OPTICS AND ELECTROMAGNETIC THEORY

On the Relation between the S-matrix and the Spectrum of the Interior Laplacian

by

A. G. RAMM

Presented by Bogdan BOJARSKI

Summary. The main results of this paper are:

1) a proof that a necessary condition for 1 to be an eigenvalue of the S-matrix is real analyticity of the boundary of the obstacle,

2) a short proof that if 1 is an eigenvalue of the S-matrix, then k^2 is an eigenvalue of the Laplacian of the interior problem, and that in this case there exists a solution to the interior Dirichlet problem for the Laplacian, which admits an analytic continuation to the whole space \mathbb{R}^3 as an entire function.

1. Introduction and statement of the result. We consider the obstacle scattering problem in \mathbb{R}^3 , but the argument and the results remain valid in \mathbb{R}^n , $n \ge 2$.

Let the obstacle $D \subset \mathbb{R}^3$ be a bounded domain with a Lipschitz boundary S. Denote by $D' = \mathbb{R}^3 \setminus D$ the exterior domain and by N, the unit normal to S, pointing into D'. Let k > 0 be the wave number, and S^2 be the unit sphere in \mathbb{R}^3 . The scattering matrix

$$\mathcal{S} = \mathcal{S}(k) = I - \frac{k}{2\pi i} A$$

for the obstacle scattering problem is a unitary operator in $L^2(S^2)$, I is the identity operator and A is an integral operator in $L^2(S^2)$, whose kernel $A(\beta, \alpha, k)$ is the scattering amplitude, which is defined in formula (5) below. The operator S has an eigenvalue 1 if and only if equation Aw = 0 has a non-trivial solution. The eigenvalues of S have 1 as an accumulation point, they all have absolute values equal to 1 since S is unitary.

2000 Mathematics Subject Classification: 78A45, 35J25.

Key words and phrases: wave scattering by obstacles, S-matrix, discrete spectrum, scattering amplitude.

The following conjecture (the Doron–Smilansky (DS) conjecture) is known:

DS CONJECTURE. A number $k^2 > 0$ is a Dirichlet eigenvalue of the Laplacian in a bounded domain D if and only if the corresponding S-matrix for the scattering problem by the obstacle D has an eigenvalue 1.

This conjecture is discussed in [1]-[3], and in [3] a counterexample to this conjecture is mentioned.

From the definition of the S-matrix it follows that 1 is its eigenvalue if and only if 0 is an eigenvalue of A, that is, equation (12) (see below) has a non-trivial solution.

We prove (see Theorem 2) that if equation (12) has a non-trivial solution, then the boundary S of D is an analytic set. Since generically S is not an analytic set, it follows that the DS conjecture is incorrect. Our result gives a necessary condition for 1 to be an eigenvalue of the S-matrix. This condition is not sufficient (and therefore not sufficient for the DS conjecture to hold for the domain D).

In [3] it is proved that if $D \subset \mathbb{R}^2$ is a bounded domain with a sufficiently smooth boundary S, and if 1 is a Dirichlet eigenvalue of S, then k^2 is a Dirichlet eigenvalue of the Laplacian in D. An open problem, stated in [3], is to prove such a statement for $D \subset \mathbb{R}^n$ with n > 2. This is done in our paper by a method different from the one in [3]. Our proof is short and simple.

Let S_j^2 , j = 1, 2, be arbitrary small fixed open subsets of S^2 , and let the boundary conditions on S be either the Dirichlet, Neumann, or Robin conditions.

The following theorem is proved in [5, p. 85]:

THEOREM (Ramm). The knowledge of $A(\beta, \alpha, k)$ for all $\alpha \in S_1^2$ and $\beta \in S_2^2$, and for a fixed k > 0, determines S and the boundary conditions on S uniquely.

It follows that the knowledge of the S-matrix S(k) at a fixed k > 0 determines the boundary S of the obstacle and the boundary condition on S uniquely.

Therefore, the discrete spectrum of the Laplacian in D, corresponding to this boundary condition, is uniquely determined by the knowledge of S(k) at a fixed k > 0.

This conclusion establishes a relation between the S-matrix and the spectrum of the Laplacian in D.

Let us now formulate the obstacle scattering problem, introduce basic notions, and formulate our results. The scattering solution $u(x, \alpha, k)$ is the solution to the following scattering problem:

- (1) $Lu := (\nabla^2 + k^2)u = 0$ in D',
- $(2) u|_S = 0,$

(3)
$$u = u_0 + v, \quad u_0 := e^{ik\alpha \cdot x},$$

(4)
$$\frac{\partial v}{\partial r} - ikr = o\left(\frac{1}{r}\right), \quad r := |x| \to \infty.$$

Here $\alpha \in S^2$ is the incident direction, i.e., the direction of the incident plane wave u_0 , and v is the scattered field which satisfies the radiation condition (4). This condition implies that

(5)
$$v := v(x, \alpha, k) = A(\beta, \alpha, k) \frac{e^{ikr}}{r} + o\left(\frac{1}{r}\right), \quad r := |x| \to \infty, \quad \beta := \frac{x}{r}.$$

The function $A := A(\beta, \alpha, k)$ is called the *scattering amplitude*. Let us denote by $A : L^2(S^2) \to L^2(S^2)$ the operator

(6)
$$Aw := \int_{S^2} A(\beta, \alpha, k) w(\alpha) \, d\alpha$$

It is well known (see [5]) that problem (1)–(4) has a unique solution $u(x, \alpha, k)$,

(7)
$$A(\beta, \alpha, k) = -\frac{1}{4\pi} \int_{S} e^{-ik\beta \cdot s} u_N(s, \alpha, k) \, ds,$$

where $u_N(s, \alpha, k)$ is the normal derivative of the scattering solution $u(x, \alpha, k)$ on S, and the following relation holds:

(8)
$$u(x,\alpha,k) = e^{ik\alpha \cdot x} - \int_{S} g(x,s,k)u_N(s,\alpha,k) \, ds$$

Here G, the resolvent kernel of the Dirichlet Laplacian in the exterior domain D', satisfies the following equation:

(9)
$$G(x, y, k) = g(x, y, k) - \int_{S} g(x, s, k) G_N(s, y, k) \, ds,$$

where

(10)
$$g(x,y,k) := \frac{e^{ik|x-y|}}{4\pi|x-y|}.$$

The function G solves the boundary value problem

(11)
$$LG = -\delta(x-y) \quad \text{in } D', \quad G|_S = 0,$$

and satisfies the radiation condition (4).

Let σ denote the set of eigenvalues of the Dirichlet Laplacian in D. This set is discrete.

It is proved in [5, pp. 52-57] that:

- (a) The function $A(\beta, \alpha, k)$ admits a meromorphic continuation as a function of k from the ray $(0, \infty)$ to the whole complex k-plane.
- (b) The scattering amplitude $A(\beta, \alpha, k)$ is analytic in the region $\text{Im } k \ge 0$ (if $D \subset \mathbb{R}^{2n}$ then k = 0 is a logarithmic branch point).
- (c) $A(\beta, \alpha, k)$ has infinitely many poles on the imaginary axis in the region Im k < 0.
- (d) As a function of α and β , the scattering amplitude $A(\beta, \alpha, k)$ admits analytic continuation from $S^2 \times S^2$ to the set $M \times M$, where $M := \{\Theta \in \mathbb{C}^3 : \Theta \cdot \Theta = 1\}$, where $\Theta \cdot \omega := \sum_{j=1}^3 \Theta_j \omega_j$. The set M is a non-compact algebraic variety in \mathbb{C}^3 .

Let us now state our basic results:

THEOREM 1. If $\mathcal{S}(k)$ has an eigenvalue 1, that is, the equation

(12)
$$Aw = \int_{S^2} A(\beta, \alpha, k) w(\alpha) d\alpha = 0$$

has a non-trivial solution w, then $k^2 \in \sigma$, and there is a solution to the problem $(\nabla^2 + k^2)W = 0$ in D, $W|_S = 0$, which can be extended from D to \mathbb{R}^3 as a bounded entire function of x.

THEOREM 2. If equation (12) has a non-trivial solution, then the boundary S is an analytic set.

An analytic set is a set of zeros of (a finite collection of) analytic functions. One can find the definition and properties of analytic sets in [4, Section 1.4]). If S is an analytic set, then S is a piecewise real analytic surface. Since generically S is not piecewise real analytic surface, it follows from Theorem 2 that the DS conjecture is incorrect.

In Section 2 Theorems 1 and 2 are proved. In the proofs, the following result of the author is used:

LEMMA 1 ([5, p. 46]). One has

(13)
$$G(x, y, k) = \frac{e^{ik|y|}}{4\pi|y|} u(x, \alpha, k) [1 + o(1)], \quad |y| \to \infty, \quad \frac{y}{|y|} = -\alpha,$$

where $u(x, \alpha, k)$ is the scattering solution, i.e., the solution to (1)–(4).

Lemma 1 yields formula (8) as a consequence of (9), while formula (9) is obtained by Green's formula. Formula (7) follows from (8).

2. Proofs

Proof of Theorem 1. Let us prove that if $w \neq 0$ solves (12) then $k^2 \in \sigma$. Assume that equation (12) has a non-trivial solution w. Multiply (7) by $w = w(\alpha)$ and integrate over S^2 with respect to α . The result is

(14)
$$\int_{S} e^{-ik\beta \cdot s} p(s) \, ds = 0, \quad p(s) := \int_{S^2} u_N(s, \alpha, k) w(\alpha) \, d\alpha.$$

Let us prove that $p(s) \not\equiv 0$. Indeed, if

(15)
$$p(s) = \int_{S^2} u_N(s, \alpha, k) w(\alpha) \, d\alpha = 0 \quad \forall s \in S,$$

then $w(\alpha) \equiv 0$ because the set $\{u_N(s, \alpha, k)\}_{\alpha \in S^2}$ is total (dense) in $L^2(S)$ for any fixed k > 0 ([5, p. 162]).

Now equation (14) and Lemma 1 imply that

(16)
$$\nu(x) := \int_{S} \frac{e^{ik|x-s|}}{4\pi |x-s|} \, p(s) \, ds$$

is identically zero in D'. Indeed, this ν solves equation (1), satisfies the radiation condition (4), and (14) implies

(17)
$$\nu(x) = o(1/|x|), \quad |x| \to \infty.$$

Relation (17) and Lemma 1 in [5, p. 25] imply that

(18)
$$\nu(x) = 0 \quad \text{in } D'.$$

Therefore, by the jump formula for the normal derivative of the single layer potential (16) ([5, p. 14]), one gets

(19)
$$\frac{\partial\nu}{\partial N_{+}} = p(s) \neq 0,$$

where $\partial/\partial N_+$ denotes the limiting value on S of the normal derivative from inside of D.

This implies that $k^2 \in \sigma$. Indeed, $\nu(x)$ solves the equation

(20)
$$(\nabla^2 + k^2)\nu = 0$$
 in D' ,

and satisfies the boundary condition

(21)
$$\nu|_S = 0,$$

due to (18) and the continuity of ν across S. Finally, $\nu \neq 0$ in D because of (19).

Now we prove the existence of a solution to problem (20)–(21) which can be analytically continued to the whole space \mathbb{R}^3 as an entire function of x. The reciprocity relation $A(\beta, \alpha, k) = A(-\alpha, -\beta, k)$ (see [5, p. 53] and equation (12) imply

(22)
$$0 = \int_{S^2} A(\beta, \alpha, k) w(\alpha) \, d\alpha$$
$$= -\frac{1}{4\pi} \int_{S} \left(\int_{S^2} e^{ik\alpha \cdot s} w(\alpha) \, d\alpha \right) u_N(s, -\beta) \, ds \quad \forall \beta \in S^2.$$

Since the set $\{u_N(s, \alpha, k)\}_{\alpha \in S^2}$ is total (dense) in $L^2(S)$ for any fixed k > 0 ([5, p. 162]), relation (22) implies

(23)
$$\int_{S^2} e^{ik\alpha \cdot s} w(\alpha) \, d\alpha = 0 \quad \forall s \in S.$$

Therefore, the function

(24)
$$W(x) := \int_{S^2} e^{ik\alpha \cdot x} w(\alpha) \, d\alpha, \quad x \in \mathbb{R}^3,$$

satisfies all the requirements mentioned in the last statement of Theorem 1.

Thus, Theorem 1 is proved.

REMARK 1. A similar argument yields the following result:

Let σ_N be the set of eigenvalues of the Neumann Laplacian, and $A_N(\beta, \alpha, k)$ the scattering amplitude, corresponding to the plane wave scattering by the obstacle D on the boundary of which the Neumann boundary condition holds. If equation (12), with A_N in place of A, has a non-trivial solution, then $k^2 \in \sigma_N$.

REMARK 2. If $k^2 \in \sigma$, then any non-trivial solution to (20)–(21) can be written in the form (16) with p(s) defined in (19), and the boundary condition (18) holds. Taking $|x| \to \infty$, $x/|x| = \beta$, in (16) and using (18), one obtains

(25)
$$\int_{S} e^{-ik\beta \cdot s} p(s) \, ds = 0 \quad \forall \beta \in S^2, \quad p(s) \neq 0.$$

Thus, if $k^2 \in \sigma$, then equation (25) has a non-trivial solution p(s).

Proof of Theorem 2. Suppose equation (12) has a solution $\eta \in L^2(S^2)$, $\eta \neq 0$. Then

(26)
$$\int_{S} ds \, u_N(s,\alpha) \int_{S^2} e^{-ik\beta \cdot s} \eta(\beta) \, d\beta = 0 \quad \forall \alpha \in S^2.$$

Since the set $\{u_N(s,\alpha)\}_{\alpha\in S^2}$ is total in $L^2(S)$, one concludes from (26) that (27) $\psi(s) = 0 \quad \forall s \in S,$ where

$$\psi(x) := \int_{S^2} e^{-ik\beta \cdot x} \eta(\beta) \, d\beta.$$

The function $\psi(x)$ is an entire function of x, that is, an analytic function of $x \in \mathbb{C}^3$. It vanishes on S, so S is an analytic set. Generically, the boundary S is not an analytic set.

Thus, Theorem 2 is proved.

REMARK 3. If one uses the reciprocity relation $A(\beta, \alpha, k) = A(-\alpha, -\beta, k)$, then one concludes that zero is an eigenvalue of A if either

(28)
$$\int_{S} e^{-ik\beta \cdot s} \int_{S^2} u_N(s,\alpha,k) w(\alpha) \, d\alpha = 0 \quad \forall \beta \in S^2, \quad w \neq 0,$$

or

(29)
$$\int_{S} \left(\int_{S^2} e^{ik\alpha \cdot s} w(\alpha) \, d\alpha \right) u_N(s, -\beta) \, ds = 0 \quad \forall \beta \in S^2, \quad w \neq 0.$$

The last relation implies equation (28) (with $\beta = -\alpha$ and $\eta(\beta) = w(\alpha)$).

Set $T_k p := \int_S g(s,t,k)p(t) dt$ and $U := U(x,k) := \int_S g(x,t,k)p(t) dt$, so $U|_S = T_k p$.

REMARK 4. The operator T_k^{-1} has simple poles at the points $k^2 = k_j^2$, where $k_j^2 \in \sigma$.

Remark 4 shows that the knowledge of the set of poles of the operator T_k^{-1} allows one to find the spectrum of the interior Dirichlet Laplacian in D.

Proof of Remark 4. Consider the equation $T_k p = f$. Then

$$U(x) = \int_{S} g(x, t, k) p(t) dt$$

solves the problem

(30)
$$(\nabla^2 + k^2)U = 0$$
 in $D, \quad U|_S = f.$

Let

$$(\nabla^2 + k^2)\Gamma = -\delta(x - y)$$
 in D , $\Gamma|_S = 0$.

Then Green's formula yields the following representation of the solution to problem (30):

(31)
$$U(x) = -\int_{S} f(t) \Gamma_{N_t}(t, x, k) dt, \quad x \in D, \quad k^2 \neq k_j^2.$$

Since $\Gamma(x, y, k) = \sum_{j=1}^{\infty} \frac{\phi_j(x)\overline{\phi_j(y)}}{k^2 - k_j^2}$ has a simple pole at $k^2 = k_j^2$, the claim is proved. Here ϕ_j are the normalized eigenfunctions of the Dirichlet Laplacian in D.

References

- B. Dietz, J.-P. Eckmann, C.-A. Pillet and U. Smilansky, Inside-outside duality for planar billiards: A numerical study, Phys. Rev. E 51 (1995), 4222–4231.
- E. Doron and U. Smilansky, Semiclassical quantization of chaotic billiards: a scattering approach, Nonlinearity 5 (1992), 1055–1084.
- J.-P. Eckmann and C.-A. Pillet, Spectral duality for planar billiards, Comm. Math. Phys. 170 (1995), 283–313.
- B. A. Fuks, Theory of Analytic Functions of Several Variables, Amer. Math. Soc., Providence, RI, 1963.
- [5] A. G. Ramm, *Scattering by Obstacles*, Reidel, Dordrecht, 1986.

A. G. Ramm Mathematics Department Kansas State University Manhattan, KS 66506-2602, U.S.A. E-mail: ramm@math.ksu.edu

> Received April 9, 2009; received in final form June 14, 2009 (7710)