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Summary. Considering symmetric wavelet sets consisting of four intervals, a class of
non-MSF non-MRA wavelets for L2(R) and dilation 2 is obtained. In addition, we obtain
a family of non-MSF non-MRA H2-wavelets which includes the one given by Behera [Bull.
Polish Acad. Sci. Math. 52 (2004), 169–178].

1. Introduction. In [4], Dai and Larson called a measurable subset W
of the real line a wavelet set if the characteristic function χW of W is equal
to
√

2π times the modulus of the Fourier transform ψ̂ for some orthonormal
wavelet ψ on L2(R). A function ψ in L2(R) whose successive dilates by a
scalar d and all integral translates form an orthonormal basis for L2(R) is
called an orthonormal wavelet for L2(R). An orthonormal wavelet whose
Fourier transform has the support of smallest possible measure is called a
minimally supported frequency (MSF) wavelet. In fact, an MSF wavelet ψ
is a wavelet which is associated with a wavelet set W in the sense that the
support of ψ̂ is W [1, 4–10]. One of the earliest wavelets, namely Shannon
wavelet for dilation 2, has W = [−2π,−π] ∪ [π, 2π] as its wavelet set, which
is a union of two disjoint intervals of R. Wavelet sets in R which are unions
of two disjoint intervals and also those which are unions of three disjoint
intervals have been characterized by Ha, Kang, Lee and Seo [6]. In addition,
they characterized those wavelet sets which are symmetric with respect to
the origin and consist of four intervals. These are precisely Kr = K−r ∪K+

r ,
where
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(1) K+
r =

[
2r

2r+1 − 1
π, π

]
∪
[
2rπ,

22r+1

2r+1 − 1
π

]
, K−r = −K+

r ,

and r is a positive integer. Further, they considered H2-wavelet sets [1, 2,
6, 9] and characterized those H2-wavelet sets which have just one interval
and also those with two intervals. Indeed, H2-wavelet sets consisting of two
intervals are given by

(2) Kr,k =
[

2(k + 1)
2r+1 − 1

π,
2k

2r − 1
π

]
∪
[

2r+1k

2r − 1
π,

2r+2(k + 1)
2r+1 − 1

π

]
,

where r ∈ N and 1 ≤ k < 2(2r − 1).
Bownik and Speegle [3] characterized those dilations which admit non-

MSF wavelets considering higher dimensional wavelets. Exploiting the struc-
ture of H2-wavelet sets having two intervals, Behera [2] constructed a family
of non-MSF Hardy wavelets for H2(R) which, in addition, turns out to be
a family of non-MRA Hardy wavelets for H2(R) due to Theorem 4.2, estab-
lished in this paper.

With the help of symmetric wavelet sets consisting of four intervals, we
provide a class of non-MSF non-MRA wavelets for L2(R) and dilation 2 in
Section 3. Also, considering H2-wavelet sets with two intervals for r ∈ N and
k = 2l−1, 1 ≤ l ≤ r, we provide a family of non-MSF non-MRA H2-wavelets
and dilation 2 in Section 4, which includes the one given by Behera.

2. Prerequisites. A pair ({Vj}j∈Z, ϕ) consisting of a family {Vj}j∈Z
of closed subspaces of L2(R) together with a function ϕ ∈ V0 is called a
multiresolution analysis (MRA) if it satisfies the following conditions:

(a) Vj ⊂ Vj+1 for all j ∈ Z,
(b) f ∈ Vj if and only if f(2(·)) ∈ Vj+1 for all j ∈ Z,
(c)

⋂
j∈Z Vj = {0},

(d)
⋃
j∈Z Vj = L2(R),

(e) {ϕ(· − k) : k ∈ Z} is an orthonormal basis for V0.

The function ϕ is called a scaling function for the given MRA. An MRA
determines a function ψ lying in the orthogonal complement of V0 in V1

which is an orthonormal wavelet for L2(R). Such a ψ is called an MRA
wavelet arising from the MRA ({Vj}j∈Z, ϕ). The scaling function gives rise
to a 2π-periodic function, known as the low-pass filter corresponding to ϕ,
which satisfies

ψ̂(ξ) = eiξ/2 m0(ξ/2 + π) ϕ̂(ξ/2) for a.e. ξ ∈ R.

A multiresolution analysis for H2(R) and H2-MRA wavelets can be de-
scribed similarly.
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For an orthonormal wavelet ψ, the formula

Dψ(ξ) =
∞∑
j=1

∑
k∈Z
|ψ̂(2j(ξ + 2kπ))|2

defines the dimension function Dψ for ψ. We use the following characteriza-
tion which works for both MRA wavelets and H2-MRA wavelets [9].

Result 2.1. A wavelet ψ ∈ L2(R) (resp. ψ ∈ H2(R)) is an MRA (resp.
H2-MRA) wavelet iff Dψ(ξ) = 1 for almost every ξ ∈ R.

Also, we use the following known characterization of orthonormal wavelets
for L2(R) and H2(R) (see [9]).

Result 2.2. A function ψ ∈ L2(R) (resp. ψ ∈ H2(R)) is an orthonormal
wavelet (resp. H2-wavelet) iff

(i) ‖ψ‖2 = 1,
(ii) ρ(ξ) =

∑
j∈Z |ψ̂(2jξ)|2 = χR(ξ) (resp. χR+(ξ)) for a.e. ξ ∈ R,

(iii) tq(ξ) =
∑

j≥0 ψ̂(2jξ) ψ̂(2j(ξ + 2qπ)) = 0 for a.e. ξ ∈ R and for
q ∈ 2Z + 1.

3. Non-MSF non-MRA wavelets for L2(R). We write K+
r = I+

r ∪
J+
r , r ∈ N, where

I+
r =

[
2r

2r+1 − 1
π, π

]
and J+

r =
[
2rπ,

22r+1

2r+1 − 1
π

]
.

Recall that I−r = −I+
r , J−r = −J+

r , and Kr = J−r ∪ I−r ∪ I+
r ∪ J+

r . First, we
have

Lemma 3.1. Under the above notation, for r,m ∈ N, the following hold:

(a) 2−mI+
r + 2rπ ⊂ J+

r ,
(b) 2−mI−r − 2rπ ⊂ J−r ,
(c) 2−(m−1)I+

r ∩ 2−mI+
r = ∅,

(d) 2−mI−r ∩ 2−(m−1)I−r = ∅,
(e) I+

r + 2r+mπ ⊂ 2mJ+
r ,

(f) I−r − 2r+mπ ⊂ 2mJ−r .

Proof. This is straightforward.

From the characterization of wavelet sets stated below [4, 9], Lemma 3.3
can be easily obtained.

Result 3.2. A measurable set W ⊂ R is a wavelet set if and only if

(i) R =
⋃̇
n∈Z(W + 2nπ) a.e.,
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(ii) R =
⋃̇
n∈Z(2nW ) a.e.,

where
⋃̇

denotes disjoint union.

Lemma 3.3. Define τ : R → [0, 2π) by τ(x) = x + 2pπ, where p is an
integer depending on x. Then:

(a) τ(E) = τ(E + 2kπ) for any k ∈ Z and E a measurable set in R,
(b) for any disjoint measurable sets E and F in R contained in a wavelet

set W , τ(E) ∩ τ(F ) = ∅.
Theorem 3.4. For (r,m) ∈ N× N, the function ψr,m defined by

ψ̂r,m(ξ)

=



1/
√

2 if ξ ∈ I+
r ∪ 2−mI+

r ∪ (2−mI+
r + 2rπ) ∪ I−r

∪ 2−mI−r ∪ (2−mI−r − 2rπ),
−1/
√

2 if ξ ∈ (I+
r + 2r+mπ) ∪ (I−r − 2r+mπ),

1 if ξ ∈ (J+
r − (2−mI+

r + 2rπ)) ∪ (J−r − (2−mI−r − 2rπ)),
0 otherwise,

is a non-MSF non-MRA wavelet for L2(R).

Proof. By Lemma 3.1, it is easily seen that the sets used to define ψ̂r,m(ξ)
are pairwise disjoint. To illustrate, we have 2−mI−r ∩ (2−mI−r − 2rπ) = ∅ by
Lemma 3.1(b) and (d). Now, we employ Result 2.2 to show that ψr,m is a
non-MSF wavelet for L2(R).

(i) Since

‖ψ̂r,m‖22 =
�

R
|ψ̂r,m(ξ)|2 dξ

=
1
2

(
1 +

1
2m

+
1

2m
+ 1
)
|I+
r |+

1
2

(
1 +

1
2m

+
1

2m
+ 1
)
|I−r |

+ |J+
r |+ |J−r | −

1
2m
|I+
r | −

1
2m
|I−r |

= |I+
r |+ |I−r |+ |J+

r |+ |J−r | = 2π,

it follows that ‖ψr,m‖2 = 1.
(ii) Since ρ(2ξ) = ρ(ξ) for a.e. ξ ∈ R, it suffices to show that ρ(ξ) = 1

on Kr. If ξ ∈ I+
r , then by the definition of ψr,m, 2jξ ∈ supp ψ̂r,m if and only

if j = 0 or −m. Hence

ρ(ξ) = |ψ̂r,m(ξ)|2 + |ψ̂r,m(2−mξ)|2 =
(

1√
2

)2

+
(

1√
2

)2

= 1.

Write
J+
r = (J+

r − (2−mI+
r + 2rπ)) ∪ (2−mI+

r + 2rπ).
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If ξ ∈ J+
r − (2−mI+

r + 2rπ), then 2jξ ∈ supp ψ̂r,m if and only if j = 0. Hence

ρ(ξ) = |ψ̂r,m(ξ)|2 = 1.

If ξ ∈ 2−mI+
r + 2rπ, then 2jξ ∈ supp ψ̂r,m if and only if j = 0 or m. Hence

ρ(ξ) = |ψ̂r,m(ξ)|2 + |ψ̂r,m(2mξ)|2 =
(

1√
2

)2

+
(
−1√

2

)2

= 1.

If ξ ∈ I−r , then 2jξ ∈ supp ψ̂r,m if and only if j = 0 or −m. Hence

ρ(ξ) = |ψ̂r,m(ξ)|2 + |ψ̂r,m(2−mξ)|2 =
(

1√
2

)2

+
(

1√
2

)2

= 1.

Write
J−r = (J−r − (2−mI−r − 2rπ)) ∪ (2−mI−r − 2rπ).

If ξ ∈ J−r − (2−mI−r − 2rπ), then 2jξ ∈ supp ψ̂r,m if and only if j = 0. Hence

ρ(ξ) = |ψ̂r,m(ξ)|2 = 1.

If ξ ∈ 2−mI−r − 2rπ, then 2jξ ∈ supp ψ̂r,m if and only if j = 0 or m. Hence

ρ(ξ) = |ψ̂r,m(ξ)|2 + |ψ̂r,m(2mξ)|2 =
(

1√
2

)2

+
(
−1√

2

)2

= 1.

(iii) In view of t−q(ξ) = tq(ξ − 2qπ), we will show that tq(ξ) = 0 a.e.,
where q is a positive odd integer. The term ψ̂r,m(2jξ) ψ̂r,m(2j(ξ + 2qπ)) is
nonzero when both 2jξ and 2j(ξ+ 2qπ) lie in the support of ψ̂r,m. From the
definition of ψr,m and Lemma 3.3, we observe that this is possible if either
2jq = 2r−1, or 2jq = 2r+m−1. Since q is odd, either j = r − 1 and q = 1, or
j = r +m − 1 and q = 1. In case j = r − 1 and q = 1, for ξ > 0, we have
2jξ ∈ 2−mI+

r , so that 2j(ξ + 2qπ) ∈ 2−mI+
r + 2rπ and hence 2j+mξ ∈ I+

r

and 2j+m(ξ + 2qπ) ∈ I+
r + 2r+mπ. Thus

tq(ξ) =
(

1√
2

)(
1√
2

)
+
(

1√
2

)(
−1√

2

)
= 0.

For ξ < 0, we have 2jξ ∈ 2−mI−r − 2rπ, so that 2j(ξ + 2qπ) ∈ 2−mI−r and
hence 2j+mξ ∈ I−r − 2r+mπ, and 2j+m(ξ + 2qπ) ∈ I−r . Thus

tq(ξ) =
(

1√
2

)(
1√
2

)
+
(
−1√

2

)(
1√
2

)
= 0.

When j = r +m− 1 and q = 1, we prove that tq(ξ) = 0 along similar lines.
Next, to show that ψr,m is a non-MRA wavelet, we make use of Result

2.1. We will show that Dψr,m 6= 1 on an interval of the real line.
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In case r ≥ 2, Dψr,m ≥ 2 on the interval 2−(m+1)I+
r , where m ∈ N.

Indeed,

Dψr,m(ξ) ≥ |ψ̂r,m(2ξ)|2 + |ψ̂r,m(2ξ + 2rπ)|2 + |ψ̂r,m(2m+1ξ)|2

+ |ψ̂r,m(2m+1ξ + 2r+mπ)|2

and hence the assertion follows by noting that 2ξ ∈ 2−mI+
r , 2(ξ+2 ·2r−2π) ∈

2−mI+
r + 2rπ, 2m+1ξ ∈ I+

r and 2m+1(ξ + 2 · 2r−2π) ∈ I+
r + 2r+mπ, where

ξ ∈ 2−(m+1)I+
r .

In case r = 1, Dψ1,m ≥ 5/2 on the interval [5π/2, 8π/3] ⊂ L ≡ J+
1 −

(2−mI+
1 + 2π). Observe that

Dψ1,m(ξ) =
∞∑
j=1

∑
k∈Z
|ψ̂1,m(2j(ξ + 2kπ))|2 =

∞∑
j=1

∑
k∈Z−

|ψ̂1,m(2j(ξ + 2kπ))|2

+
∞∑
j=1

|ψ̂1,m(2jξ)|2 +
∞∑
j=1

∑
k∈Z+

|ψ̂1,m(2j(ξ + 2kπ))|2.

For k ∈ Z− and j ≥ 1, we have
∞∑
j=1

∑
k∈Z−

|ψ̂1,m(2j(ξ + 2kπ))|2 ≥ |ψ̂1,m(22(ξ − 2π))|2 =
5
2

for ξ ∈ [5π/2, 8π/3] ⊂ L, since 22(ξ − 2π) ∈ [2π, 8π/3] = L ∪ (2−mI+
1 + 2π).

If k = 0, then 2jξ ∈ supp ψ̂1,m iff j = 0, and we have
0∑

j=−∞
|ψ̂1,m(2jξ)|2 = 1.

Therefore, we obtain

Dψ1,m(ξ) =
∞∑
j=1

∑
k∈Z
|ψ̂1,m(2j(ξ + 2kπ))|2 =

∞∑
j=1

|ψ̂1,m(2jξ)|2

= 1−
0∑

j=−∞
|ψ̂1,m(2jξ)|2 = 0

for ξ ∈ [5π/2, 8π/3] ⊂ L.
If k ∈ Z+, then 2j(ξ + 2kπ) /∈ supp ψ̂1,m for all j ≥ 1, and we have

∞∑
j=1

∑
k∈Z+

|ψ̂1,m(2j(ξ + 2kπ))|2 = 0

for ξ ∈ [5π/2, 8π/3] ⊂ L.
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4. Non-MSF non-MRA wavelets for the Hardy space H2(R).
Recall that H2-wavelet sets with dilation 2 consisting of two intervals are
given by (2) in the introduction. For r ∈ N and k = 2l − 1, 1 ≤ l ≤ r, we
have the following H2-wavelet sets with two intervals:

K l
r =

[
2l+1

2r+1 − 1
π,

2(2l − 1)
2r − 1

π

]
∪
[
2r+1(2l − 1)

2r − 1
π,

2r+l+2

2r+1 − 1
π

]
= I lr ∪ J lr.

With the help of the following Lemma, we provide a class of non-MSF
non-MRA H2-wavelets which includes the one given by Behera.

Lemma 4.1. Under the above notation, for r,m ∈ N and an integer l
satisfying 1 ≤ l ≤ r, the following hold:

(a) 2−mI lr + 2l+1π ⊂ J lr,
(b) 2−mI lr ∩ 2−(m−1)I lr = ∅,
(c) I lr + 2l+m+1π ⊂ 2mJ lr.

Proof. This is straightforward.

Theorem 4.2. For each (r,m) ∈ N × N and an integer l satisfying 1 ≤
l ≤ r, the function ψlr,m defined by

ψ̂lr,m(ξ) =


1/
√

2 if ξ ∈ I lr ∪ 2−mI lr ∪ (2−mI lr + 2l+1π),
−1/
√

2 if ξ ∈ I lr + 2l+m+1π,

1 if ξ ∈ (J lr − (2−mI lr + 2l+1π)),
0 otherwise,

is a non-MSF non-MRA wavelet for the Hardy space H2(R).

Proof. The proof that ψlr,m is a non-MSF wavelet for H2(R) is similar
to the proof that ψr,m is a non-MSF wavelet for L2(R) in Theorem 3.4,
employing Result 2.2.

To show that ψlr,m is a non-MRA wavelet for H2(R), we use Result 2.1.
For r ∈ N and an integer l satisfying 1 ≤ l ≤ r, Dψl

r,m
≥ 2 on the interval

2−(m+1)I lr, where m ∈ N. Indeed,

Dψl
r,m

(ξ) ≥ |ψ̂lr,m(2ξ)|2 + |ψ̂lr,m(2ξ + 2l+1π)|2 + |ψ̂lr,m(2m+1ξ)|2

+ |ψ̂lr,m(2m+1ξ + 2l+m+1π)|2

and hence the assertion follows by noting that 2ξ ∈ 2−mI lr, 2(ξ+2 ·2l−1π) ∈
2−mI lr + 2l+1π, 2m+1ξ ∈ I lr and 2m+1(ξ + 2 · 2l−1π) ∈ I lr + 2l+m+1π, where
ξ ∈ 2−(m+1)I lr.
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