FOURIER ANALYSIS

Construction of Non-MSF Non-MRA Wavelets for $L^2(\mathbb{R})$ and $H^2(\mathbb{R})$ from MSF Wavelets

by

Aparna VYAS

Presented by Stanisław KWAPIEŃ

Summary. Considering symmetric wavelet sets consisting of four intervals, a class of non-MSF non-MRA wavelets for $L^2(\mathbb{R})$ and dilation 2 is obtained. In addition, we obtain a family of non-MSF non-MRA H^2 -wavelets which includes the one given by Behera [Bull. Polish Acad. Sci. Math. 52 (2004), 169–178].

1. Introduction. In [4], Dai and Larson called a measurable subset Wof the real line a *wavelet set* if the characteristic function χ_W of W is equal to $\sqrt{2\pi}$ times the modulus of the Fourier transform $\widehat{\psi}$ for some orthonormal wavelet ψ on $L^2(\mathbb{R})$. A function ψ in $L^2(\mathbb{R})$ whose successive dilates by a scalar d and all integral translates form an orthonormal basis for $L^2(\mathbb{R})$ is called an *orthonormal wavelet* for $L^2(\mathbb{R})$. An orthonormal wavelet whose Fourier transform has the support of smallest possible measure is called a minimally supported frequency (MSF) wavelet. In fact, an MSF wavelet ψ is a wavelet which is associated with a wavelet set W in the sense that the support of $\hat{\psi}$ is W [1, 4–10]. One of the earliest wavelets, namely Shannon wavelet for dilation 2, has $W = [-2\pi, -\pi] \cup [\pi, 2\pi]$ as its wavelet set, which is a union of two disjoint intervals of \mathbb{R} . Wavelet sets in \mathbb{R} which are unions of two disjoint intervals and also those which are unions of three disjoint intervals have been characterized by Ha, Kang, Lee and Seo [6]. In addition, they characterized those wavelet sets which are symmetric with respect to the origin and consist of four intervals. These are precisely $K_r = K_r^- \cup K_r^+$, where

2000 Mathematics Subject Classification: Primary 42C40.

Key words and phrases: MSF wavelets, wavelet sets, MRA wavelets, $H^2\text{-wavelet}$ sets, dimension function.

(1)
$$K_r^+ = \left[\frac{2^r}{2^{r+1}-1}\pi,\pi\right] \cup \left[2^r\pi,\frac{2^{2r+1}}{2^{r+1}-1}\pi\right], \quad K_r^- = -K_r^+,$$

and r is a positive integer. Further, they considered H^2 -wavelet sets [1, 2, 6, 9] and characterized those H^2 -wavelet sets which have just one interval and also those with two intervals. Indeed, H^2 -wavelet sets consisting of two intervals are given by

(2)
$$K_{r,k} = \left[\frac{2(k+1)}{2^{r+1}-1}\pi, \frac{2k}{2^r-1}\pi\right] \cup \left[\frac{2^{r+1}k}{2^r-1}\pi, \frac{2^{r+2}(k+1)}{2^{r+1}-1}\pi\right]$$

where $r \in \mathbb{N}$ and $1 \leq k < 2(2^r - 1)$.

Bownik and Speegle [3] characterized those dilations which admit non-MSF wavelets considering higher dimensional wavelets. Exploiting the structure of H^2 -wavelet sets having two intervals, Behera [2] constructed a family of non-MSF Hardy wavelets for $H^2(\mathbb{R})$ which, in addition, turns out to be a family of non-MRA Hardy wavelets for $H^2(\mathbb{R})$ due to Theorem 4.2, established in this paper.

With the help of symmetric wavelet sets consisting of four intervals, we provide a class of non-MSF non-MRA wavelets for $L^2(\mathbb{R})$ and dilation 2 in Section 3. Also, considering H^2 -wavelet sets with two intervals for $r \in \mathbb{N}$ and $k = 2^{l} - 1, 1 \leq l \leq r$, we provide a family of non-MSF non-MRA H^{2} -wavelets and dilation 2 in Section 4, which includes the one given by Behera.

2. Prerequisites. A pair $(\{V_i\}_{i \in \mathbb{Z}}, \varphi)$ consisting of a family $\{V_i\}_{i \in \mathbb{Z}}$ of closed subspaces of $L^2(\mathbb{R})$ together with a function $\varphi \in V_0$ is called a multiresolution analysis (MRA) if it satisfies the following conditions:

- (a) $V_j \subset V_{j+1}$ for all $j \in \mathbb{Z}$,
- (b) $f \in V_j$ if and only if $f(2(\cdot)) \in V_{j+1}$ for all $j \in \mathbb{Z}$,
- (c) $\bigcap_{i \in \mathbb{Z}} V_i = \{0\},\$
- (d) $\overline{\bigcup_{j\in\mathbb{Z}} V_j} = L^2(\mathbb{R}),$ (e) $\{\varphi(\cdot k) : k \in \mathbb{Z}\}$ is an orthonormal basis for V_0 .

The function φ is called a *scaling function* for the given MRA. An MRA determines a function ψ lying in the orthogonal complement of V_0 in V_1 which is an orthonormal wavelet for $L^2(\mathbb{R})$. Such a ψ is called an MRA wavelet arising from the MRA ($\{V_i\}_{i \in \mathbb{Z}}, \varphi$). The scaling function gives rise to a 2π -periodic function, known as the *low-pass filter* corresponding to φ , which satisfies

$$\widehat{\psi}(\xi) = e^{i\xi/2} \overline{m_0(\xi/2+\pi)} \widehat{\varphi}(\xi/2) \quad \text{for a.e. } \xi \in \mathbb{R}.$$

A multiresolution analysis for $H^2(\mathbb{R})$ and H^2 -MRA wavelets can be described similarly.

For an orthonormal wavelet ψ , the formula

$$D_{\psi}(\xi) = \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}} |\widehat{\psi}(2^{j}(\xi + 2k\pi))|^2$$

defines the dimension function D_{ψ} for ψ . We use the following characterization which works for both MRA wavelets and H^2 -MRA wavelets [9].

RESULT 2.1. A wavelet $\psi \in L^2(\mathbb{R})$ (resp. $\psi \in H^2(\mathbb{R})$) is an MRA (resp. H^2 -MRA) wavelet iff $D_{\psi}(\xi) = 1$ for almost every $\xi \in \mathbb{R}$.

Also, we use the following known characterization of orthonormal wavelets for $L^2(\mathbb{R})$ and $H^2(\mathbb{R})$ (see [9]).

RESULT 2.2. A function $\psi \in L^2(\mathbb{R})$ (resp. $\psi \in H^2(\mathbb{R})$) is an orthonormal wavelet (resp. H^2 -wavelet) iff

- (i) $\|\psi\|_2 = 1$,
- (ii) $\rho(\xi) = \sum_{j \in \mathbb{Z}} |\widehat{\psi}(2^j \xi)|^2 = \chi_{\mathbb{R}}(\xi) \text{ (resp. } \chi_{\mathbb{R}^+}(\xi)) \text{ for a.e. } \xi \in \mathbb{R},$
- (iii) $t_q(\xi) = \sum_{j\geq 0} \widehat{\psi}(2^j\xi) \overline{\widehat{\psi}(2^j(\xi+2q\pi))} = 0$ for a.e. $\xi \in \mathbb{R}$ and for $q \in 2\mathbb{Z}+1$.

3. Non-MSF non-MRA wavelets for $L^2(\mathbb{R})$ **.** We write $K_r^+ = I_r^+ \cup J_r^+, r \in \mathbb{N}$, where

$$I_r^+ = \left[\frac{2^r}{2^{r+1}-1}\pi, \pi\right] \quad \text{and} \quad J_r^+ = \left[2^r\pi, \frac{2^{2r+1}}{2^{r+1}-1}\pi\right].$$

Recall that $I_r^- = -I_r^+$, $J_r^- = -J_r^+$, and $K_r = J_r^- \cup I_r^- \cup I_r^+ \cup J_r^+$. First, we have

LEMMA 3.1. Under the above notation, for $r, m \in \mathbb{N}$, the following hold:

 $\begin{array}{ll} ({\rm a}) & 2^{-m}I_r^+ + 2^r\pi \subset J_r^+, \\ ({\rm b}) & 2^{-m}I_r^- - 2^r\pi \subset J_r^-, \\ ({\rm c}) & 2^{-(m-1)}I_r^+ \cap 2^{-m}I_r^+ = \emptyset, \\ ({\rm d}) & 2^{-m}I_r^- \cap 2^{-(m-1)}I_r^- = \emptyset, \\ ({\rm e}) & I_r^+ + 2^{r+m}\pi \subset 2^mJ_r^+, \\ ({\rm f}) & I_r^- - 2^{r+m}\pi \subset 2^mJ_r^-. \end{array}$

Proof. This is straightforward.

From the characterization of wavelet sets stated below [4, 9], Lemma 3.3 can be easily obtained.

RESULT 3.2. A measurable set $W \subset \mathbb{R}$ is a wavelet set if and only if (i) $\mathbb{R} = \bigcup_{n \in \mathbb{Z}} (W + 2n\pi)$ a.e., (ii) $\mathbb{R} = \dot{\bigcup}_{n \in \mathbb{Z}} (2^n W) \ a.e.,$

where \bigcup denotes disjoint union.

LEMMA 3.3. Define $\tau : \mathbb{R} \to [0, 2\pi)$ by $\tau(x) = x + 2p\pi$, where p is an integer depending on x. Then:

- (a) $\tau(E) = \tau(E + 2k\pi)$ for any $k \in \mathbb{Z}$ and E a measurable set in \mathbb{R} ,
- (b) for any disjoint measurable sets E and F in ℝ contained in a wavelet set W, τ(E) ∩ τ(F) = Ø.

THEOREM 3.4. For $(r,m) \in \mathbb{N} \times \mathbb{N}$, the function $\psi_{r,m}$ defined by $\widehat{\psi}_{r,m}(\xi)$

$$= \begin{cases} 1/\sqrt{2} & \text{if } \xi \in I_r^+ \cup 2^{-m}I_r^+ \cup (2^{-m}I_r^+ + 2^r\pi) \cup I_r^- \\ & \cup 2^{-m}I_r^- \cup (2^{-m}I_r^- - 2^r\pi), \\ -1/\sqrt{2} & \text{if } \xi \in (I_r^+ + 2^{r+m}\pi) \cup (I_r^- - 2^{r+m}\pi), \\ 1 & \text{if } \xi \in (J_r^+ - (2^{-m}I_r^+ + 2^r\pi)) \cup (J_r^- - (2^{-m}I_r^- - 2^r\pi)), \\ 0 & \text{otherwise}, \end{cases}$$

is a non-MSF non-MRA wavelet for $L^2(\mathbb{R})$.

Proof. By Lemma 3.1, it is easily seen that the sets used to define $\widehat{\psi}_{r,m}(\xi)$ are pairwise disjoint. To illustrate, we have $2^{-m}I_r^- \cap (2^{-m}I_r^- - 2^r\pi) = \emptyset$ by Lemma 3.1(b) and (d). Now, we employ Result 2.2 to show that $\psi_{r,m}$ is a non-MSF wavelet for $L^2(\mathbb{R})$.

(i) Since

$$\begin{split} \|\widehat{\psi}_{r,m}\|_{2}^{2} &= \int_{\mathbb{R}} |\widehat{\psi}_{r,m}(\xi)|^{2} d\xi \\ &= \frac{1}{2} \left(1 + \frac{1}{2^{m}} + \frac{1}{2^{m}} + 1 \right) |I_{r}^{+}| + \frac{1}{2} \left(1 + \frac{1}{2^{m}} + \frac{1}{2^{m}} + 1 \right) |I_{r}^{-}| \\ &+ |J_{r}^{+}| + |J_{r}^{-}| - \frac{1}{2^{m}} |I_{r}^{+}| - \frac{1}{2^{m}} |I_{r}^{-}| \\ &= |I_{r}^{+}| + |I_{r}^{-}| + |J_{r}^{+}| + |J_{r}^{-}| = 2\pi, \end{split}$$

it follows that $\|\psi_{r,m}\|_2 = 1$.

(ii) Since $\rho(2\xi) = \rho(\xi)$ for a.e. $\xi \in \mathbb{R}$, it suffices to show that $\rho(\xi) = 1$ on K_r . If $\xi \in I_r^+$, then by the definition of $\psi_{r,m}$, $2^j \xi \in \operatorname{supp} \widehat{\psi}_{r,m}$ if and only if j = 0 or -m. Hence

$$\rho(\xi) = |\widehat{\psi}_{r,m}(\xi)|^2 + |\widehat{\psi}_{r,m}(2^{-m}\xi)|^2 = \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = 1$$

Write

$$J_r^+ = (J_r^+ - (2^{-m}I_r^+ + 2^r\pi)) \cup (2^{-m}I_r^+ + 2^r\pi).$$

If $\xi \in J_r^+ - (2^{-m}I_r^+ + 2^r\pi)$, then $2^j\xi \in \operatorname{supp} \widehat{\psi}_{r,m}$ if and only if j = 0. Hence $\rho(\xi) = |\widehat{\psi}_{r,m}(\xi)|^2 = 1.$

If $\xi \in 2^{-m}I_r^+ + 2^r\pi$, then $2^j\xi \in \operatorname{supp} \widehat{\psi}_{r,m}$ if and only if j = 0 or m. Hence

$$\rho(\xi) = |\widehat{\psi}_{r,m}(\xi)|^2 + |\widehat{\psi}_{r,m}(2^m\xi)|^2 = \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{-1}{\sqrt{2}}\right)^2 = 1.$$

If $\xi \in I_r^-$, then $2^j \xi \in \operatorname{supp} \widehat{\psi}_{r,m}$ if and only if j = 0 or -m. Hence

$$\rho(\xi) = |\widehat{\psi}_{r,m}(\xi)|^2 + |\widehat{\psi}_{r,m}(2^{-m}\xi)|^2 = \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = 1$$

Write

$$J_r^- = (J_r^- - (2^{-m}I_r^- - 2^r\pi)) \cup (2^{-m}I_r^- - 2^r\pi).$$

If $\xi \in J_r^- - (2^{-m}I_r^- - 2^r\pi)$, then $2^j\xi \in \operatorname{supp} \widehat{\psi}_{r,m}$ if and only if j = 0. Hence $\rho(\xi) = |\widehat{\psi}_{r,m}(\xi)|^2 = 1.$

If $\xi \in 2^{-m}I_r^- - 2^r\pi$, then $2^j\xi \in \operatorname{supp} \widehat{\psi}_{r,m}$ if and only if j = 0 or m. Hence

$$\rho(\xi) = |\widehat{\psi}_{r,m}(\xi)|^2 + |\widehat{\psi}_{r,m}(2^m\xi)|^2 = \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{-1}{\sqrt{2}}\right)^2 = 1.$$

(iii) In view of $t_{-q}(\xi) = \overline{t_q(\xi - 2q\pi)}$, we will show that $t_q(\xi) = 0$ a.e., where q is a positive odd integer. The term $\widehat{\psi}_{r,m}(2^j\xi) \overline{\widehat{\psi}_{r,m}(2^j(\xi + 2q\pi))}$ is nonzero when both $2^j\xi$ and $2^j(\xi + 2q\pi)$ lie in the support of $\widehat{\psi}_{r,m}$. From the definition of $\psi_{r,m}$ and Lemma 3.3, we observe that this is possible if either $2^jq = 2^{r-1}$, or $2^jq = 2^{r+m-1}$. Since q is odd, either j = r - 1 and q = 1, or j = r + m - 1 and q = 1. In case j = r - 1 and q = 1, for $\xi > 0$, we have $2^j\xi \in 2^{-m}I_r^+$, so that $2^j(\xi + 2q\pi) \in 2^{-m}I_r^+ + 2^r\pi$ and hence $2^{j+m}\xi \in I_r^+$ and $2^{j+m}(\xi + 2q\pi) \in I_r^+ + 2^{r+m}\pi$. Thus

$$t_q(\xi) = \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}}\right) \left(\frac{-1}{\sqrt{2}}\right) = 0.$$

For $\xi < 0$, we have $2^{j}\xi \in 2^{-m}I_{r}^{-} - 2^{r}\pi$, so that $2^{j}(\xi + 2q\pi) \in 2^{-m}I_{r}^{-}$ and hence $2^{j+m}\xi \in I_{r}^{-} - 2^{r+m}\pi$, and $2^{j+m}(\xi + 2q\pi) \in I_{r}^{-}$. Thus

$$t_q(\xi) = \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\right) + \left(\frac{-1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\right) = 0.$$

When j = r + m - 1 and q = 1, we prove that $t_q(\xi) = 0$ along similar lines.

Next, to show that $\psi_{r,m}$ is a non-MRA wavelet, we make use of Result 2.1. We will show that $D_{\psi_{r,m}} \neq 1$ on an interval of the real line.

In case $r \geq 2$, $D_{\psi_{r,m}} \geq 2$ on the interval $2^{-(m+1)}I_r^+$, where $m \in \mathbb{N}$. Indeed,

$$D_{\psi_{r,m}}(\xi) \ge |\widehat{\psi}_{r,m}(2\xi)|^2 + |\widehat{\psi}_{r,m}(2\xi + 2^r\pi)|^2 + |\widehat{\psi}_{r,m}(2^{m+1}\xi)|^2 + |\widehat{\psi}_{r,m}(2^{m+1}\xi + 2^{r+m}\pi)|^2$$

and hence the assertion follows by noting that $2\xi \in 2^{-m}I_r^+$, $2(\xi+2\cdot 2^{r-2}\pi) \in 2^{-m}I_r^+ + 2^r\pi$, $2^{m+1}\xi \in I_r^+$ and $2^{m+1}(\xi+2\cdot 2^{r-2}\pi) \in I_r^+ + 2^{r+m}\pi$, where $\xi \in 2^{-(m+1)}I_r^+$.

In case r = 1, $D_{\psi_{1,m}} \ge 5/2$ on the interval $[5\pi/2, 8\pi/3] \subset L \equiv J_1^+ - (2^{-m}I_1^+ + 2\pi)$. Observe that

$$D_{\psi_{1,m}}(\xi) = \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}} |\widehat{\psi}_{1,m}(2^{j}(\xi + 2k\pi))|^{2} = \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}^{-}} |\widehat{\psi}_{1,m}(2^{j}(\xi + 2k\pi))|^{2} + \sum_{j=1}^{\infty} |\widehat{\psi}_{1,m}(2^{j}(\xi + 2k\pi))|^{2} + \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}^{+}} |\widehat{\psi}_{1,m}(2^{j}(\xi + 2k\pi))|^{2}.$$

For $k \in \mathbb{Z}^-$ and $j \ge 1$, we have

$$\sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}^-} |\widehat{\psi}_{1,m}(2^j(\xi + 2k\pi))|^2 \ge |\widehat{\psi}_{1,m}(2^2(\xi - 2\pi))|^2 = \frac{5}{2}$$

for $\xi \in [5\pi/2, 8\pi/3] \subset L$, since $2^2(\xi - 2\pi) \in [2\pi, 8\pi/3] = L \cup (2^{-m}I_1^+ + 2\pi)$. If k = 0, then $2^j \xi \in \operatorname{supp} \widehat{\psi}_{1,m}$ iff j = 0, and we have

$$\sum_{j=-\infty}^{0} |\widehat{\psi}_{1,m}(2^{j}\xi)|^{2} = 1.$$

Therefore, we obtain

$$D_{\psi_{1,m}}(\xi) = \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}} |\widehat{\psi}_{1,m}(2^{j}(\xi + 2k\pi))|^{2} = \sum_{j=1}^{\infty} |\widehat{\psi}_{1,m}(2^{j}\xi)|^{2}$$
$$= 1 - \sum_{j=-\infty}^{0} |\widehat{\psi}_{1,m}(2^{j}\xi)|^{2} = 0$$

for $\xi \in [5\pi/2, 8\pi/3] \subset L$.

If $k \in \mathbb{Z}^+$, then $2^j(\xi + 2k\pi) \notin \operatorname{supp} \widehat{\psi}_{1,m}$ for all $j \ge 1$, and we have

$$\sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}^+} |\widehat{\psi}_{1,m}(2^j(\xi + 2k\pi))|^2 = 0$$

for $\xi \in [5\pi/2, 8\pi/3] \subset L$.

4. Non-MSF non-MRA wavelets for the Hardy space $H^2(\mathbb{R})$. Recall that H^2 -wavelet sets with dilation 2 consisting of two intervals are given by (2) in the introduction. For $r \in \mathbb{N}$ and $k = 2^l - 1$, $1 \leq l \leq r$, we have the following H^2 -wavelet sets with two intervals:

$$K_r^l = \left[\frac{2^{l+1}}{2^{r+1}-1}\,\pi, \frac{2(2^l-1)}{2^r-1}\,\pi\right] \cup \left[\frac{2^{r+1}(2^l-1)}{2^r-1}\,\pi, \frac{2^{r+l+2}}{2^{r+1}-1}\,\pi\right] = I_r^l \cup J_r^l.$$

With the help of the following Lemma, we provide a class of non-MSF non-MRA H^2 -wavelets which includes the one given by Behera.

LEMMA 4.1. Under the above notation, for $r, m \in \mathbb{N}$ and an integer l satisfying $1 \leq l \leq r$, the following hold:

 $\begin{array}{ll} \text{(a)} & 2^{-m}I_r^l + 2^{l+1}\pi \subset J_r^l, \\ \text{(b)} & 2^{-m}I_r^l \cap 2^{-(m-1)}I_r^l = \emptyset, \\ \text{(c)} & I_r^l + 2^{l+m+1}\pi \subset 2^mJ_r^l. \end{array}$

Proof. This is straightforward.

THEOREM 4.2. For each $(r,m) \in \mathbb{N} \times \mathbb{N}$ and an integer l satisfying $1 \leq l \leq r$, the function $\psi_{r,m}^l$ defined by

$$\widehat{\psi}_{r,m}^{l}(\xi) = \begin{cases} 1/\sqrt{2} & \text{if } \xi \in I_{r}^{l} \cup 2^{-m}I_{r}^{l} \cup (2^{-m}I_{r}^{l} + 2^{l+1}\pi), \\ -1/\sqrt{2} & \text{if } \xi \in I_{r}^{l} + 2^{l+m+1}\pi, \\ 1 & \text{if } \xi \in (J_{r}^{l} - (2^{-m}I_{r}^{l} + 2^{l+1}\pi)), \\ 0 & \text{otherwise}, \end{cases}$$

is a non-MSF non-MRA wavelet for the Hardy space $H^2(\mathbb{R})$.

Proof. The proof that $\psi_{r,m}^l$ is a non-MSF wavelet for $H^2(\mathbb{R})$ is similar to the proof that $\psi_{r,m}$ is a non-MSF wavelet for $L^2(\mathbb{R})$ in Theorem 3.4, employing Result 2.2.

To show that $\psi_{r,m}^l$ is a non-MRA wavelet for $H^2(\mathbb{R})$, we use Result 2.1. For $r \in \mathbb{N}$ and an integer l satisfying $1 \leq l \leq r$, $D_{\psi_{r,m}^l} \geq 2$ on the interval $2^{-(m+1)}I_r^l$, where $m \in \mathbb{N}$. Indeed,

$$\begin{split} D_{\psi_{r,m}^{l}}(\xi) &\geq |\widehat{\psi}_{r,m}^{l}(2\xi)|^{2} + |\widehat{\psi}_{r,m}^{l}(2\xi+2^{l+1}\pi)|^{2} + |\widehat{\psi}_{r,m}^{l}(2^{m+1}\xi)|^{2} \\ &+ |\widehat{\psi}_{r,m}^{l}(2^{m+1}\xi+2^{l+m+1}\pi)|^{2} \end{split}$$

and hence the assertion follows by noting that $2\xi \in 2^{-m}I_r^l$, $2(\xi + 2 \cdot 2^{l-1}\pi) \in 2^{-m}I_r^l + 2^{l+1}\pi$, $2^{m+1}\xi \in I_r^l$ and $2^{m+1}(\xi + 2 \cdot 2^{l-1}\pi) \in I_r^l + 2^{l+m+1}\pi$, where $\xi \in 2^{-(m+1)}I_r^l$.

Acknowledgments. The author thanks the anonymous referee for his valuable suggestions which considerably improved the paper.

References

- N. Arcozzi, B. Behera and S. Madan, Large classes of minimally supported frequency wavelets of L²(R) and H²(R), J. Geom. Anal. 13 (2003), 557–579.
- B. Behera, Non-MSF wavelets for the Hardy space H²(ℝ), Bull. Polish Acad. Sci. Math. 52 (2004), 169–178.
- [3] M. Bownik and D. Speegle, The wavelet dimension function for real dilations and dilations admitting non-MSF wavelets, in: Approximation Theory X: Wavelet, Splines and Applications, Vanderbilt Univ. Press, 2002, 63–85.
- [4] X. Dai and D. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc. 134 (1998), no. 640.
- [5] X. Fang and X. Wang, Construction of minimally-supported-frequency wavelets, J. Fourier Anal. Appl. 2 (1996), 315–327.
- [6] Y.-H. Ha, H. Kang, J. Lee and J. K. Seo, Unimodular wavelets for L² and the Hardy space H², Michigan Math. J. 41 (1994), 345–361.
- [7] E. Hernández, X. Wang and G. Weiss, Smoothing minimally supported frequency (MSF) wavelets: Part I, J. Fourier Anal. Appl. 2 (1996), 329–340.
- [8] —, —, —, Smoothing minimally supported frequency (MSF) wavelets: Part II, ibid. 3 (1997), 23–41.
- [9] E. Hernández and G. Weiss, A First Course on Wavelets, CRC Press, 1996.
- [10] E. Ionascu, D. Larson and C. Pearcy, On wavelet sets, J. Fourier Anal. Appl. 4 (1998), 711–721.

Aparna Vyas Department of Mathematics University of Allahabad Allahabad-211 002, India E-mail: aparna.vyaas@gmail.com, dpub@pphmj.com

Received December 3, 2008 (7691)