On the Relation between the S-matrix and the Spectrum of the Interior Laplacian

by
A. G. RAMM
Presented by Bogdan BOJARSKI

Summary. The main results of this paper are:
1) a proof that a necessary condition for 1 to be an eigenvalue of the S-matrix is real analyticity of the boundary of the obstacle,
2) a short proof that if 1 is an eigenvalue of the S-matrix, then k^{2} is an eigenvalue of the Laplacian of the interior problem, and that in this case there exists a solution to the interior Dirichlet problem for the Laplacian, which admits an analytic continuation to the whole space \mathbb{R}^{3} as an entire function.

1. Introduction and statement of the result. We consider the obstacle scattering problem in \mathbb{R}^{3}, but the argument and the results remain valid in $\mathbb{R}^{n}, n \geq 2$.

Let the obstacle $D \subset \mathbb{R}^{3}$ be a bounded domain with a Lipschitz boundary S. Denote by $D^{\prime}=\mathbb{R}^{3} \backslash D$ the exterior domain and by N, the unit normal to S, pointing into D^{\prime}. Let $k>0$ be the wave number, and S^{2} be the unit sphere in \mathbb{R}^{3}. The scattering matrix

$$
\mathcal{S}=\mathcal{S}(k)=I-\frac{k}{2 \pi i} A
$$

for the obstacle scattering problem is a unitary operator in $L^{2}\left(S^{2}\right), I$ is the identity operator and A is an integral operator in $L^{2}\left(S^{2}\right)$, whose kernel $A(\beta, \alpha, k)$ is the scattering amplitude, which is defined in formula (5) below. The operator \mathcal{S} has an eigenvalue 1 if and only if equation $A w=0$ has a non-trivial solution. The eigenvalues of \mathcal{S} have 1 as an accumulation point, they all have absolute values equal to 1 since \mathcal{S} is unitary.

2000 Mathematics Subject Classification: 78A45, 35J25.
Key words and phrases: wave scattering by obstacles, S-matrix, discrete spectrum, scattering amplitude.

The following conjecture (the Doron-Smilansky (DS) conjecture) is known:
DS Conjecture. A number $k^{2}>0$ is a Dirichlet eigenvalue of the Laplacian in a bounded domain D if and only if the corresponding \mathcal{S}-matrix for the scattering problem by the obstacle D has an eigenvalue 1 .

This conjecture is discussed in [1]-[3], and in [3] a counterexample to this conjecture is mentioned.

From the definition of the \mathcal{S}-matrix it follows that 1 is its eigenvalue if and only if 0 is an eigenvalue of A, that is, equation (12) (see below) has a non-trivial solution.

We prove (see Theorem 2) that if equation (12) has a non-trivial solution, then the boundary S of D is an analytic set. Since generically S is not an analytic set, it follows that the DS conjecture is incorrect. Our result gives a necessary condition for 1 to be an eigenvalue of the \mathcal{S}-matrix. This condition is not sufficient (and therefore not sufficient for the DS conjecture to hold for the domain D).

In [3] it is proved that if $D \subset \mathbb{R}^{2}$ is a bounded domain with a sufficiently smooth boundary S, and if 1 is a Dirichlet eigenvalue of \mathcal{S}, then k^{2} is a Dirichlet eigenvalue of the Laplacian in D. An open problem, stated in [3], is to prove such a statement for $D \subset \mathbb{R}^{n}$ with $n>2$. This is done in our paper by a method different from the one in [3]. Our proof is short and simple.

Let $S_{j}^{2}, j=1,2$, be arbitrary small fixed open subsets of S^{2}, and let the boundary conditions on S be either the Dirichlet, Neumann, or Robin conditions.

The following theorem is proved in [5, p. 85]:
Theorem (Ramm). The knowledge of $A(\beta, \alpha, k)$ for all $\alpha \in S_{1}^{2}$ and $\beta \in S_{2}^{2}$, and for a fixed $k>0$, determines S and the boundary conditions on S uniquely.

It follows that the knowledge of the S-matrix $\mathcal{S}(k)$ at a fixed $k>0$ determines the boundary S of the obstacle and the boundary condition on S uniquely.

Therefore, the discrete spectrum of the Laplacian in D, corresponding to this boundary condition, is uniquely determined by the knowledge of $\mathcal{S}(k)$ at a fixed $k>0$.

This conclusion establishes a relation between the S-matrix and the spectrum of the Laplacian in D.

Let us now formulate the obstacle scattering problem, introduce basic notions, and formulate our results.

The scattering solution $u(x, \alpha, k)$ is the solution to the following scattering problem:

$$
\begin{align*}
& L u:=\left(\nabla^{2}+k^{2}\right) u=0 \quad \text { in } D^{\prime}, \tag{1}\\
& \left.u\right|_{S}=0 \tag{2}\\
& u=u_{0}+v, \quad u_{0}:=e^{i k \alpha \cdot x}, \tag{3}\\
& \frac{\partial v}{\partial r}-i k r=o\left(\frac{1}{r}\right), \quad r:=|x| \rightarrow \infty . \tag{4}
\end{align*}
$$

Here $\alpha \in S^{2}$ is the incident direction, i.e., the direction of the incident plane wave u_{0}, and v is the scattered field which satisfies the radiation condition (4). This condition implies that

$$
\begin{equation*}
v:=v(x, \alpha, k)=A(\beta, \alpha, k) \frac{e^{i k r}}{r}+o\left(\frac{1}{r}\right), \quad r:=|x| \rightarrow \infty, \quad \beta:=\frac{x}{r} \tag{5}
\end{equation*}
$$

The function $A:=A(\beta, \alpha, k)$ is called the scattering amplitude. Let us denote by $A: L^{2}\left(S^{2}\right) \rightarrow L^{2}\left(S^{2}\right)$ the operator

$$
\begin{equation*}
A w:=\int_{S^{2}} A(\beta, \alpha, k) w(\alpha) d \alpha \tag{6}
\end{equation*}
$$

It is well known (see [5]) that problem (1)-(4) has a unique solution $u(x, \alpha, k)$,

$$
\begin{equation*}
A(\beta, \alpha, k)=-\frac{1}{4 \pi} \int_{S} e^{-i k \beta \cdot s} u_{N}(s, \alpha, k) d s \tag{7}
\end{equation*}
$$

where $u_{N}(s, \alpha, k)$ is the normal derivative of the scattering solution $u(x, \alpha, k)$ on S, and the following relation holds:

$$
\begin{equation*}
u(x, \alpha, k)=e^{i k \alpha \cdot x}-\int_{S} g(x, s, k) u_{N}(s, \alpha, k) d s \tag{8}
\end{equation*}
$$

Here G, the resolvent kernel of the Dirichlet Laplacian in the exterior domain D^{\prime}, satisfies the following equation:

$$
\begin{equation*}
G(x, y, k)=g(x, y, k)-\int_{S} g(x, s, k) G_{N}(s, y, k) d s \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
g(x, y, k):=\frac{e^{i k|x-y|}}{4 \pi|x-y|} \tag{10}
\end{equation*}
$$

The function G solves the boundary value problem

$$
\begin{equation*}
L G=-\delta(x-y) \quad \text { in } D^{\prime},\left.\quad G\right|_{S}=0 \tag{11}
\end{equation*}
$$

and satisfies the radiation condition (4).
Let σ denote the set of eigenvalues of the Dirichlet Laplacian in D. This set is discrete.

It is proved in [5, pp. 52-57] that:
(a) The function $A(\beta, \alpha, k)$ admits a meromorphic continuation as a function of k from the ray $(0, \infty)$ to the whole complex k-plane.
(b) The scattering amplitude $A(\beta, \alpha, k)$ is analytic in the region $\operatorname{Im} k \geq 0$ (if $D \subset \mathbb{R}^{2 n}$ then $k=0$ is a logarithmic branch point).
(c) $A(\beta, \alpha, k)$ has infinitely many poles on the imaginary axis in the region $\operatorname{Im} k<0$.
(d) As a function of α and β, the scattering amplitude $A(\beta, \alpha, k)$ admits analytic continuation from $S^{2} \times S^{2}$ to the set $M \times M$, where $M:=$ $\left\{\Theta \in \mathbb{C}^{3}: \Theta \cdot \Theta=1\right\}$, where $\Theta \cdot \omega:=\sum_{j=1}^{3} \Theta_{j} \omega_{j}$. The set M is a non-compact algebraic variety in \mathbb{C}^{3}.

Let us now state our basic results:
Theorem 1. If $\mathcal{S}(k)$ has an eigenvalue 1 , that is, the equation

$$
\begin{equation*}
A w=\int_{S^{2}} A(\beta, \alpha, k) w(\alpha) d \alpha=0 \tag{12}
\end{equation*}
$$

has a non-trivial solution w, then $k^{2} \in \sigma$, and there is a solution to the problem $\left(\nabla^{2}+k^{2}\right) W=0$ in $D,\left.W\right|_{S}=0$, which can be extended from D to \mathbb{R}^{3} as a bounded entire function of x.

Theorem 2. If equation (12) has a non-trivial solution, then the boundary S is an analytic set.

An analytic set is a set of zeros of (a finite collection of) analytic functions. One can find the definition and properties of analytic sets in [4, Section 1.4]). If S is an analytic set, then S is a piecewise real analytic surface. Since generically S is not piecewise real analytic surface, it follows from Theorem 2 that the DS conjecture is incorrect.

In Section 2 Theorems 1 and 2 are proved. In the proofs, the following result of the author is used:

Lemma 1 ([5, p. 46]). One has

$$
\begin{equation*}
G(x, y, k)=\frac{e^{i k|y|}}{4 \pi|y|} u(x, \alpha, k)[1+o(1)], \quad|y| \rightarrow \infty, \quad \frac{y}{|y|}=-\alpha, \tag{13}
\end{equation*}
$$

where $u(x, \alpha, k)$ is the scattering solution, i.e., the solution to (1)-(4).
Lemma 1 yields formula (8) as a consequence of (9), while formula (9) is obtained by Green's formula. Formula (7) follows from (8).

2. Proofs

Proof of Theorem 1. Let us prove that if $w \not \equiv 0$ solves (12) then $k^{2} \in \sigma$. Assume that equation (12) has a non-trivial solution w. Multiply (7) by
$w=w(\alpha)$ and integrate over S^{2} with respect to α. The result is

$$
\begin{equation*}
\int_{S} e^{-i k \beta \cdot s} p(s) d s=0, \quad p(s):=\int_{S^{2}} u_{N}(s, \alpha, k) w(\alpha) d \alpha . \tag{14}
\end{equation*}
$$

Let us prove that $p(s) \not \equiv 0$. Indeed, if

$$
\begin{equation*}
p(s)=\int_{S^{2}} u_{N}(s, \alpha, k) w(\alpha) d \alpha=0 \quad \forall s \in S \tag{15}
\end{equation*}
$$

then $w(\alpha) \equiv 0$ because the set $\left\{u_{N}(s, \alpha, k)\right\}_{\alpha \in S^{2}}$ is total (dense) in $L^{2}(S)$ for any fixed $k>0$ ([5, p. 162]).

Now equation (14) and Lemma 1 imply that

$$
\begin{equation*}
\nu(x):=\int_{S} \frac{e^{i k|x-s|}}{4 \pi|x-s|} p(s) d s \tag{16}
\end{equation*}
$$

is identically zero in D^{\prime}. Indeed, this ν solves equation (1), satisfies the radiation condition (4), and (14) implies

$$
\begin{equation*}
\nu(x)=o(1 /|x|), \quad|x| \rightarrow \infty . \tag{17}
\end{equation*}
$$

Relation (17) and Lemma 1 in [5, p. 25] imply that

$$
\begin{equation*}
\nu(x)=0 \quad \text { in } D^{\prime} \tag{18}
\end{equation*}
$$

Therefore, by the jump formula for the normal derivative of the single layer potential (16) ([5, p. 14]), one gets

$$
\begin{equation*}
\frac{\partial \nu}{\partial N_{+}}=p(s) \not \equiv 0 \tag{19}
\end{equation*}
$$

where $\partial / \partial N_{+}$denotes the limiting value on S of the normal derivative from inside of D.

This implies that $k^{2} \in \sigma$. Indeed, $\nu(x)$ solves the equation

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \nu=0 \quad \text { in } D^{\prime} \tag{20}
\end{equation*}
$$

and satisfies the boundary condition

$$
\begin{equation*}
\left.\nu\right|_{S}=0 \tag{21}
\end{equation*}
$$

due to (18) and the continuity of ν across S. Finally, $\nu \not \equiv 0$ in D because of (19).

Now we prove the existence of a solution to problem (20)-(21) which can be analytically continued to the whole space \mathbb{R}^{3} as an entire function of x.

The reciprocity relation $A(\beta, \alpha, k)=A(-\alpha,-\beta, k)$ (see [5, p. 53] and equation (12) imply

$$
\begin{align*}
0 & =\int_{S^{2}} A(\beta, \alpha, k) w(\alpha) d \alpha \tag{22}\\
& =-\frac{1}{4 \pi} \int_{S}\left(\int_{S^{2}} e^{i k \alpha \cdot s} w(\alpha) d \alpha\right) u_{N}(s,-\beta) d s \quad \forall \beta \in S^{2} .
\end{align*}
$$

Since the set $\left\{u_{N}(s, \alpha, k)\right\}_{\alpha \in S^{2}}$ is total (dense) in $L^{2}(S)$ for any fixed $k>0$ ([5, p. 162]), relation (22) implies

$$
\begin{equation*}
\int_{S^{2}} e^{i k \alpha \cdot s} w(\alpha) d \alpha=0 \quad \forall s \in S \tag{23}
\end{equation*}
$$

Therefore, the function

$$
\begin{equation*}
W(x):=\int_{S^{2}} e^{i k \alpha \cdot x} w(\alpha) d \alpha, \quad x \in \mathbb{R}^{3}, \tag{24}
\end{equation*}
$$

satisfies all the requirements mentioned in the last statement of Theorem 1. Thus, Theorem 1 is proved.

Remark 1. A similar argument yields the following result:
Let $\sigma_{\mathcal{N}}$ be the set of eigenvalues of the Neumann Laplacian, and $A_{\mathcal{N}}(\beta, \alpha, k)$ the scattering amplitude, corresponding to the plane wave scattering by the obstacle D on the boundary of which the Neumann boundary condition holds. If equation (12), with $A_{\mathcal{N}}$ in place of A, has a non-trivial solution, then $k^{2} \in \sigma_{\mathcal{N}}$.

Remark 2. If $k^{2} \in \sigma$, then any non-trivial solution to (20)-(21) can be written in the form (16) with $p(s)$ defined in (19), and the boundary condition (18) holds. Taking $|x| \rightarrow \infty, x /|x|=\beta$, in (16) and using (18), one obtains

$$
\begin{equation*}
\int_{S} e^{-i k \beta \cdot s} p(s) d s=0 \quad \forall \beta \in S^{2}, \quad p(s) \not \equiv 0 . \tag{25}
\end{equation*}
$$

Thus, if $k^{2} \in \sigma$, then equation (25) has a non-trivial solution $p(s)$.
Proof of Theorem 2. Suppose equation (12) has a solution $\eta \in L^{2}\left(S^{2}\right)$, $\eta \not \equiv 0$. Then

$$
\begin{equation*}
\int_{S} d s u_{N}(s, \alpha) \int_{S^{2}} e^{-i k \beta \cdot s} \eta(\beta) d \beta=0 \quad \forall \alpha \in S^{2} . \tag{26}
\end{equation*}
$$

Since the set $\left\{u_{N}(s, \alpha)\right\}_{\alpha \in S^{2}}$ is total in $L^{2}(S)$, one concludes from (26) that

$$
\begin{equation*}
\psi(s)=0 \quad \forall s \in S, \tag{27}
\end{equation*}
$$

where

$$
\psi(x):=\int_{S^{2}} e^{-i k \beta \cdot x} \eta(\beta) d \beta
$$

The function $\psi(x)$ is an entire function of x, that is, an analytic function of $x \in \mathbb{C}^{3}$. It vanishes on S, so S is an analytic set. Generically, the boundary S is not an analytic set.

Thus, Theorem 2 is proved.
REMARK 3. If one uses the reciprocity relation $A(\beta, \alpha, k)=A(-\alpha,-\beta, k)$, then one concludes that zero is an eigenvalue of A if either

$$
\begin{equation*}
\int_{S} e^{-i k \beta \cdot s} \int_{S^{2}} u_{N}(s, \alpha, k) w(\alpha) d \alpha=0 \quad \forall \beta \in S^{2}, \quad w \not \equiv 0 \tag{28}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{S}\left(\int_{S^{2}} e^{i k \alpha \cdot s} w(\alpha) d \alpha\right) u_{N}(s,-\beta) d s=0 \quad \forall \beta \in S^{2}, \quad w \not \equiv 0 \tag{29}
\end{equation*}
$$

The last relation implies equation (28) (with $\beta=-\alpha$ and $\eta(\beta)=w(\alpha)$).
Set $T_{k} p:=\int_{S} g(s, t, k) p(t) d t$ and $U:=U(x, k):=\int_{S} g(x, t, k) p(t) d t$, so $\left.U\right|_{S}=T_{k} p$.

REMARK 4. The operator T_{k}^{-1} has simple poles at the points $k^{2}=k_{j}^{2}$, where $k_{j}^{2} \in \sigma$.

Remark 4 shows that the knowledge of the set of poles of the operator T_{k}^{-1} allows one to find the spectrum of the interior Dirichlet Laplacian in D.

Proof of Remark 4. Consider the equation $T_{k} p=f$. Then

$$
U(x)=\int_{S} g(x, t, k) p(t) d t
$$

solves the problem

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) U=0 \quad \text { in } D,\left.\quad U\right|_{S}=f \tag{30}
\end{equation*}
$$

Let

$$
\left(\nabla^{2}+k^{2}\right) \Gamma=-\delta(x-y) \quad \text { in } D,\left.\quad \Gamma\right|_{S}=0
$$

Then Green's formula yields the following representation of the solution to problem (30):

$$
\begin{equation*}
U(x)=-\int_{S} f(t) \Gamma_{N_{t}}(t, x, k) d t, \quad x \in D, \quad k^{2} \neq k_{j}^{2} \tag{31}
\end{equation*}
$$

Since $\Gamma(x, y, k)=\sum_{j=1}^{\infty} \frac{\phi_{j}(x) \overline{\phi_{j}(y)}}{k^{2}-k_{j}^{2}}$ has a simple pole at $k^{2}=k_{j}^{2}$, the claim is proved. Here ϕ_{j} are the normalized eigenfunctions of the Dirichlet Laplacian in D.

References

[1] B. Dietz, J.-P. Eckmann, C.-A. Pillet and U. Smilansky, Inside-outside duality for planar billiards: A numerical study, Phys. Rev. E 51 (1995), 4222-4231.
[2] E. Doron and U. Smilansky, Semiclassical quantization of chaotic billiards: a scattering approach, Nonlinearity 5 (1992), 1055-1084.
[3] J.-P. Eckmann and C.-A. Pillet, Spectral duality for planar billiards, Comm. Math. Phys. 170 (1995), 283-313.
[4] B. A. Fuks, Theory of Analytic Functions of Several Variables, Amer. Math. Soc., Providence, RI, 1963.
[5] A. G. Ramm, Scattering by Obstacles, Reidel, Dordrecht, 1986.

A. G. Ramm
Mathematics Department
Kansas State University
Manhattan, KS 66506-2602, U.S.A.
E-mail: ramm@math.ksu.edu

Received April 9, 2009;
received in final form June 14, 2009

