Then `∞ ↪→ Lw∗(X∗, Y ).

Corollary 3 (Ghenciu and Lewis, [20]).

(i) If X does not have the Schur property and c0 ↪→ Y , then `∞ ↪→
Lw∗(X∗, Y ).

(ii) If c0 does not embed in X or Y and c0 ↪→ Kw∗(X∗, Y ), then `∞ ↪→
Lw∗(X∗, Y ) provided that X and Y do not have the Schur property.

Proof. Part (i) follows from the proof of Theorem 1, and (ii) is an imme-
diate corollary of the statement of the theorem.

The next theorem is motivated by results in [13].

Theorem 4. Suppose that X has an unconditional and seminormal-
ized basis (xi) with biorthogonal coefficients (x∗i ), and T : X → Y is an
operator such that (T (xi)) is a weakly null seminormalized basic sequence
in Y . Let S(X,Y ) be a closed linear subspace of L(X,Y ) which properly
contains K(X,Y ) such that φ(b) ∈ S(X,Y ) for all b ∈ `∞, where φ(b)(x) =∑
bix
∗
i (x)T (xi), x ∈ X. Then K(X,Y ) is not complemented in S(X,Y ).
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Proof. Let δ > 0 and (xij ) = (uj) be a subsequence of (xi) such that
‖T (ui) − T (uj)‖ > δ for i 6= j. Denote the corresponding subsequence of
coefficient functionals by (u∗j ). Note that

∑
bju
∗
j (x)T (uj) converges uncon-

ditionally in Y for each x ∈ X and b = (bi) ∈ `∞.
Let J : [(T (ui)] → `∞ be a linear isometry, and let A : Y → `∞ be

a continuous linear extension of J . Now suppose that K(X,Y ) is comple-
mented in S(X,Y ) and let P : S(X,Y )→ K(X,Y ) be a projection. Define
τ : l∞ → L(X,Y ) by

τ(b)(x) =
∑
j

bju
∗
j (x)T (uj), x ∈ X.

Note that τ(`∞) ⊆ S(X,Y ). Consider the operators APτ : `∞ → K(X, `∞)
and Aτ : `∞ → S(X, `∞). Since τ(ej) = u∗j ⊗ T (uj), τ(ej) is a rank one op-
erator, thus compact. Then APτ(ej) = Aτ(ej) for each j ∈ N. Proposition 5
of Kalton [23] produces an infinite subset M of N such that

APτ(b) = Aτ(b), b ∈ l∞(M).

Therefore Aτ(χM ) is compact. But τ(χM )(uj) = T (uj), j ∈M , and {T (uj) :
j ∈M} is not relatively compact. Therefore τ(χM ) is not compact. However,
this is a contradiction since A|[T (ui)]

is an isometry.

Corollary 5 (Emmanuele, [13]). Let Y be a Banach space without the
Schur property. Then K(`1, Y ) is not complemented in W (`1, Y ).

Proof. Let (yn) be a w-null normalized basic sequence in Y , X = `1, and
S(`1, Y ) = W (`1, Y ). Define T : `1 → Y by T (x) =

∑
xnyn, x = (xn) ∈ `1.

If φ : `∞ → L(`1, Y ) is defined as in the previous theorem, then φ(b)(x) =∑
j bjxjyj for x = (xn) ∈ `1. Since φ(b)(e∗n) = (bnyn) is w-null, φ(b) is weakly

compact for all b ∈ `∞. By Theorem 4, K(`1, Y ) X
c
↪→W (`1, Y ).

The next corollary contains principal results of [11], [13] and [16].

Corollary 6.

(i) If `∞ ↪→ Y and X does not have the Schur property (or `∞ ↪→ X
and Y does not have the Schur property), then Kw∗(X∗, Y ) is not
complemented in Lw∗(X∗, Y ).

(ii) If c0 ↪→ K(X,Y ) and K(X,Y ) 6= L(X,Y ), then K(X,Y ) is not
complemented in L(X,Y ).

(iii) If c0 ↪→ Y and X does not have the Schur property (or c0 ↪→ X
and Y does not have the Schur property), then Kw∗(X∗, Y ) is not
complemented in Lw∗(X∗, Y ).

(iv) If c0 ↪→ Kw∗(X∗, Y ) and X and Y do not have the Schur property ,
then Kw∗(X∗, Y ) is not complemented in Lw∗(X∗, Y ).
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Proof. (i) Since `∞ ↪→ Y and `∞ is injective, `∞ is complemented in Y .
Suppose that Kw∗(X∗, Y )

c
↪→Lw∗(X∗, Y ). Then Kw∗(X∗, `∞)

c
↪→Lw∗(X∗, `∞).

Let P be a projection of Lw∗(X∗, `∞) ontoKw∗(X∗, `∞). Note thatW (`1, X)
' Lw∗(X∗, `∞) and K(`1, X) ' Kw∗(X∗, `∞). Hence the projection P may
be viewed as an operator from W (`1, X) onto K(`1, X). Apply Corollary 5
now.

(ii) Suppose that K(X,Y )
c
↪→ L(X,Y ). By Theorem 1, `∞ ↪→ K(X,Y ).

Apply Theorem 4 of Kalton [23] to conclude that `∞ ↪→ X∗ or `∞ ↪→ Y .
The first case produces a contradiction in view of Lemma 3 of Kalton [23]. If
`∞ ↪→ Y , then c0 ↪→ Y , and the conclusion follows from Corollary 1 of
Feder [17].

(iii) Suppose that c0 ↪→ Y and X does not have the Schur property.
Assume that Kw∗(X∗, Y )

c
↪→ Lw∗(X∗, Y ). Theorem 1 implies that `∞ ↪→

Kw∗(X∗, Y ). Drewnowski’s result [8] implies that `∞ ↪→ X or `∞ ↪→ Y .
However, this is not possible by part (i).

(iv) The same proof as for (iii).

Our proof of Corollary 6 made use of the following result in [17]:

Theorem 7 (Feder, [17]). Suppose T is an operator in L(X,Y ) which is
not compact and (Tn) is a sequence in K(X,Y ) such that for each x ∈ X,
the series

∑
Tn(x) converges unconditionally to T (x). Then K(X,Y ) is not

complemented in L(X,Y ).

In [11] Emmanuele proved that the containment of c0 in K(X,Y ) is
equivalent to the hypothesis of Feder’s theorem. He used this to obtain (ii)
of Corollary 6 above. In the next theorem we obtain an analogue of Feder’s
theorem in Lw∗(X∗, Y ).

Theorem 8. Suppose T is an operator in Lw∗(X∗, Y ) which is not com-
pact and (Tn) is a sequence in Kw∗(X∗, Y ) such that for each x∗ ∈ X∗,
the series

∑
Tn(x∗) converges unconditionally to T (x∗). Then Kw∗(X∗, Y )

is not complemented in Lw∗(X∗, Y ). Furthermore, `∞ ↪→ Lw∗(X∗, Y ).

Proof. Since Lw∗(X∗, Y ) 6= Kw∗(X∗, Y ), X and Y do not have the Schur
property (if X or Y has the Schur property, Kw∗(X∗, Y ) = Lw∗(X∗, Y )).
Without loss of generality assume c0 X↪→ X,Y (by Corollary 6(iii)), hence
`∞ X↪→ X,Y . Suppose the operator T and the sequence (Tn) are as in the
hypothesis. Since T is not compact,

∑
Tn diverges in the norm topology of

Kw∗(X∗, Y ). This divergence and the pointwise unconditional convergence
of the series

∑
Tn(x∗) allow us to reblock the sum and to assume that

‖Tn‖ X→ 0.
Now use the Uniform Boundedness Principle, the finite-cofinite alge-

bra of the subsets of N, and the Diestel–Faires theorem to conclude that
c0 ↪→ Kw∗(X∗, Y ); see the proof of Theorem 1 for details. (Alternatively,
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note that
∑
Tn is weakly unconditionally convergent and not unconditionally

convergent.) If Kw∗(X∗, Y ) were complemented in Lw∗(X∗, Y ), then Theo-
rem 1 would place `∞ in Kw∗(X∗, Y ). Another application of Drewnowski’s
result [8] would provide the contradiction that `∞ would embed in either
X or Y . To see that `∞ embeds in Lw∗(X∗, Y ) simply apply Theorem 1
again.

Remark. The hypothesis of the previous theorem implies that the se-
ries

∑
Tn is wuc (by the Uniform Boundedness Principle) and not uncon-

ditionally convergent in Kw∗(X∗, Y ), hence c0 embeds in Kw∗(X∗, Y ). Con-
versely, if c0 embeds in Kw∗(X∗, Y ), but neither in X nor in Y , then there
is a sequence (Tn) which satisfies the hypothesis of Theorem 8. In fact, if
c0 X↪→ X,Y , then l∞ X↪→ X,Y and thus l∞ X↪→ Kw∗(X∗, Y ) [8]. Let (Tn) be a
copy of (en) in Kw∗(X∗, Y ). Define φ : `∞ → L(X∗, Y ) by

φ(b)(x∗) =
∑

bnTn(x∗), x∗ ∈ X∗.

This series is unconditionally convergent and φ(b) is a w∗-w operator. If φ(b)
is compact for each b ∈ `∞, then φ : `∞ → Kw∗(X∗, Y ) is weakly compact
(since `∞ X↪→ Kw∗(X∗, Y ), [28]). Then ‖φ(en)‖ = ‖Tn‖ → 0. This is a con-
tradiction. Therefore there is a b0 ∈ `∞ such that φ(b0) is not compact. The
series

∑
b0nTn and the operator φ(b0) satisfy the hypothesis of Theorem 8.

We are now in a position to present a concise and straightforward proof
of the main result in [13] and to obtain several corollaries concerning the
structure of K(X,Y ) and W (X,Y ).

Theorem 9 ([13, Theorem 4]). Suppose c0 ↪→ Kw∗(X∗, Y ). Then ei-
ther Kw∗(X∗, Y ) = Lw∗(X∗, Y ), or Kw∗(X∗, Y ) is not complemented in
Lw∗(X∗, Y ).

Furthermore, Kw∗(X∗, Y ) = Lw∗(X∗, Y ) if and only if only one of the
following is true:

(i) c0 ↪→ Y and X has the Schur property ,
(ii) c0 ↪→ X and Y has the Schur property.

Proof. If c0 ↪→ Kw∗(X∗, Y ) and Kw∗(X∗, Y ) 6= Lw∗(X∗, Y ), then Corol-
lary 6(iv) implies that Kw∗(X∗, Y ) is not complemented in Lw∗(X∗, Y ).

Now assume that Kw∗(X∗, Y ) = Lw∗(X∗, Y ) and c0 embeds neither in
X nor in Y . The proof of Theorem 1 shows that if c0 ↪→ Kw∗(X∗, Y ), but
c0 X↪→ X,Y , then `∞ ↪→ Kw∗(X∗, Y ). Therefore `∞ ↪→ X or `∞ ↪→ Y [8].
This contradiction shows that either c0 ↪→ X or c0 ↪→ Y .

If c0 ↪→ Y and X does not have the Schur property, then Kw∗(X∗, Y ) is
not complemented in Lw∗(X∗, Y ) by Corollary 6(iii). Hence X has the Schur
property and (i) must hold.
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Corollaries 10–12 make use of the following isometries:

W (X,Y ) ' Lw∗(X∗∗, Y ), K(X,Y ) ' Kw∗(X∗∗, Y ).

Corollary 10. Suppose Y is the second Bourgain–Delbaen space which
is an L∞-space which has the RNP and Y ∗ is isomorphic to `1. Then c0 X↪→
K(Y, Y ).

Proof. Since Y ∗ is a Schur space, it follows that K(Y, Y ) = W (Y, Y )
and c0 X↪→ Y ∗. Further, c0 X↪→ Y since Y has the RNP. By Theorem 9,
c0 X↪→ K(Y, Y ).

Corollary 11. Suppose T : X → Y is a weakly compact operator which
is not compact and (Tn) is a sequence in K(X,Y ) such that for each x ∈ X,
the series

∑
Tn(x) converges unconditionally to T (x). Then K(X,Y ) is not

complemented in W (X,Y ). Furthermore, `∞ ↪→W (X,Y ).

Proof. Apply Theorem 8.

Corollary 12.

(i) If c0 ↪→ Y and X∗ does not have the Schur property , then K(X,Y )
is not complemented in W (X,Y ) and `∞ ↪→W (X,Y ).

(ii) If c0 ↪→ K(X,Y ) and K(X,Y ) 6= W (X,Y ), then K(X,Y ) is not
complemented in W (X,Y ) and `∞ ↪→W (X,Y ).

Proof. (i) Apply Corollary 6(iii) to deduce that K(X,Y ) X
c
↪→ W (X,Y ).

An application of Corollary 2 concludes the proof.
(ii) Apply Theorem 9 to find that K(X,Y ) X

c
↪→W (X,Y ). An application

of Corollary 2 concludes the proof.

The next theorem, as well as several subsequent corollaries, show that
many familiar spaces of operators contain complemented copies of c0.

Theorem 13. Suppose that (xi) is an unconditional and seminormal-
ized shrinking basis for X and (x∗i ) is the associated sequence of coeffi-
cient functionals. Let T be an operator in Lw∗(X∗, Y ) such that (T (x∗i ))
is seminormalized. Then c0 ↪→ Kw∗(X∗, Y ), Kw∗(X∗, Y ) X

c
↪→ Lw∗(X∗, Y ),

and `∞ ↪→ Lw∗(X∗, Y ). Moreover , c0
c
↪→ Kw∗(X∗, Y ).

Proof. Since (xn) is an unconditional shrinking basis for X, (x∗n) is an
unconditional basis for X∗, and the series

∑
x∗(xn)x∗n converges uncondi-

tionally to x∗ for all x∗ ∈ X∗ ([32, Thm. 17.7]). Note that (T (x∗i )) is w-null
since (x∗i ) is w∗-null. Bessaga–Pełczyński’s selection principle allows us to
assume that (T (x∗i )) is a w-null basic sequence in Y . If Ti : X∗ → Y ,
Ti(x∗) = x∗(xi)T (x∗i ), then Ti ∈ Kw∗(X∗, Y ) and the series

∑
Ti(x∗) con-

verges unconditionally to T (x∗) for all x∗ ∈ X∗. Since T is not compact,
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∑
Tn is weakly unconditionally convergent and not unconditionally con-

vergent, and thus c0 ↪→ Kw∗(X∗, Y ). By Theorem 8, Kw∗(X∗, Y ) is not
complemented in Lw∗(X∗, Y ) and `∞ ↪→ Lw∗(X∗, Y ).

Choose ε > 0 and intertwining sequences (mk), (nk) of positive inte-
gers so that ‖

∑nk
i=mk

Ti‖ > ε for each k. Let Lk =
∑nk

i=mk
Ti, k ∈ N. Note

that
∑
Lk(x∗) converges unconditionally for each x∗ ∈ X∗ since

∑
Ti(x∗) is

unconditionally convergent. Hence
∑
Lk is weakly unconditionally conver-

gent in Kw∗(X∗, Y ). Moreover, inf ‖Lk‖ > 0. By Lemma 3 on p. 160 of [3],
(Lk) ∼ (ek).

Let (y∗i ) in Y ∗ be a biorthogonal sequence of coefficients of (T (x∗i )).
We may suppose that ‖y∗i ‖ ≤ 1. If L ∈ Kw∗(X∗, Y ), then 〈x∗i ⊗ y∗i , L〉 ≤
‖L(x∗i )‖ → 0. Hence (x∗i ⊗ y∗i ) is w∗-null in (Kw∗(X∗, Y ))∗. For each mk ≤
i ≤ nk, 〈x∗i ⊗ y∗i , Lk〉 = 〈x∗i ⊗ y∗i , Ti〉 = 1. Then (Lk) is not limited. By a
result on p. 36 of Schlumprecht [30], c0

c
↪→ Kw∗(X∗, Y ).

Theorem 14. Let X and Y be infinite-dimensional Banach spaces satis-
fying the following assumption: if T is an operator in Lw∗(X∗, Y ), then there
is a sequence of operators (Tn) in Kw∗(X∗, Y ) such that for each x∗ ∈ X∗,
the series

∑
Tn(x∗) converges unconditionally to T (x∗). Then the following

are equivalent :

(i) Kw∗(X∗, Y ) 6= Lw∗(X∗, Y ).
(ii) X and Y do not have the Schur property and c0 ↪→ Kw∗(X∗, Y ).
(iii) X and Y do not have the Schur property and `∞ ↪→ Lw∗(X∗, Y ).
(iv) Kw∗(X∗, Y ) is not complemented in Lw∗(X∗, Y ).

Proof. (i)⇒(ii). Let T ∈ Lw∗(X∗, Y ) be noncompact. Then X and Y do
not have the Schur property. Let (Tn) be a sequence as in the hypothesis.
By the remark after Theorem 8, c0 ↪→ Kw∗(X∗, Y ).

(ii)⇒(iii) by Corollary 3 (or Corollary 2).
(iii)⇒(i). If Kw∗(X∗, Y ) = Lw∗(X∗, Y ), then `∞ ↪→ Kw∗(X∗, Y ). By

Drewnowski’s result [8], `∞ ↪→X or `∞ ↪→ Y . By Corollary 6(i), Kw∗(X∗, Y )
X
c
↪→ Lw∗(X∗, Y ), a contradiction.

(iv)⇒(i) is trivial, and (ii)⇒(iv) by Corollary 6(iv).

A separable Banach space X has an unconditional finite-dimensional ex-
pansion of the identity (u.f.d.e.i.) if there is a sequence (An) of finite rank
operators from X to X such that

∑
An(x) converges unconditionally to x

for all x ∈ X. In this case, (An) is called an u.f.d.e.i. of X [18].

Corollary 15. If either Y or X has an u.f.d.e.i., then the following
are equivalent :

(i) Kw∗(X∗, Y ) 6= Lw∗(X∗, Y ).
(ii) X and Y do not have the Schur property and c0 ↪→ Kw∗(X∗, Y ).
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(iii) X and Y do not have the Schur property and `∞ ↪→ Lw∗(X∗, Y ).
(iv) Kw∗(X∗, Y ) is not complemented in Lw∗(X∗, Y ).
(v) X and Y do not have the Schur property and c0

c
↪→ Kw∗(X∗, Y ).

Proof. Suppose Y has an u.f.d.e.i. (An). Then An : Y → Y is com-
pact for each n and y =

∑
An(y) unconditionally for each y ∈ Y . Let T ∈

Lw∗(X∗, Y ). Hence T (x∗) =
∑
AnT (x∗) unconditionally for each x∗ ∈ X∗

and AnT ∈ Kw∗(X∗, Y ). Apply Theorem 14 to find that the first four state-
ments are equivalent.

Now, if Y has an u.f.d.e.i. then Y must be separable, hence it has the
Gelfand–Phillips property [4]. By Theorem 18 in [13], if c0 ↪→ Kw∗(X∗, Y ),
then c0

c
↪→ Kw∗(X∗, Y ). Hence (ii)⇒(v). (v)⇒(ii) is trivial.

Assume that X has an u.f.d.e.i. (An). Then An : X → X is compact and
x =

∑
An(x) unconditionally for each x ∈ X. Let T ∈ Lw∗(X∗, Y ). Then

T ∗(y∗) =
∑
AnT

∗(y∗) unconditionally for each y∗ ∈ Y ∗ and Tn = AnT
∗ ∈

Kw∗(Y ∗, X). Now apply Theorem 14 and use the isometry Kw∗(X∗, Y ) '
Kw∗(Y ∗, X).

Corollary 16 ([13, Corollary 9]). Let X and Y be infinite-dimensional
Banach spaces such that X∗ or Y has an u.f.d.e.i. Then the following are
equivalent :

(i) K(X,Y ) 6= W (X,Y ).
(ii) X∗ and Y do not have the Schur property and c0 ↪→ K(X,Y ).
(iii) X∗ and Y do not have the Schur property and `∞ ↪→W (X,Y ).
(iv) K(X,Y ) is not complemented in W (X,Y ).
(v) X∗ and Y do not have the Schur property and c0

c
↪→ K(X,Y ).

Proof. Apply the isometries at the beginning of this section and Corol-
lary 15.

Corollary 17. Suppose that X∗ has an u.f.d.e.i. (An) consisting of
w∗-w operators. Then the conclusion of Corollary 15 is true.

Proof. Let (An) be an u.f.d.e.i. for X∗ consisting of w∗-w operators. Let
T ∈ Lw∗(X∗, Y ) and Tn = TAn. Then x∗ =

∑
An(x∗) unconditionally for

each x∗ ∈ X∗, T ∗(Y ∗) ⊆ X, A∗n(X∗∗) ⊆ X, and Tn is compact for each n.
We will show that Tn is w∗-w continuous. Let (x∗α) be a w∗-null net in BX∗
and y∗ ∈ Y ∗. For each n ∈ N,

〈y∗, Tn(x∗α)〉 = 〈A∗nT ∗(y∗), x∗α〉 → 0.

Then Tn ∈ Lw∗(X∗, Y ), and thus Tn ∈Kw∗(X∗, Y ). Since the series
∑
Tn(x∗)

converges unconditionally to T (x∗) for each x∗ ∈ X∗, an application of The-
orem 14, Theorem 18 in [13], and the isometry Kw∗(Y ∗, X) ' Kw∗(X∗, Y )
concludes the proof.
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The following result is motivated by Theorem 1 in [14].
A sequence (Xn) of closed subspaces of a Banach space X is called an

unconditional Schauder decomposition of X if every x ∈ X has a unique
representation of the form x =

∑
xn with xn ∈ Xn for every n, and the

series converges unconditionally [26].

Corollary 18. Let X and Y be infinite-dimensional Banach spaces
satisfying the following assumptions:

(a) Y is complemented in a Banach space Z which has an unconditional
Schauder decomposition (Zn).

(b) L(X∗, Zn) = K(X∗, Zn) for each n. Then the conclusion of Theo-
rem 14 is true.

Proof. Let T ∈ Lw∗(X∗, Y ), An : Z → Zn, An(
∑
zi) = zn, and P

the projection of Z onto Y . Define Tn : X∗ → Y by Tn(x∗) = PAnT (x∗),
x∗ ∈ X∗, n ∈ N. Note that Tn is compact since L(X∗, Zn) = K(X∗, Zn), and
Tn is w∗-w continuous for each n. Since for each z ∈ Z, z =

∑
An(z) and the

convergence is unconditional,
∑
Tn(x∗) converges unconditionally to T (x∗)

for each x∗ ∈ X∗. An application of Theorem 14 gives the conclusion.

The hypothesis (b) of the previous theorem is satisfied, for instance, in
the following cases:

(1) X is arbitrary and each Zn is finite-dimensional;
(2) `1 X↪→ X∗ and each Zn has the Schur property;
(3) X = `1 and each Zn has the Schur property;
(4) X∗∗ has the Schur property and each Zn has (RDP∗).

Corollary 19. If `1 X↪→ X∗, Y is complemented in a Banach space Z
which has an unconditional Schauder decomposition (Zn), and each Zn has
the Schur property , then the conclusion of Corollary 15 is true.

Proof. Since Z has an unconditional Schauder decomposition (Zn) and
each Zn has the Schur property, Z, hence Y , has the Gelfand–Phillips prop-
erty [9]. Apply Corollary 18 and Theorem 18 in [13] to get the conclusion.

The following theorem continues a theme of Theorem 13 and gives suf-
ficient conditions for Kw∗(X∗, Y ) to contain isomorphic (complemented)
copies of c0.

Theorem 20. Let X and Y be Banach spaces satisfying the following
assumption: there exists a Banach space G with an unconditional basis (gn)
and biorthogonal coefficients (g∗n) and two operators R : G → Y and S :
G∗ → X such that (R(gi)) and (S(g∗i )) are seminormalized sequences and
either (R(gi)) or (S(g∗i )) is a basic sequence. Then c0 embeds in Kw∗(X∗, Y )
(indeed , in any subspace H of L(X∗, Y ) which contains X ⊗λ Y ).
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Moreover , if (R(gi)) and (S(g∗i )) are basic and Y (or X) has the
Gelfand–Phillips property , then Kw∗(X∗, Y ) contains a complemented copy
of c0.

Proof. Suppose that p ≤ ‖R(gi)‖ ≤ q and p ≤ ‖S(g∗i )‖ ≤ q for all i. Let
S(g∗i )⊗R(gi) ∈ Kw∗(X∗, Y ), 〈S(g∗i )⊗R(gi), x∗〉 = x∗(S(g∗i ))R(gi), x∗ ∈ X∗.

Assume without loss of generality that (R(gi)) is a basic sequence. Choose
C1 > 0 so that for all real numbers (bi) and all positive integers m ≤ n,∥∥∥ m∑

i=1

biR(gi)
∥∥∥ ≤ C1

∥∥∥ n∑
i=1

biR(gi)
∥∥∥.

Then ‖biR(gi)‖ ≤ 2C1‖
∑n

j=1 biR(gi)‖ for each 1 ≤ i ≤ n.
We have, for any sequence (an) of real numbers,∥∥∥ n∑
i=1

ai[S(g∗i )⊗R(gi)]
∥∥∥
λ

= sup
{∥∥∥ n∑

i=1

aix
∗(S(g∗i ))R(gi)

∥∥∥ : x∗ ∈ BX∗
}

≥ sup
{

1
2C1
‖aix∗(S(g∗i ))R(gi)‖ : x∗ ∈ BX∗

}
≥ 1

2C1
p|ai| ‖S(g∗i )‖ ≥

1
2C1

p2|ai|

for each 1 ≤ i ≤ n. Hence∥∥∥ n∑
i=1

ai[S(g∗i )⊗R(gi)]
∥∥∥
λ
≥ 1

2C1
p2(

n
max
i=1
|ai|).

On the other hand, S and R induce an operator S ⊗λ R : G∗ ⊗λ G →
X ⊗λ Y , which maps (g∗n ⊗ gn) into (S(g∗n)⊗R(gn)) ([7, Chapter VIII]). So
we have ∥∥∥ n∑

i=1

ai[S(g∗i )⊗R(gi)]
∥∥∥
λ
≤ ‖S ⊗λ R‖

∥∥∥ n∑
i=1

ai(g∗i ⊗ gi)
∥∥∥
λ
.

Let ε({g∗i (g)gi}) = sup{
∑
|g∗(g∗i (g)gi)| : g∗ ∈ BG∗} for g ∈ G and let M be

the unconditional basis constant of the unconditional basis (gn).
If g ∈G and g∗∈BG∗ , then g=

∑
g∗i (g)gi unconditionally,

∑
|g∗(g∗i (g)gi)|

≤ 2M‖g‖, and sup{ε({g∗i (g)gi}) : g ∈ BG} ≤ 2M. Consequently,∥∥∥ n∑
i=1

ai(g∗i ⊗ gi)
∥∥∥
λ
≤ sup

{ n∑
i=1

|aig∗i (g)g∗(gi)| : g ∈ BG, g∗ ∈ BG∗
}

≤ 2M(
n

max
i=1
|ai|),
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and therefore∥∥∥ n∑
i=1

ai[S(g∗i )⊗R(gi)]
∥∥∥
λ
≤ 2M‖S ⊗λ R‖

n
max
i=1
|ai|.

Hence (S(g∗n)⊗R(gn)) ∼ (en) and thus c0 ↪→ Kw∗(X∗, Y ).
To prove the last part of the theorem, suppose that Y has the Gelfand–

Phillips property and both (R(gn)) and (S(g∗n)) are basic. If (R(gn)) is lim-
ited, then R(gn)→ 0 since (R(gn)) is relatively compact and the only weak
limit of a basic sequence is zero [5, p. 42]. Therefore (R(gn)) is not limited.
By a result of Schlumprecht [30], we can choose a w∗-null sequence (y∗n) in
Y ∗ such that 〈y∗n, R(gm)〉 = δnm. Let (x∗n) be a bounded sequence in X∗ such
that 〈x∗n, S(g∗m)〉 = δnm. We may assume that ‖x∗n‖ ≤ 1. Then (x∗n ⊗ y∗n) is
a w∗-null sequence in (Kw∗(X∗, Y ))∗ since for each T ∈ Kw∗(X∗, Y ),

〈x∗n ⊗ y∗n, T 〉 = 〈T (x∗n), y
∗
n〉 ≤ ‖T ∗(y∗n)‖ → 0.

Also, 〈x∗n⊗ y∗n, S(g∗m)⊗R(gm)〉 = δnm, thus (S(g∗m)⊗R(gm)) is not limited.
By Theorem 1.3.2 in [30], c0

c
↪→ Kw∗(X∗, Y ).

Remark. From Theorem 20 and the first example at the end of the
paper it follows that c0 embeds in Kw∗(X∗, Y ) when `2 embeds in both X
and Y . In fact, c0

c
↪→ Kw∗(X∗, Y ).

Corollary 21 ([11, Theorem 3]). Let X and Y be Banach spaces sat-
isfying the following assumption: there exists a Banach space G with an
unconditional basis (gn) and biorthogonal coefficients (g∗n) and two operators
R : G→ Y and S : G∗ → X∗ such that (R(gi)) and (S(g∗i )) are normalized
basic sequences. Then c0 ↪→ K(X,Y ).

Moreover , if Y (or X∗) has the Gelfand–Phillips property , then K(X,Y )
contains a complemented copy of c0.

Proof. Apply Theorem 20 and the isometry Kw∗(X∗∗, Y ) ' K(X,Y ).

Recall that a basis (xn) for X is said to be perfectly homogeneous if
it is seminormalized and every seminormalized block basic sequence with
respect to (xn) is equivalent to (xn) [32]. A perfectly homogeneous basis is
unconditional. The unit vector bases of c0 and `p, 1 ≤ p < ∞, are, up to
equivalence, the only perfectly homogeneous bases (Zippin) [32, p. 609].

Theorem 22. Suppose that (x∗n) is a perfectly homogeneous basic se-
quence in X∗, [x∗n]

∗ ↪→ X and T : [x∗n]→ Y is a non-completely continuous
operator. Then c0 ↪→ Kw∗(X∗, Y ), `∞ ↪→ Lw∗(X∗, Y ), and Kw∗(X∗, Y ) is
not complemented in Lw∗(X∗, Y ).

Proof. Suppose that (x∗n) is a perfectly homogeneous basic sequence,
[x∗n]

∗ ↪→ X, and T : [x∗n] → Y is an operator which is not completely con-
tinuous. Let U = [x∗n], and let (u∗n) be a weakly null sequence in U so that
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(T (u∗n)) 9 0. Without loss of generality, suppose that ε > 0 and ‖T (u∗n)‖ > ε
for each n. Apply the Bessaga–Pełczyński selection principle [5] and let (v∗n)
be a subsequence of (u∗n) so that (v∗n) is equivalent to a block basic sequence
of (x∗n). In fact, an inspection of the Bessaga–Pełczyński theorem shows that
we may assume that (v∗n) is seminormalized. Therefore (v∗n) ∼ (x∗n). Since
(x∗n) is unconditional, c0 ↪→ Kw∗(X∗, Y ) by Theorem 20. Apply Corollary 2
and Corollary 6(iv) to conclude the argument.

Corollary 23.

(a) Assume that `2 ↪→ X and there is an operator T : `2 → Y such that
the sequence (T (e2n)) is seminormalized. Then the four statements in
the conclusion of Theorem 14 hold.

(b) Assume that `2 ↪→ Y and there is an operator T : `2 → X such that
the sequence (T (e2n)) is seminormalized. Then the four statements in
the conclusion of Theorem 14 hold.

Proof. We prove (a); the case (b) is similar. An application of Theorem 22
(or 20) gives c0 ↪→ Kw∗(X∗, Y ). We note that X and Y are not Schur spaces
by hypothesis. Thus, (ii) holds. The proof of Theorem 14 shows that (ii)⇒(i),
(ii)⇒(iii), and (ii)⇒(iv).

Remark. A similar proof shows that if `2 ↪→ X and `p ↪→ Y for some
p ≥ 2, then the four statements in the conclusion of Theorem 14 hold.

Corollary 24. Assume that `2 ↪→ X∗ and there is an operator T :
`2 → Y such that the sequence (T (e2n)) is seminormalized. Then the first
four statements in the conclusion of Corollary 16 are true.

Proof. Apply Corollary 23.

In [17] Feder proved thatK(C(S), L1) is not complemented in L(C(S), L1)
when S is not dispersed. See also [12]. The following corollary improves
Feder’s result.

Corollary 25. Assume that S is a Hausdorff compact space which is
not dispersed. Then K(C(S), L1) is not complemented in W (C(S), L1).

Proof. Since S is not dispersed, `1 ↪→ C(S) [24]. Then L1 ↪→ C(S)∗ [27].
Also, the Rademacher functions span `2 inside of L1, and thus `2 ↪→ C(S)∗.
Corollary 21 implies that c0 ↪→ K(C(S), L1). By Corollary 24, K(C(S), L1)
is not complemented in W (C(S), L1).

See the last section of this paper for a generalization of Corollary 25.

Corollary 26 ([13, Corollary 12]). Assume that X has the DPP and
there is an operator T : `2 → Y such that the sequence (T (e2n)) is seminor-
malized. Then the first four statements in the conclusion of Corollary 16 are
equivalent.
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Proof. We only have to show that (i)⇒(ii). Since K(X,Y ) 6= W (X,Y ),
X∗ and Y do not have the Schur property. Since X has the DPP and X∗ is
not a Schur space, `1 ↪→ X [21], [6].

Then L1 ↪→ X∗ (by a result in [27]), hence `2 ↪→ X∗ [5]. By Theorem 20,
c0 ↪→ K(X,Y ). The rest follows from Corollary 24.

In [22] the authors proved that if X and Y are weakly sequentially com-
plete and Kw∗(X∗, Y ) = Lw∗(X∗, Y ), then Kw∗(X∗, Y ) is weakly sequen-
tially complete. Now we give a partial converse.

Corollary 27. If Y (or X) has an u.f.d.e.i. and Kw∗(X∗, Y ) is weakly
sequentially complete, then Kw∗(X∗, Y ) = Lw∗(X∗, Y ).

Proof. By Corollary 15, if Kw∗(X∗, Y ) 6= Lw∗(X∗, Y ), then c0 ↪→
Kw∗(X∗, Y ), a contradiction.

Closing remarks. Emmanuele made the following two observations on
p. 334 of [11]:

(a) If `1 ↪→ X and `p ↪→ Y for some p ≥ 2, then c0 ↪→ K(X,Y ) and
K(X,Y ) X

c
↪→ L(X,Y ).

(b) If 1/p+ 1/p′ = 1 and 1 < p′ ≤ q <∞, then c0
c
↪→ `p ⊗ε `q.

In case (a) we can actually show thatK(X,Y ) X
c
↪→W (X,Y ). Suppose that

`1 ↪→ X and `p ↪→ Y , p ≥ 2. Then L1 ↪→ X∗, and thus `2 ↪→ X∗. By Theorem
20, c0 ↪→ Kw∗(X∗∗, Y ). By Corollary 6, Kw∗(X∗∗, Y ) is not complemented in
Lw∗(X∗∗, Y ). Now use the natural isometries at the beginning of the previous
section to conclude that K(X,Y ) is not complemented in W (X,Y ).

Since K(`p, `q) = Kw∗(`p, `q) 6= L(`p, `q) = Lw∗(`p, `q), Theorem 13
allows us to see that c0

c
↪→ K(`p, `q), `∞ ↪→ L(`p, `q), and K(`p, `q) X

c
↪→

L(`p, `q) whenever 1 < p ≤ q <∞.
Since X ↪→ Kw∗(X∗, Y ), obviously c0 ↪→ Kw∗(`1, Y ) for every Banach

space Y . By Theorem 18 in Emmanuele [13] , c0
c
↪→ Kw∗(`1, Y ) whenever Y

has the Gelfand–Phillips property. Thus c0 is complemented in Kw∗(`1, `1).
Further, Theorem 13, as well as the Emmanuele result just cited, show
c0

c
↪→ Kw∗(`1, `p), 1 < p <∞. In fact, we can conclude more. Suppose that Z

contains an infinite-dimensional subspace Y which has a shrinking and semi-
normalized basis (yn). Let (y∗n) be the associated sequence of coefficient func-
tionals. Define L : `1 → Y by L(λ) =

∑∞
i=1 λiyi. Then L

∗(y∗k) = ek ∈ c0 for
each k. Since (yn) is shrinking, L is a w∗-w continuous operator and satisfies
the hypotheses of Theorem 13. (Theorems 14 and 20 also apply to this set-
ting.) In fact, if one defines L̂ : `1 → Z by L̂(λ) = L(λ), then L̂ ∈ Lw∗(`1, Z).
Thus c0

c
↪→ Kw∗(`1, Z), `∞ ↪→ Lw∗(`1, Z), and Kw∗(`1, Z) X

c
↪→ Lw∗(`1, Z).
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We note that Kw∗(`1, Z) may also contain copies of c0 which fail to
be complemented in this space of operators as well as copies of c0 which are
complemented. For example, `∞ contains all spaces with shrinking bases, and
thus c0

c
↪→ Kw∗(`1, `∞). However, `∞ naturally (and isometrically) embeds

in Kw∗(`1, `∞), and thus the canonical copy of c0 contained in `∞ cannot be
complemented in this space of operators.

Similar arguments show that if 1 < p ≤ q < ∞ and `q ↪→ Z, then
c0

c
↪→ Kw∗(`p, Z) = K(`p, Z), `∞ ↪→ Lw∗(`p, Z) = L(`p, Z) and K(`p, Z) X

c
↪→

L(`p, Z). Note also that K(`p, `∞) contains both complemented and uncom-
plemented copies of c0.

Examples. The first example shows that there are Banach spacesX and
Y such that c0 X↪→ X,Y , c0 ↪→ Kw∗(X∗, Y ), but Kw∗(X∗, Y ) 6= Lw∗(X∗, Y ).
Clearly c0 does not embed in `2. A direct application of Theorem 20 shows
that c0 ↪→ Kw∗(`2, `2) and the identity operator from `2 to `2 shows that
Kw∗(`2, `2) 6= Lw∗(`2, `2).

The next example [15] shows that we can find Banach spaces X and Y
such that c0 X↪→ Kw∗(X∗, Y ), but Kw∗(X∗, Y ) = Lw∗(X∗, Y ). Let E = F be
the Bourgain–Delbaen space which is an L∞ space with RNP and such that
E∗ is a Schur space even though c0 X↪→ E. Assume that c0 ↪→ Kw∗(E∗∗, E)
and let (Tn) be a copy of c0 in Kw∗(E∗∗, E). Define φ : `∞ → L(E∗∗, E)
by φ(b)(x∗∗) =

∑
bnTn(x∗∗). Since c0 X↪→ E∗, the series

∑
bnT

∗
n(y∗) con-

verges unconditionally for each y∗ ∈ E∗, hence φ(b) ∈ Lw∗(E∗∗, E). Note
that ‖φ(en)‖ = ‖Tn‖ 9 0. A result of Rosenthal [28] implies that `∞ ↪→
Lw∗(E∗∗, E). On the other hand, Kw∗(E∗∗, E) = Lw∗(E∗∗, E) since E∗ is a
Schur space. By Drewnowski’s result, `∞ ↪→ E or `∞ ↪→ E∗, a contradic-
tion. Hence c0 X↪→ Kw∗(E∗∗, E). Thus the spaces X = E∗ and Y = E are as
desired.

Alternatively, for 1 ≤ q < p, L(`p, `q) = K(`p, `q) (Pitt). Kalton showed
that for 1 ≤ q < p, L(`p, `q) is reflexive [23]. Thus c0 X↪→ K(`p, `q) '
Kw∗(`∗∗p , `q), and the spaces X = `∗p and Y = `q are as desired.

We conclude the paper by asking the following question.

Question. Are there Banach spaces X, Y such that Kw∗(X∗, Y ) 6=
Lw∗(X∗, Y ) and c0 X↪→ Kw∗(X∗, Y )?
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