FUNCTIONAL ANALYSIS

The Embeddability of c_0 in Spaces of Operators $\mathbf{b}\mathbf{v}$

Ioana GHENCIU and Paul LEWIS

Presented by Stanisław KWAPIEŃ

Summary. Results of Emmanuele and Drewnowski are used to study the containment of c_0 in the space $K_{w^*}(X^*, Y)$, as well as the complementation of the space $K_{w^*}(X^*, Y)$ of w^* -w compact operators in the space $L_{w^*}(X^*, Y)$ of w^* -w operators from X^* to Y.

Definitions and notations. Throughout this paper X and Y will denote real Banach spaces and X^* denotes the continuous linear dual of X. An operator $T: X \to Y$ will be a continuous and linear function. By $X \otimes_{\lambda} Y$ we denote the injective tensor product of X and Y. Notation is consistent with that used in Diestel [5]. Let (e_n) be the Schauder basis of c_0 , (e_n^*) be the basis of ℓ_1 , and (e_n^2) the unit vector basis of ℓ_2 . The set of all continuous linear transformations from X to Y will be denoted by L(X, Y), and the compact (resp. weakly compact) operators will be denoted by K(X,Y)(resp. W(X,Y)). The w^{*}-w continuous (resp. w^{*}-w continuous compact) maps from X^* to Y will be denoted by $L_{w^*}(X^*, Y)$ (resp. $K_{w^*}(X^*, Y)$).

A bounded subset A of X is called a *limited subset* of X if each w^* -null sequence in X^* tends to 0 uniformly on A. If every limited subset of X is relatively compact, then we say that X has the Gelfand-Phillips property. If every weakly compact operator defined on X is completely continuous, then we say that X has the Dunford-Pettis property (DPP); see [6] and [1] for inventories of classical results related to the DPP.

Introduction. Numerous authors have studied the containment of c_0 in the spaces of compact operators K(X, Y) and $K_{w^*}(X^*, Y)$. This problem has been studied together with the complementation of the space of com-

2000 Mathematics Subject Classification: 46B20, 46B28.

[239]

Key words and phrases: spaces of operators, complemented subspaces, compact operators, weakly compact operators, w^* -w compact operators, basic sequence.

pact operators $K_{w^*}(X^*, Y)$ (resp. K(X, Y)) in the space $L_{w^*}(X^*, Y)$ (resp. L(X, Y)) and the containment of l_{∞} in $L_{w^*}(X^*, Y)$ (resp. L(X, Y)). See Bator and Lewis [2], Kalton [23], Emmanuele [13], Emmanuele and John [16], Ghenciu [19], Lewis [25], and Tong and Wilken [31] for an indication of the extensive literature that deals with these problems. The survey paper [29] by Ruess is a valuable resource for the structure of the space of operators $K_{w^*}(X^*, Y)$.

Theorem 4 of Kalton [23] states that ℓ_{∞} embeds in K(X, Y) if and only if it embeds in X^* or in Y. In [8] Drewnowski generalized Theorem 4 of Kalton and proved that ℓ_{∞} embeds in $K_{w^*}(X^*, Y)$ if and only if it embeds in X or in Y. In this paper we use techniques of Emmanuele [11] and Drewnowski's result [8] to obtain results about the complementation of the space $K_{w^*}(X^*, Y)$ of compact w^* -w operators in the space $L_{w^*}(X^*, Y)$ of bounded w^* -w operators. Applications to the complementation of the space K(X,Y) in W(X,Y) are given. We also give sufficient conditions for the containment of c_0 in the space $K_{w^*}(X^*,Y)$, resp. K(X,Y). Results in this paper generalize results in [3], [11], [13], [14], [17], [20], [23], and [25].

Spaces of operators. We recall the following well-known isometries [29]:

1) $L_{w^*}(X^*, Y) \simeq L_{w^*}(Y^*, X)$ and $K_{w^*}(X^*, Y) \simeq K_{w^*}(Y^*, X)$ $(T \mapsto T^*)$, 2) $W(X, Y) \simeq L_{w^*}(X^{**}, Y)$ and $K(X, Y) \simeq K_{w^*}(X^{**}, Y)$ $(T \mapsto T^{**})$.

It is known that if X is infinite-dimensional and $c_0 \hookrightarrow L(X,Y)$, then $\ell_{\infty} \hookrightarrow L(X,Y)$ (see, e.g., [23] and [25]). Part (i) of the following theorem generalizes this result, as well as Theorem 3 in [3].

Theorem 1.

- (i) Suppose that X and Y are infinite-dimensional and S is a closed linear subspace of L(X,Y) which contains all the rank one operators x* ⊗ y, x* ∈ X*, y ∈ Y. If c₀ → S and S is complemented in L(X,Y), then l_∞ → S.
- (ii) Suppose that X and Y fail to have the Schur property, and S is a closed linear subspace of L_{w*}(X*, Y) which contains all rank one operators x ⊗ y, x ∈ X, y ∈ Y. If c₀ → S and S is complemented in L_{w*}(X*, Y), then l_∞ → S.

Proof. (i) Consider the following two cases.

Suppose first that $c_0 \hookrightarrow Y$ and let (y_n) be a copy of (e_n) in Y. Use the Josefson–Nissenzweig theorem and choose a w^* -null normalized sequence (x_n^*) in X^* . Define $J : \ell_{\infty} \to L(X, Y)$ by

$$J(b)(x) = \sum b_n x_n^*(x) y_n, \quad x \in X.$$

Then J is an isomorphism, and, if b is finitely supported, $J(b) \in S$.

Now suppose that $c_0 \nleftrightarrow Y$. Let $B : c_0 \to S$ be an isomorphic embedding. Note that $\sum |\langle B(e_n)(x), y^* \rangle| < \infty$ for all $x \in X$ and $y^* \in Y^*$. Since $c_0 \nleftrightarrow Y$, $\sum B(e_n)(x)$ is unconditionally convergent in Y for all $x \in X$. Define μ by $\mu(\emptyset) = 0$ and

$$\mu(A) = \sum_{n \in A} B(e_n) \quad \text{(strong operator topology)}$$

for any non-empty subset A of \mathbb{N} . Note that μ is bounded, finitely additive and not strongly additive $(\|\mu(\{n\})\| \to 0)$. Apply the Diestel–Faires theorem to obtain $\ell_{\infty} \hookrightarrow L(X, Y)$, and observe that if A is a finite subset of \mathbb{N} , then $\mu(A) \in S$.

Now suppose that S is complemented in L(X, Y), and let $P: L(X, Y) \to S$ be a projection. Let $\nu(A) = P(\chi_A)$ for $A \subseteq \mathbb{N}$. The first part of the proof shows that $\ell_{\infty} \hookrightarrow L(X, Y)$, thus ν is well-defined. Then $\nu : \mathcal{P}(\mathbb{N}) \to S$ is bounded and finitely additive. Moreover, $\|\nu(\{n\})\| \to 0$. Therefore another application of the Diestel–Faires theorem tells us that $\ell_{\infty} \hookrightarrow S$.

(ii) Assume first that $c_0 \hookrightarrow Y$. Let (x_n) be a *w*-null normalized sequence in X and (y_n) be a copy of (e_n) in Y. Define $\phi : \ell_{\infty} \to L_{w^*}(X^*, Y)$ by

$$\phi(b)(x^*) = \sum b_n x^*(x_n) y_n, \quad x^* \in X^*.$$

We note that the series converges unconditionally. To show that $\phi(b)$ is a w^* -w operator, we need to prove that $(\phi(x^*_{\alpha}))$ is w-null for each w^* -null net (x^*_{α}) in X^* . We can suppose that (x^*_{α}) is a w^* -null net in B_{X^*} by results about the bounded X topology (or BX topology) for X^* ([10, Chapter V]). Let $\varepsilon > 0$ and $y^* \in B_{Y^*}$. Since $\sum y_n$ is wuc, there is an $n \in \mathbb{N}$ such that $\sum_{i=n+1}^{\infty} |y^*(y_i)| < \varepsilon/(2||b||_{\infty})$. Then

$$\left|\sum_{i=n+1}^{\infty} b_i x_{\alpha}^*(x_i) y^*(y_i)\right| \le \|b\|_{\infty} \sum_{i=n+1}^{\infty} |y^*(y_i)| < \frac{\varepsilon}{2}.$$

On the other hand, $\lim_{\alpha} \sum_{i=1}^{n} |b_i x_{\alpha}^*(x_i) y^*(y_i)| = 0$ since (x_{α}^*) is a w^* -null net. Therefore, for α large,

$$|\langle \phi(b)(x_{\alpha}^*), y^* \rangle| \le \Big| \sum_{i=1}^n b_i x_{\alpha}^*(x_i) y^*(y_i) \Big| + \Big| \sum_{i=n+1}^\infty b_i x_{\alpha}^*(x_i) y^*(y_i) \Big| < \varepsilon.$$

Hence $\phi(b)$ is a w^* -w operator. Further, if $b \in \ell_{\infty}$ is finitely supported, $\phi(b) \in S$. A result in [28] implies that $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$ since $\|\phi(e_n)\| \to 0$. Similarly, if $c_0 \hookrightarrow X$ (and Y does not have the Schur property), then $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$.

Without loss of generality assume that $c_0 \nleftrightarrow X, Y$ and let $B : c_0 \to S$ be an isomorphic embedding. Note that $\sum B(e_n)(x^*)$ is *wuc*, hence unconditionally convergent for each $x^* \in X^*$ (since $c_0 \nleftrightarrow Y$). Similarly, $\sum B(e_n)^*(y^*)$ is unconditionally convergent in X for each $y^* \in Y^*$. Then

 $\sum B(e_n)$ (strong operator topology)

is a w^* -w operator from X^* to Y. Define $\mu : \mathcal{P}(\mathbb{N}) \to L_{w^*}(X^*, Y)$ by $\mu(\emptyset) = 0$ and

$$\mu(A) = \sum_{n \in A} B(e_n) \quad \text{(strong operator topology)}$$

if A is a non-empty subset of \mathbb{N} . Then μ is bounded (by the Uniform Boundedness Principle) and finitely additive, but $\mu(\{n\}) \to 0$. The σ -algebra version of the Diestel–Faires theorem [7] implies that $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$. Observe that if A is a finite subset of \mathbb{N} , then $\mu(A) \in S$.

Now suppose that S is complemented in $L_{w^*}(X^*, Y)$, and let $P : L_{w^*}(X^*, Y) \to S$ be a projection. Let $\nu(A) = P(\chi_A)$ for $A \subseteq \mathbb{N}$. Then $\nu : \mathcal{P}(\mathbb{N}) \to S$ is bounded and finitely additive. Moreover, $\|\nu(\{n\})\| \to 0$. By another application of the Diestel-Faires theorem we conclude that $\ell_{\infty} \hookrightarrow S$.

If X is infinite-dimensional and $c_0 \hookrightarrow L_{w^*}(X^*, Y)$, then $L_{w^*}(X^*, Y)$ may fail to contain ℓ_{∞} . It is not difficult to check that $c_0 \hookrightarrow K_{w^*}(\ell_1, \ell_1)$. In fact, $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(\ell_1, \ell_1)$; see the closing remarks in this paper. However, since $K_{w^*}(\ell_1, \ell_1) = L_{w^*}(\ell_1, \ell_1)$, Drewnowski's theorem makes it clear that $\ell_{\infty} \nleftrightarrow$ $L_{w^*}(\ell_1, \ell_1)$.

Our first corollary points out that the exclusion of ℓ_{∞} is not possible if X and Y do not have the Schur property.

COROLLARY 2. Suppose that $c_0 \hookrightarrow L_{w^*}(X^*, Y)$ and X and Y do not have the Schur property. Then $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$.

COROLLARY 3 (Ghenciu and Lewis, [20]).

- (i) If X does not have the Schur property and $c_0 \hookrightarrow Y$, then $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$.
- (ii) If c_0 does not embed in X or Y and $c_0 \hookrightarrow K_{w^*}(X^*, Y)$, then $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$ provided that X and Y do not have the Schur property.

Proof. Part (i) follows from the proof of Theorem 1, and (ii) is an immediate corollary of the statement of the theorem. \blacksquare

The next theorem is motivated by results in [13].

THEOREM 4. Suppose that X has an unconditional and seminormalized basis (x_i) with biorthogonal coefficients (x_i^*) , and $T : X \to Y$ is an operator such that $(T(x_i))$ is a weakly null seminormalized basic sequence in Y. Let S(X,Y) be a closed linear subspace of L(X,Y) which properly contains K(X,Y) such that $\phi(b) \in S(X,Y)$ for all $b \in \ell_{\infty}$, where $\phi(b)(x) =$ $\sum b_i x_i^*(x) T(x_i), x \in X$. Then K(X,Y) is not complemented in S(X,Y). *Proof.* Let $\delta > 0$ and $(x_{i_j}) = (u_j)$ be a subsequence of (x_i) such that $||T(u_i) - T(u_j)|| > \delta$ for $i \neq j$. Denote the corresponding subsequence of coefficient functionals by (u_j^*) . Note that $\sum b_j u_j^*(x)T(u_j)$ converges unconditionally in Y for each $x \in X$ and $b = (b_i) \in \ell_{\infty}$.

Let $J : [(T(u_i)] \to \ell_{\infty}$ be a linear isometry, and let $A : Y \to \ell_{\infty}$ be a continuous linear extension of J. Now suppose that K(X,Y) is complemented in S(X,Y) and let $P : S(X,Y) \to K(X,Y)$ be a projection. Define $\tau : \ell_{\infty} \to L(X,Y)$ by

$$\tau(b)(x) = \sum_{j} b_{j} u_{j}^{*}(x) T(u_{j}), \quad x \in X.$$

Note that $\tau(\ell_{\infty}) \subseteq S(X, Y)$. Consider the operators $AP\tau : \ell_{\infty} \to K(X, \ell_{\infty})$ and $A\tau : \ell_{\infty} \to S(X, \ell_{\infty})$. Since $\tau(e_j) = u_j^* \otimes T(u_j), \tau(e_j)$ is a rank one operator, thus compact. Then $AP\tau(e_j) = A\tau(e_j)$ for each $j \in \mathbb{N}$. Proposition 5 of Kalton [23] produces an infinite subset M of \mathbb{N} such that

$$AP\tau(b) = A\tau(b), \quad b \in l_{\infty}(M).$$

Therefore $A\tau(\chi_M)$ is compact. But $\tau(\chi_M)(u_j) = T(u_j), j \in M$, and $\{T(u_j) : j \in M\}$ is not relatively compact. Therefore $\tau(\chi_M)$ is not compact. However, this is a contradiction since $A_{|_{[T(u_j)]}}$ is an isometry.

COROLLARY 5 (Emmanuele, [13]). Let Y be a Banach space without the Schur property. Then $K(\ell_1, Y)$ is not complemented in $W(\ell_1, Y)$.

Proof. Let (y_n) be a *w*-null normalized basic sequence in $Y, X = \ell_1$, and $S(\ell_1, Y) = W(\ell_1, Y)$. Define $T : \ell_1 \to Y$ by $T(x) = \sum x_n y_n, x = (x_n) \in \ell_1$. If $\phi : \ell_{\infty} \to L(\ell_1, Y)$ is defined as in the previous theorem, then $\phi(b)(x) = \sum_j b_j x_j y_j$ for $x = (x_n) \in \ell_1$. Since $\phi(b)(e_n^*) = (b_n y_n)$ is *w*-null, $\phi(b)$ is weakly compact for all $b \in \ell_{\infty}$. By Theorem 4, $K(\ell_1, Y) \stackrel{c}{\hookrightarrow} W(\ell_1, Y)$.

The next corollary contains principal results of [11], [13] and [16].

COROLLARY 6.

- (i) If $\ell_{\infty} \hookrightarrow Y$ and X does not have the Schur property (or $\ell_{\infty} \hookrightarrow X$ and Y does not have the Schur property), then $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$.
- (ii) If $c_0 \hookrightarrow K(X,Y)$ and $K(X,Y) \neq L(X,Y)$, then K(X,Y) is not complemented in L(X,Y).
- (iii) If $c_0 \hookrightarrow Y$ and X does not have the Schur property (or $c_0 \hookrightarrow X$ and Y does not have the Schur property), then $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$.
- (iv) If $c_0 \hookrightarrow K_{w^*}(X^*, Y)$ and X and Y do not have the Schur property, then $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$.

Proof. (i) Since $\ell_{\infty} \hookrightarrow Y$ and ℓ_{∞} is injective, ℓ_{∞} is complemented in Y. Suppose that $K_{w^*}(X^*, Y) \stackrel{c}{\hookrightarrow} L_{w^*}(X^*, Y)$. Then $K_{w^*}(X^*, \ell_{\infty}) \stackrel{c}{\hookrightarrow} L_{w^*}(X^*, \ell_{\infty})$. Let P be a projection of $L_{w^*}(X^*, \ell_{\infty})$ onto $K_{w^*}(X^*, \ell_{\infty})$. Note that $W(\ell_1, X)$ $\simeq L_{w^*}(X^*, \ell_{\infty})$ and $K(\ell_1, X) \simeq K_{w^*}(X^*, \ell_{\infty})$. Hence the projection P may be viewed as an operator from $W(\ell_1, X)$ onto $K(\ell_1, X)$. Apply Corollary 5 now.

(ii) Suppose that $K(X,Y) \stackrel{c}{\hookrightarrow} L(X,Y)$. By Theorem 1, $\ell_{\infty} \hookrightarrow K(X,Y)$. Apply Theorem 4 of Kalton [23] to conclude that $\ell_{\infty} \hookrightarrow X^*$ or $\ell_{\infty} \hookrightarrow Y$. The first case produces a contradiction in view of Lemma 3 of Kalton [23]. If $\ell_{\infty} \hookrightarrow Y$, then $c_0 \hookrightarrow Y$, and the conclusion follows from Corollary 1 of Feder [17].

(iii) Suppose that $c_0 \hookrightarrow Y$ and X does not have the Schur property. Assume that $K_{w^*}(X^*, Y) \stackrel{c}{\hookrightarrow} L_{w^*}(X^*, Y)$. Theorem 1 implies that $\ell_{\infty} \hookrightarrow K_{w^*}(X^*, Y)$. Drewnowski's result [8] implies that $\ell_{\infty} \hookrightarrow X$ or $\ell_{\infty} \hookrightarrow Y$. However, this is not possible by part (i).

(iv) The same proof as for (iii). \blacksquare

Our proof of Corollary 6 made use of the following result in [17]:

THEOREM 7 (Feder, [17]). Suppose T is an operator in L(X, Y) which is not compact and (T_n) is a sequence in K(X, Y) such that for each $x \in X$, the series $\sum T_n(x)$ converges unconditionally to T(x). Then K(X, Y) is not complemented in L(X, Y).

In [11] Emmanuele proved that the containment of c_0 in K(X,Y) is equivalent to the hypothesis of Feder's theorem. He used this to obtain (ii) of Corollary 6 above. In the next theorem we obtain an analogue of Feder's theorem in $L_{w^*}(X^*, Y)$.

THEOREM 8. Suppose T is an operator in $L_{w^*}(X^*, Y)$ which is not compact and (T_n) is a sequence in $K_{w^*}(X^*, Y)$ such that for each $x^* \in X^*$, the series $\sum T_n(x^*)$ converges unconditionally to $T(x^*)$. Then $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$. Furthermore, $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$.

Proof. Since $L_{w^*}(X^*, Y) \neq K_{w^*}(X^*, Y)$, X and Y do not have the Schur property (if X or Y has the Schur property, $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$). Without loss of generality assume $c_0 \nleftrightarrow X, Y$ (by Corollary 6(iii)), hence $\ell_{\infty} \nleftrightarrow X, Y$. Suppose the operator T and the sequence (T_n) are as in the hypothesis. Since T is not compact, $\sum T_n$ diverges in the norm topology of $K_{w^*}(X^*, Y)$. This divergence and the pointwise unconditional convergence of the series $\sum T_n(x^*)$ allow us to reblock the sum and to assume that $||T_n|| \to 0$.

Now use the Uniform Boundedness Principle, the finite-cofinite algebra of the subsets of \mathbb{N} , and the Diestel-Faires theorem to conclude that $c_0 \hookrightarrow K_{w^*}(X^*, Y)$; see the proof of Theorem 1 for details. (Alternatively, note that $\sum T_n$ is weakly unconditionally convergent and not unconditionally convergent.) If $K_{w^*}(X^*, Y)$ were complemented in $L_{w^*}(X^*, Y)$, then Theorem 1 would place ℓ_{∞} in $K_{w^*}(X^*, Y)$. Another application of Drewnowski's result [8] would provide the contradiction that ℓ_{∞} would embed in either X or Y. To see that ℓ_{∞} embeds in $L_{w^*}(X^*, Y)$ simply apply Theorem 1 again. \blacksquare

REMARK. The hypothesis of the previous theorem implies that the series $\sum T_n$ is *wuc* (by the Uniform Boundedness Principle) and not unconditionally convergent in $K_{w^*}(X^*, Y)$, hence c_0 embeds in $K_{w^*}(X^*, Y)$. Conversely, if c_0 embeds in $K_{w^*}(X^*, Y)$, but neither in X nor in Y, then there is a sequence (T_n) which satisfies the hypothesis of Theorem 8. In fact, if $c_0 \nleftrightarrow X, Y$, then $l_{\infty} \nleftrightarrow X, Y$ and thus $l_{\infty} \nleftrightarrow K_{w^*}(X^*, Y)$ [8]. Let (T_n) be a copy of (e_n) in $K_{w^*}(X^*, Y)$. Define $\phi : \ell_{\infty} \to L(X^*, Y)$ by

$$\phi(b)(x^*) = \sum b_n T_n(x^*), \quad x^* \in X^*.$$

This series is unconditionally convergent and $\phi(b)$ is a w^* -w operator. If $\phi(b)$ is compact for each $b \in \ell_{\infty}$, then $\phi : \ell_{\infty} \to K_{w^*}(X^*, Y)$ is weakly compact (since $\ell_{\infty} \nleftrightarrow K_{w^*}(X^*, Y)$, [28]). Then $\|\phi(e_n)\| = \|T_n\| \to 0$. This is a contradiction. Therefore there is a $b_0 \in \ell_{\infty}$ such that $\phi(b_0)$ is not compact. The series $\sum b_{0n}T_n$ and the operator $\phi(b_0)$ satisfy the hypothesis of Theorem 8.

We are now in a position to present a concise and straightforward proof of the main result in [13] and to obtain several corollaries concerning the structure of K(X, Y) and W(X, Y).

THEOREM 9 ([13, Theorem 4]). Suppose $c_0 \hookrightarrow K_{w^*}(X^*, Y)$. Then either $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$, or $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$.

Furthermore, $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$ if and only if only one of the following is true:

- (i) $c_0 \hookrightarrow Y$ and X has the Schur property,
- (ii) $c_0 \hookrightarrow X$ and Y has the Schur property.

Proof. If $c_0 \hookrightarrow K_{w^*}(X^*, Y)$ and $K_{w^*}(X^*, Y) \neq L_{w^*}(X^*, Y)$, then Corollary 6(iv) implies that $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$.

Now assume that $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$ and c_0 embeds neither in X nor in Y. The proof of Theorem 1 shows that if $c_0 \hookrightarrow K_{w^*}(X^*, Y)$, but $c_0 \nleftrightarrow X, Y$, then $\ell_{\infty} \hookrightarrow K_{w^*}(X^*, Y)$. Therefore $\ell_{\infty} \hookrightarrow X$ or $\ell_{\infty} \hookrightarrow Y$ [8]. This contradiction shows that either $c_0 \hookrightarrow X$ or $c_0 \hookrightarrow Y$.

If $c_0 \hookrightarrow Y$ and X does not have the Schur property, then $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$ by Corollary 6(iii). Hence X has the Schur property and (i) must hold. \blacksquare Corollaries 10–12 make use of the following isometries:

 $W(X,Y) \simeq L_{w^*}(X^{**},Y), \quad K(X,Y) \simeq K_{w^*}(X^{**},Y).$

COROLLARY 10. Suppose Y is the second Bourgain–Delbaen space which is an \mathcal{L}_{∞} -space which has the RNP and Y^{*} is isomorphic to ℓ_1 . Then $c_0 \nleftrightarrow K(Y,Y)$.

Proof. Since Y^* is a Schur space, it follows that K(Y,Y) = W(Y,Y)and $c_0 \nleftrightarrow Y^*$. Further, $c_0 \nleftrightarrow Y$ since Y has the RNP. By Theorem 9, $c_0 \nleftrightarrow K(Y,Y)$.

COROLLARY 11. Suppose $T: X \to Y$ is a weakly compact operator which is not compact and (T_n) is a sequence in K(X,Y) such that for each $x \in X$, the series $\sum T_n(x)$ converges unconditionally to T(x). Then K(X,Y) is not complemented in W(X,Y). Furthermore, $\ell_{\infty} \hookrightarrow W(X,Y)$.

Proof. Apply Theorem 8.

COROLLARY 12.

- (i) If $c_0 \hookrightarrow Y$ and X^* does not have the Schur property, then K(X,Y) is not complemented in W(X,Y) and $\ell_{\infty} \hookrightarrow W(X,Y)$.
- (ii) If $c_0 \hookrightarrow K(X,Y)$ and $K(X,Y) \neq W(X,Y)$, then K(X,Y) is not complemented in W(X,Y) and $\ell_{\infty} \hookrightarrow W(X,Y)$.

Proof. (i) Apply Corollary 6(iii) to deduce that $K(X,Y) \stackrel{c}{\hookrightarrow} W(X,Y)$. An application of Corollary 2 concludes the proof.

(ii) Apply Theorem 9 to find that $K(X,Y) \stackrel{c}{\nleftrightarrow} W(X,Y)$. An application of Corollary 2 concludes the proof.

The next theorem, as well as several subsequent corollaries, show that many familiar spaces of operators contain complemented copies of c_0 .

THEOREM 13. Suppose that (x_i) is an unconditional and seminormalized shrinking basis for X and (x_i^*) is the associated sequence of coefficient functionals. Let T be an operator in $L_{w^*}(X^*,Y)$ such that $(T(x_i^*))$ is seminormalized. Then $c_0 \hookrightarrow K_{w^*}(X^*,Y)$, $K_{w^*}(X^*,Y) \stackrel{c}{\hookrightarrow} L_{w^*}(X^*,Y)$, and $\ell_{\infty} \hookrightarrow L_{w^*}(X^*,Y)$. Moreover, $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(X^*,Y)$.

Proof. Since (x_n) is an unconditional shrinking basis for X, (x_n^*) is an unconditional basis for X^* , and the series $\sum x^*(x_n)x_n^*$ converges unconditionally to x^* for all $x^* \in X^*$ ([32, Thm. 17.7]). Note that $(T(x_i^*))$ is w-null since (x_i^*) is w*-null. Bessaga–Pełczyński's selection principle allows us to assume that $(T(x_i^*))$ is a w-null basic sequence in Y. If $T_i : X^* \to Y$, $T_i(x^*) = x^*(x_i)T(x_i^*)$, then $T_i \in K_{w^*}(X^*, Y)$ and the series $\sum T_i(x^*)$ converges unconditionally to $T(x^*)$ for all $x^* \in X^*$. Since T is not compact,

 $\sum T_n$ is weakly unconditionally convergent and not unconditionally convergent, and thus $c_0 \hookrightarrow K_{w^*}(X^*, Y)$. By Theorem 8, $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$ and $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$.

Choose $\varepsilon > 0$ and intertwining sequences (m_k) , (n_k) of positive integers so that $\|\sum_{i=m_k}^{n_k} T_i\| > \varepsilon$ for each k. Let $L_k = \sum_{i=m_k}^{n_k} T_i$, $k \in \mathbb{N}$. Note that $\sum L_k(x^*)$ converges unconditionally for each $x^* \in X^*$ since $\sum T_i(x^*)$ is unconditionally convergent. Hence $\sum L_k$ is weakly unconditionally convergent in $K_{w^*}(X^*, Y)$. Moreover, $\inf \|L_k\| > 0$. By Lemma 3 on p. 160 of [3], $(L_k) \sim (e_k)$.

Let (y_i^*) in Y^* be a biorthogonal sequence of coefficients of $(T(x_i^*))$. We may suppose that $||y_i^*|| \leq 1$. If $L \in K_{w^*}(X^*, Y)$, then $\langle x_i^* \otimes y_i^*, L \rangle \leq ||L(x_i^*)|| \to 0$. Hence $(x_i^* \otimes y_i^*)$ is w^* -null in $(K_{w^*}(X^*, Y))^*$. For each $m_k \leq i \leq n_k$, $\langle x_i^* \otimes y_i^*, L_k \rangle = \langle x_i^* \otimes y_i^*, T_i \rangle = 1$. Then (L_k) is not limited. By a result on p. 36 of Schlumprecht [30], $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(X^*, Y)$.

THEOREM 14. Let X and Y be infinite-dimensional Banach spaces satisfying the following assumption: if T is an operator in $L_{w^*}(X^*, Y)$, then there is a sequence of operators (T_n) in $K_{w^*}(X^*, Y)$ such that for each $x^* \in X^*$, the series $\sum T_n(x^*)$ converges unconditionally to $T(x^*)$. Then the following are equivalent:

- (i) $K_{w^*}(X^*, Y) \neq L_{w^*}(X^*, Y).$
- (ii) X and Y do not have the Schur property and $c_0 \hookrightarrow K_{w^*}(X^*, Y)$.
- (iii) X and Y do not have the Schur property and $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$.
- (iv) $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$.

Proof. (i) \Rightarrow (ii). Let $T \in L_{w^*}(X^*, Y)$ be noncompact. Then X and Y do not have the Schur property. Let (T_n) be a sequence as in the hypothesis. By the remark after Theorem 8, $c_0 \hookrightarrow K_{w^*}(X^*, Y)$.

(ii) \Rightarrow (iii) by Corollary 3 (or Corollary 2).

(iii) \Rightarrow (i). If $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$, then $\ell_{\infty} \hookrightarrow K_{w^*}(X^*, Y)$. By Drewnowski's result [8], $\ell_{\infty} \hookrightarrow X$ or $\ell_{\infty} \hookrightarrow Y$. By Corollary 6(i), $K_{w^*}(X^*, Y)$ $\stackrel{c}{\hookrightarrow} L_{w^*}(X^*, Y)$, a contradiction.

 $(iv) \Rightarrow (i)$ is trivial, and $(ii) \Rightarrow (iv)$ by Corollary 6(iv).

A separable Banach space X has an unconditional finite-dimensional expansion of the identity (u.f.d.e.i.) if there is a sequence (A_n) of finite rank operators from X to X such that $\sum A_n(x)$ converges unconditionally to x for all $x \in X$. In this case, (A_n) is called an u.f.d.e.i. of X [18].

COROLLARY 15. If either Y or X has an u.f.d.e.i., then the following are equivalent:

- (i) $K_{w^*}(X^*, Y) \neq L_{w^*}(X^*, Y).$
- (ii) X and Y do not have the Schur property and $c_0 \hookrightarrow K_{w^*}(X^*, Y)$.

- (iii) X and Y do not have the Schur property and $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$.
- (iv) $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$.
- (v) X and Y do not have the Schur property and $c_0 \stackrel{\sim}{\hookrightarrow} K_{w^*}(X^*, Y)$.

Proof. Suppose Y has an u.f.d.e.i. (A_n) . Then $A_n : Y \to Y$ is compact for each n and $y = \sum A_n(y)$ unconditionally for each $y \in Y$. Let $T \in L_{w^*}(X^*, Y)$. Hence $T(x^*) = \sum A_n T(x^*)$ unconditionally for each $x^* \in X^*$ and $A_n T \in K_{w^*}(X^*, Y)$. Apply Theorem 14 to find that the first four statements are equivalent.

Now, if Y has an u.f.d.e.i. then Y must be separable, hence it has the Gelfand–Phillips property [4]. By Theorem 18 in [13], if $c_0 \hookrightarrow K_{w^*}(X^*, Y)$, then $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(X^*, Y)$. Hence (ii) \Rightarrow (v). (v) \Rightarrow (ii) is trivial.

Assume that X has an u.f.d.e.i. (A_n) . Then $A_n : X \to X$ is compact and $x = \sum A_n(x)$ unconditionally for each $x \in X$. Let $T \in L_{w^*}(X^*, Y)$. Then $T^*(y^*) = \sum A_n T^*(y^*)$ unconditionally for each $y^* \in Y^*$ and $T_n = A_n T^* \in K_{w^*}(Y^*, X)$. Now apply Theorem 14 and use the isometry $K_{w^*}(X^*, Y) \simeq K_{w^*}(Y^*, X)$.

COROLLARY 16 ([13, Corollary 9]). Let X and Y be infinite-dimensional Banach spaces such that X^* or Y has an u.f.d.e.i. Then the following are equivalent:

- (i) $K(X,Y) \neq W(X,Y)$.
- (ii) X^* and Y do not have the Schur property and $c_0 \hookrightarrow K(X,Y)$.
- (iii) X^* and Y do not have the Schur property and $\ell_{\infty} \hookrightarrow W(X,Y)$.
- (iv) K(X,Y) is not complemented in W(X,Y).
- (v) X^* and Y do not have the Schur property and $c_0 \stackrel{c}{\hookrightarrow} K(X,Y)$.

Proof. Apply the isometries at the beginning of this section and Corollary 15. \blacksquare

COROLLARY 17. Suppose that X^* has an u.f.d.e.i. (A_n) consisting of w^* -w operators. Then the conclusion of Corollary 15 is true.

Proof. Let (A_n) be an u.f.d.e.i. for X^* consisting of w^* -w operators. Let $T \in L_{w^*}(X^*, Y)$ and $T_n = TA_n$. Then $x^* = \sum A_n(x^*)$ unconditionally for each $x^* \in X^*$, $T^*(Y^*) \subseteq X$, $A_n^*(X^{**}) \subseteq X$, and T_n is compact for each n. We will show that T_n is w^* -w continuous. Let (x^*_{α}) be a w^* -null net in B_{X^*} and $y^* \in Y^*$. For each $n \in \mathbb{N}$,

$$\langle y^*, T_n(x^*_\alpha) \rangle = \langle A^*_n T^*(y^*), x^*_\alpha \rangle \to 0.$$

Then $T_n \in L_{w^*}(X^*, Y)$, and thus $T_n \in K_{w^*}(X^*, Y)$. Since the series $\sum T_n(x^*)$ converges unconditionally to $T(x^*)$ for each $x^* \in X^*$, an application of Theorem 14, Theorem 18 in [13], and the isometry $K_{w^*}(Y^*, X) \simeq K_{w^*}(X^*, Y)$ concludes the proof. \blacksquare

The following result is motivated by Theorem 1 in [14].

A sequence (X_n) of closed subspaces of a Banach space X is called an unconditional Schauder decomposition of X if every $x \in X$ has a unique representation of the form $x = \sum x_n$ with $x_n \in X_n$ for every n, and the series converges unconditionally [26].

COROLLARY 18. Let X and Y be infinite-dimensional Banach spaces satisfying the following assumptions:

- (a) Y is complemented in a Banach space Z which has an unconditional Schauder decomposition (Z_n) .
- (b) $L(X^*, Z_n) = K(X^*, Z_n)$ for each n. Then the conclusion of Theorem 14 is true.

Proof. Let $T \in L_{w^*}(X^*, Y)$, $A_n : Z \to Z_n$, $A_n(\sum z_i) = z_n$, and Pthe projection of Z onto Y. Define $T_n : X^* \to Y$ by $T_n(x^*) = PA_nT(x^*)$, $x^* \in X^*$, $n \in \mathbb{N}$. Note that T_n is compact since $L(X^*, Z_n) = K(X^*, Z_n)$, and T_n is w^* -w continuous for each n. Since for each $z \in Z$, $z = \sum A_n(z)$ and the convergence is unconditional, $\sum T_n(x^*)$ converges unconditionally to $T(x^*)$ for each $x^* \in X^*$. An application of Theorem 14 gives the conclusion.

The hypothesis (b) of the previous theorem is satisfied, for instance, in the following cases:

- (1) X is arbitrary and each Z_n is finite-dimensional;
- (2) $\ell_1 \nleftrightarrow X^*$ and each Z_n has the Schur property;
- (3) $X = \ell_1$ and each Z_n has the Schur property;
- (4) X^{**} has the Schur property and each Z_n has (RDP*).

COROLLARY 19. If $\ell_1 \nleftrightarrow X^*$, Y is complemented in a Banach space Z which has an unconditional Schauder decomposition (Z_n) , and each Z_n has the Schur property, then the conclusion of Corollary 15 is true.

Proof. Since Z has an unconditional Schauder decomposition (Z_n) and each Z_n has the Schur property, Z, hence Y, has the Gelfand–Phillips property [9]. Apply Corollary 18 and Theorem 18 in [13] to get the conclusion.

The following theorem continues a theme of Theorem 13 and gives sufficient conditions for $K_{w^*}(X^*, Y)$ to contain isomorphic (complemented) copies of c_0 .

THEOREM 20. Let X and Y be Banach spaces satisfying the following assumption: there exists a Banach space G with an unconditional basis (g_n) and biorthogonal coefficients (g_n^*) and two operators $R : G \to Y$ and S : $G^* \to X$ such that $(R(g_i))$ and $(S(g_i^*))$ are seminormalized sequences and either $(R(g_i))$ or $(S(g_i^*))$ is a basic sequence. Then c_0 embeds in $K_{w^*}(X^*, Y)$ (indeed, in any subspace H of $L(X^*, Y)$ which contains $X \otimes_{\lambda} Y$). Moreover, if $(R(g_i))$ and $(S(g_i^*))$ are basic and Y (or X) has the Gelfand-Phillips property, then $K_{w^*}(X^*,Y)$ contains a complemented copy of c_0 .

Proof. Suppose that $p \leq ||R(g_i)|| \leq q$ and $p \leq ||S(g_i^*)|| \leq q$ for all *i*. Let $S(g_i^*) \otimes R(g_i) \in K_{w^*}(X^*, Y), \langle S(g_i^*) \otimes R(g_i), x^* \rangle = x^*(S(g_i^*))R(g_i), x^* \in X^*.$

Assume without loss of generality that $(R(g_i))$ is a basic sequence. Choose $C_1 > 0$ so that for all real numbers (b_i) and all positive integers $m \leq n$,

$$\left\|\sum_{i=1}^{m} b_i R(g_i)\right\| \le C_1 \left\|\sum_{i=1}^{n} b_i R(g_i)\right\|.$$

Then $||b_i R(g_i)|| \le 2C_1 ||\sum_{j=1}^n b_i R(g_i)||$ for each $1 \le i \le n$.

We have, for any sequence (a_n) of real numbers,

$$\begin{split} \left\|\sum_{i=1}^{n} a_{i}[S(g_{i}^{*}) \otimes R(g_{i})]\right\|_{\lambda} &= \sup\left\{\left\|\sum_{i=1}^{n} a_{i}x^{*}(S(g_{i}^{*}))R(g_{i})\right\| : x^{*} \in B_{X^{*}}\right\}\\ &\geq \sup\left\{\frac{1}{2C_{1}} \left\|a_{i}x^{*}(S(g_{i}^{*}))R(g_{i})\right\| : x^{*} \in B_{X^{*}}\right\}\\ &\geq \frac{1}{2C_{1}} \left.p|a_{i}| \left\|S(g_{i}^{*})\right\| \geq \frac{1}{2C_{1}} \left.p^{2}|a_{i}|\right\} \end{split}$$

for each $1 \leq i \leq n$. Hence

$$\left\|\sum_{i=1}^{n} a_{i}[S(g_{i}^{*}) \otimes R(g_{i})]\right\|_{\lambda} \geq \frac{1}{2C_{1}} p^{2}(\max_{i=1}^{n} |a_{i}|).$$

On the other hand, S and R induce an operator $S \otimes_{\lambda} R : G^* \otimes_{\lambda} G \to X \otimes_{\lambda} Y$, which maps $(g_n^* \otimes g_n)$ into $(S(g_n^*) \otimes R(g_n))$ ([7, Chapter VIII]). So we have

$$\left\|\sum_{i=1}^{n} a_{i}[S(g_{i}^{*}) \otimes R(g_{i})]\right\|_{\lambda} \leq \|S \otimes_{\lambda} R\| \left\|\sum_{i=1}^{n} a_{i}(g_{i}^{*} \otimes g_{i})\right\|_{\lambda}$$

Let $\varepsilon(\{g_i^*(g)g_i\}) = \sup\{\sum |g^*(g_i^*(g)g_i)| : g^* \in B_{G^*}\}$ for $g \in G$ and let M be the unconditional basis constant of the unconditional basis (g_n) .

If $g \in G$ and $g^* \in B_{G^*}$, then $g = \sum g_i^*(g)g_i$ unconditionally, $\sum |g^*(g_i^*(g)g_i)| \le 2M ||g||$, and $\sup \{ \varepsilon (\{g_i^*(g)g_i\}) : g \in B_G \} \le 2M$. Consequently,

$$\left\|\sum_{i=1}^{n} a_{i}(g_{i}^{*} \otimes g_{i})\right\|_{\lambda} \leq \sup\left\{\sum_{i=1}^{n} |a_{i}g_{i}^{*}(g)g^{*}(g_{i})| : g \in B_{G}, g^{*} \in B_{G^{*}}\right\}$$
$$\leq 2M(\max_{i=1}^{n} |a_{i}|),$$

and therefore

$$\left\|\sum_{i=1}^{n} a_i [S(g_i^*) \otimes R(g_i)]\right\|_{\lambda} \le 2M \|S \otimes_{\lambda} R\| \max_{i=1}^{n} |a_i|.$$

Hence $(S(g_n^*) \otimes R(g_n)) \sim (e_n)$ and thus $c_0 \hookrightarrow K_{w^*}(X^*, Y)$.

To prove the last part of the theorem, suppose that Y has the Gelfand– Phillips property and both $(R(g_n))$ and $(S(g_n^*))$ are basic. If $(R(g_n))$ is limited, then $R(g_n) \to 0$ since $(R(g_n))$ is relatively compact and the only weak limit of a basic sequence is zero [5, p. 42]. Therefore $(R(g_n))$ is not limited. By a result of Schlumprecht [30], we can choose a w^* -null sequence (y_n^*) in Y^* such that $\langle y_n^*, R(g_m) \rangle = \delta_{nm}$. Let (x_n^*) be a bounded sequence in X^* such that $\langle x_n^*, S(g_m^*) \rangle = \delta_{nm}$. We may assume that $||x_n^*|| \leq 1$. Then $(x_n^* \otimes y_n^*)$ is a w^* -null sequence in $(K_{w^*}(X^*, Y))^*$ since for each $T \in K_{w^*}(X^*, Y)$,

$$\langle x_n^* \otimes y_n^*, T \rangle = \langle T(x_n^*), y_n^* \rangle \le \|T^*(y_n^*)\| \to 0.$$

Also, $\langle x_n^* \otimes y_n^*, S(g_m^*) \otimes R(g_m) \rangle = \delta_{nm}$, thus $(S(g_m^*) \otimes R(g_m))$ is not limited. By Theorem 1.3.2 in [30], $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(X^*, Y)$.

REMARK. From Theorem 20 and the first example at the end of the paper it follows that c_0 embeds in $K_{w^*}(X^*, Y)$ when ℓ_2 embeds in both X and Y. In fact, $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(X^*, Y)$.

COROLLARY 21 ([11, Theorem 3]). Let X and Y be Banach spaces satisfying the following assumption: there exists a Banach space G with an unconditional basis (g_n) and biorthogonal coefficients (g_n^*) and two operators $R: G \to Y$ and $S: G^* \to X^*$ such that $(R(g_i))$ and $(S(g_i^*))$ are normalized basic sequences. Then $c_0 \hookrightarrow K(X,Y)$.

Moreover, if Y (or X^*) has the Gelfand–Phillips property, then K(X, Y) contains a complemented copy of c_0 .

Proof. Apply Theorem 20 and the isometry $K_{w^*}(X^{**}, Y) \simeq K(X, Y)$.

Recall that a basis (x_n) for X is said to be *perfectly homogeneous* if it is seminormalized and every seminormalized block basic sequence with respect to (x_n) is equivalent to (x_n) [32]. A perfectly homogeneous basis is unconditional. The unit vector bases of c_0 and ℓ_p , $1 \le p < \infty$, are, up to equivalence, the only perfectly homogeneous bases (Zippin) [32, p. 609].

THEOREM 22. Suppose that (x_n^*) is a perfectly homogeneous basic sequence in X^* , $[x_n^*]^* \hookrightarrow X$ and $T : [x_n^*] \to Y$ is a non-completely continuous operator. Then $c_0 \hookrightarrow K_{w^*}(X^*, Y)$, $\ell_{\infty} \hookrightarrow L_{w^*}(X^*, Y)$, and $K_{w^*}(X^*, Y)$ is not complemented in $L_{w^*}(X^*, Y)$.

Proof. Suppose that (x_n^*) is a perfectly homogeneous basic sequence, $[x_n^*]^* \hookrightarrow X$, and $T : [x_n^*] \to Y$ is an operator which is not completely continuous. Let $U = [x_n^*]$, and let (u_n^*) be a weakly null sequence in U so that

 $(T(u_n^*)) \rightarrow 0$. Without loss of generality, suppose that $\varepsilon > 0$ and $||T(u_n^*)|| > \varepsilon$ for each n. Apply the Bessaga–Pełczyński selection principle [5] and let (v_n^*) be a subsequence of (u_n^*) so that (v_n^*) is equivalent to a block basic sequence of (x_n^*) . In fact, an inspection of the Bessaga–Pełczyński theorem shows that we may assume that (v_n^*) is seminormalized. Therefore $(v_n^*) \sim (x_n^*)$. Since (x_n^*) is unconditional, $c_0 \hookrightarrow K_{w^*}(X^*, Y)$ by Theorem 20. Apply Corollary 2 and Corollary 6(iv) to conclude the argument.

COROLLARY 23.

- (a) Assume that $\ell_2 \hookrightarrow X$ and there is an operator $T : \ell_2 \to Y$ such that the sequence $(T(e_n^2))$ is seminormalized. Then the four statements in the conclusion of Theorem 14 hold.
- (b) Assume that $\ell_2 \hookrightarrow Y$ and there is an operator $T : \ell_2 \to X$ such that the sequence $(T(e_n^2))$ is seminormalized. Then the four statements in the conclusion of Theorem 14 hold.

Proof. We prove (a); the case (b) is similar. An application of Theorem 22 (or 20) gives $c_0 \hookrightarrow K_{w^*}(X^*, Y)$. We note that X and Y are not Schur spaces by hypothesis. Thus, (ii) holds. The proof of Theorem 14 shows that (ii) \Rightarrow (i), (ii) \Rightarrow (iii), and (ii) \Rightarrow (iv).

REMARK. A similar proof shows that if $\ell_2 \hookrightarrow X$ and $\ell_p \hookrightarrow Y$ for some $p \ge 2$, then the four statements in the conclusion of Theorem 14 hold.

COROLLARY 24. Assume that $\ell_2 \hookrightarrow X^*$ and there is an operator $T : \ell_2 \to Y$ such that the sequence $(T(e_n^2))$ is seminormalized. Then the first four statements in the conclusion of Corollary 16 are true.

Proof. Apply Corollary 23.

In [17] Feder proved that $K(C(S), L^1)$ is not complemented in $L(C(S), L^1)$ when S is not dispersed. See also [12]. The following corollary improves Feder's result.

COROLLARY 25. Assume that S is a Hausdorff compact space which is not dispersed. Then $K(C(S), L^1)$ is not complemented in $W(C(S), L^1)$.

Proof. Since S is not dispersed, $\ell_1 \hookrightarrow C(S)$ [24]. Then $L^1 \hookrightarrow C(S)^*$ [27]. Also, the Rademacher functions span ℓ_2 inside of L^1 , and thus $\ell_2 \hookrightarrow C(S)^*$. Corollary 21 implies that $c_0 \hookrightarrow K(C(S), L^1)$. By Corollary 24, $K(C(S), L^1)$ is not complemented in $W(C(S), L^1)$.

See the last section of this paper for a generalization of Corollary 25.

COROLLARY 26 ([13, Corollary 12]). Assume that X has the DPP and there is an operator $T : \ell_2 \to Y$ such that the sequence $(T(e_n^2))$ is seminormalized. Then the first four statements in the conclusion of Corollary 16 are equivalent. *Proof.* We only have to show that (i) \Rightarrow (ii). Since $K(X, Y) \neq W(X, Y)$, X^* and Y do not have the Schur property. Since X has the DPP and X^* is not a Schur space, $\ell_1 \hookrightarrow X$ [21], [6].

Then $L^1 \hookrightarrow X^*$ (by a result in [27]), hence $\ell_2 \hookrightarrow X^*$ [5]. By Theorem 20, $c_0 \hookrightarrow K(X,Y)$. The rest follows from Corollary 24.

In [22] the authors proved that if X and Y are weakly sequentially complete and $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$, then $K_{w^*}(X^*, Y)$ is weakly sequentially complete. Now we give a partial converse.

COROLLARY 27. If Y (or X) has an u.f.d.e.i. and $K_{w^*}(X^*, Y)$ is weakly sequentially complete, then $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$.

Proof. By Corollary 15, if $K_{w^*}(X^*, Y) \neq L_{w^*}(X^*, Y)$, then $c_0 \hookrightarrow K_{w^*}(X^*, Y)$, a contradiction.

Closing remarks. Emmanuele made the following two observations on p. 334 of [11]:

- (a) If $\ell_1 \hookrightarrow X$ and $\ell_p \hookrightarrow Y$ for some $p \ge 2$, then $c_0 \hookrightarrow K(X,Y)$ and $K(X,Y) \stackrel{c}{\hookrightarrow} L(X,Y)$.
- (b) If 1/p + 1/p' = 1 and $1 < p' \le q < \infty$, then $c_0 \stackrel{c}{\hookrightarrow} \ell_p \otimes_{\varepsilon} \ell_q$.

In case (a) we can actually show that $K(X,Y) \stackrel{c}{\hookrightarrow} W(X,Y)$. Suppose that $\ell_1 \hookrightarrow X$ and $\ell_p \hookrightarrow Y, p \ge 2$. Then $L_1 \hookrightarrow X^*$, and thus $\ell_2 \hookrightarrow X^*$. By Theorem 20, $c_0 \hookrightarrow K_{w^*}(X^{**},Y)$. By Corollary 6, $K_{w^*}(X^{**},Y)$ is not complemented in $L_{w^*}(X^{**},Y)$. Now use the natural isometries at the beginning of the previous section to conclude that K(X,Y) is not complemented in W(X,Y).

Since $K(\ell_p, \ell_q) = K_{w^*}(\ell_p, \ell_q) \neq L(\ell_p, \ell_q) = L_{w^*}(\ell_p, \ell_q)$, Theorem 13 allows us to see that $c_0 \stackrel{c}{\hookrightarrow} K(\ell_p, \ell_q), \ \ell_{\infty} \hookrightarrow L(\ell_p, \ell_q)$, and $K(\ell_p, \ell_q) \stackrel{c}{\nleftrightarrow} L(\ell_p, \ell_q)$ whenever 1 .

Since $X \hookrightarrow K_{w^*}(X^*, Y)$, obviously $c_0 \hookrightarrow K_{w^*}(\ell_1, Y)$ for every Banach space Y. By Theorem 18 in Emmanuele [13], $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(\ell_1, Y)$ whenever Y has the Gelfand–Phillips property. Thus c_0 is complemented in $K_{w^*}(\ell_1, \ell_1)$. Further, Theorem 13, as well as the Emmanuele result just cited, show $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(\ell_1, \ell_p)$, 1 . In fact, we can conclude more. Suppose that Zcontains an infinite-dimensional subspace Y which has a shrinking and semi $normalized basis <math>(y_n)$. Let (y_n^*) be the associated sequence of coefficient functionals. Define $L : \ell_1 \to Y$ by $L(\lambda) = \sum_{i=1}^{\infty} \lambda_i y_i$. Then $L^*(y_k^*) = e_k \in c_0$ for each k. Since (y_n) is shrinking, L is a w^* -w continuous operator and satisfies the hypotheses of Theorem 13. (Theorems 14 and 20 also apply to this setting.) In fact, if one defines $\hat{L} : \ell_1 \to Z$ by $\hat{L}(\lambda) = L(\lambda)$, then $\hat{L} \in L_{w^*}(\ell_1, Z)$. Thus $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(\ell_1, Z)$, $\ell_{\infty} \hookrightarrow L_{w^*}(\ell_1, Z)$, and $K_{w^*}(\ell_1, Z) \stackrel{c}{\hookrightarrow} L_{w^*}(\ell_1, Z)$. We note that $K_{w^*}(\ell_1, Z)$ may also contain copies of c_0 which fail to be complemented in this space of operators as well as copies of c_0 which are complemented. For example, ℓ_{∞} contains all spaces with shrinking bases, and thus $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(\ell_1, \ell_{\infty})$. However, ℓ_{∞} naturally (and isometrically) embeds in $K_{w^*}(\ell_1, \ell_{\infty})$, and thus the canonical copy of c_0 contained in ℓ_{∞} cannot be complemented in this space of operators.

Similar arguments show that if $1 and <math>\ell_q \hookrightarrow Z$, then $c_0 \stackrel{c}{\hookrightarrow} K_{w^*}(\ell_p, Z) = K(\ell_p, Z), \ \ell_{\infty} \hookrightarrow L_{w^*}(\ell_p, Z) = L(\ell_p, Z)$ and $K(\ell_p, Z) \stackrel{c}{\hookrightarrow} L(\ell_p, Z)$. Note also that $K(\ell_p, \ell_{\infty})$ contains both complemented and uncomplemented copies of c_0 .

EXAMPLES. The first example shows that there are Banach spaces X and Y such that $c_0 \nleftrightarrow X, Y, c_0 \hookrightarrow K_{w^*}(X^*, Y)$, but $K_{w^*}(X^*, Y) \neq L_{w^*}(X^*, Y)$. Clearly c_0 does not embed in ℓ_2 . A direct application of Theorem 20 shows that $c_0 \hookrightarrow K_{w^*}(\ell_2, \ell_2)$ and the identity operator from ℓ_2 to ℓ_2 shows that $K_{w^*}(\ell_2, \ell_2) \neq L_{w^*}(\ell_2, \ell_2)$.

The next example [15] shows that we can find Banach spaces X and Y such that $c_0 \hookrightarrow K_{w^*}(X^*, Y)$, but $K_{w^*}(X^*, Y) = L_{w^*}(X^*, Y)$. Let E = F be the Bourgain–Delbaen space which is an \mathcal{L}_{∞} space with RNP and such that E^* is a Schur space even though $c_0 \hookrightarrow E$. Assume that $c_0 \hookrightarrow K_{w^*}(E^{**}, E)$ and let (T_n) be a copy of c_0 in $K_{w^*}(E^{**}, E)$. Define $\phi : \ell_{\infty} \to L(E^{**}, E)$ by $\phi(b)(x^{**}) = \sum b_n T_n(x^{**})$. Since $c_0 \hookrightarrow E^*$, the series $\sum b_n T_n^*(y^*)$ converges unconditionally for each $y^* \in E^*$, hence $\phi(b) \in L_{w^*}(E^{**}, E)$. Note that $\|\phi(e_n)\| = \|T_n\| \to 0$. A result of Rosenthal [28] implies that $\ell_{\infty} \hookrightarrow$ $L_{w^*}(E^{**}, E)$. On the other hand, $K_{w^*}(E^{**}, E) = L_{w^*}(E^{**}, E)$ since E^* is a Schur space. By Drewnowski's result, $\ell_{\infty} \hookrightarrow E$ or $\ell_{\infty} \hookrightarrow E^*$, a contradiction. Hence $c_0 \hookrightarrow K_{w^*}(E^{**}, E)$. Thus the spaces $X = E^*$ and Y = E are as desired.

Alternatively, for $1 \leq q < p$, $L(\ell_p, \ell_q) = K(\ell_p, \ell_q)$ (Pitt). Kalton showed that for $1 \leq q < p$, $L(\ell_p, \ell_q)$ is reflexive [23]. Thus $c_0 \nleftrightarrow K(\ell_p, \ell_q) \simeq K_{w^*}(\ell_p^{**}, \ell_q)$, and the spaces $X = \ell_p^*$ and $Y = \ell_q$ are as desired.

We conclude the paper by asking the following question.

QUESTION. Are there Banach spaces X, Y such that $K_{w^*}(X^*, Y) \neq L_{w^*}(X^*, Y)$ and $c_0 \nleftrightarrow K_{w^*}(X^*, Y)$?

References

- K. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), 35–41.
- E. Bator and P. Lewis, Complemented spaces of operators, Bull. Polish Acad. Sci. Math. 50 (2002), 413–416.

- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164.
- [4] J. Bourgain and J. Diestel, *Limited operators and strict cosingularity*, Math. Nachr. 119 (1984), 55–58.
- [5] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
- [6] —, A survey of results related to the Dunford-Pettis property, in: Contemp. Math. 2, Amer. Math. Soc., 1980, 15–60.
- [7] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., 1977.
- [8] L. Drewnowski, Copies of l_∞ in an operator space, Math. Proc. Cambridge Philos. Soc. 108 (1990), 523–526.
- [9] —, On Banach spaces with the Gelfand-Phillips property, Math. Z. 193 (1986), 405-411.
- [10] N. Dunford and J. T. Schwartz, *Linear Operators. Part I, General Theory*, Interscience Publ., New York, 1958.
- G. Emmanuele, A remark on the containment of c₀ in spaces of compact operators, Math. Proc. Cambridge Philos. Soc. 111 (1992), 331–335.
- [12] —, Remarks on the uncomplemented subspace W(E, F), J Funct. Anal. 99 (1991), 125–130.
- [13] —, About the position of $K_{w^*}(X^*, Y)$ inside $L_{w^*}(X^*, Y)$, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 123–133.
- [14] —, On the containment of c₀ by spaces of compact operators, Bull. Sci. Math. 115 (1991), 177–184.
- [15] —, Answer to a question by M. Feder about K(X, Y), Rev. Mat. Univ. Complut. Madrid 6 (1993), 263–266.
- [16] G. Emmanuele and K. John, Uncomplementability of spaces of compact operators in larger spaces of operators, Czechoslovak Math. J. 47 (1997), 19–31.
- M. Feder, On the non-existence of a projection onto the space of compact operators, Canad. Math. Bull. 25 (1982), 78–81.
- [18] —, On subspaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), 196–205.
- [19] I. Ghenciu, Complemented spaces of operators, Proc. Amer. Math. Soc. 133 (2005), 2621–2623.
- [20] I. Ghenciu and P. Lewis, Dunford-Pettis properties and spaces of operators, Canad. Math. Bull., to appear.
- [21] —, —, The Dunford-Pettis property, the Gelfand-Phillips property, and L-sets, Colloq. Math. 106 (2006), 311–324.
- [22] —, —, Strong Dunford-Pettis sets and spaces of operators, Monatsh. Math. 144 (2005), 275–284.
- [23] N. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267–278.
- [24] E. H. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, New York, 1974.
- [25] P. Lewis, Spaces of operators and c_0 , Studia Math. 145 (2001), 213–218.
- [26] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977.
- [27] A. Pełczyński, On Banach spaces containing $L_1(\mu)$, Studia Math. 30 (1968), 231–246.
- [28] H. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, ibid. 37 (1970), 13–36.
- [29] W. Ruess, Duality and geometry of spaces of compact operators, in: Functional Analysis: Surveys and Recent Results III (Paderborn, 1983), North-Holland Math. Stud. 90, North-Holland, 1984, 59–78.

- [30] T. Schlumprecht, Limited sets in Banach spaces, Dissertation, Munich, 1987.
- [31] A. E. Tong and D. R. Wilken, The uncomplemented subspace K(E, F), Studia Math. 37 (1971), 227–236.
- [32] I. Singer, Bases in Banach Spaces II, Springer, Berlin, 1981.

Ioana GhenciuPaul LewisDepartment of MathematicsDepartment of MathematicsUniversity of Wisconsin-River FallsUniversity of North TexasRiver Falls, WI 54022-5001, U.S.A.Box 311430E-mail: ioana.ghenciu@uwrf.eduDenton, TX 76203-1430, U.S.A.E-mail: lewis@unt.eduE-mail: lewis@unt.edu

Received November 14, 2008

(7689)