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Summary. For positive integers m and N , we estimate the rational exponential sums
with denominator m over the reductions modulo m of elements of the set

F(N) = {s/r : r, s ∈ Z, gcd(r, s) = 1, N ≥ r > s ≥ 1}

of Farey fractions of order N (only fractions s/r with gcd(r, m) = 1 are considered).

1. Introduction. For any integer N ≥ 1, we consider the set

F(N) = {s/r : r, s ∈ Z, gcd(r, s) = 1, N ≥ r > s ≥ 1}

of Farey fractions of order N . There is an extensive literature where various
distributional properties of Farey fractions are investigated. In particular,
some of these properties are directly related to the Riemann Hypothesis.
(See, for example, the survey [4] as well as the more recent works [1, 2, 3, 7, 8]
and references therein.)

Here we consider an apparently new problem of the distribution of F(N)
in residue classes modulo an integer m ≥ 2. In particular, we show that for
any interval I = [k, k + h− 1] ⊆ [0,m− 1] and any integer N ≥ mε, where
ε > 0 is fixed, the number Rm(N, I) of Farey fractions s/r ∈ F(N) with
gcd(r,m) = 1 and such that s/r ≡ z (mod m) for some z ∈ I is close to its
expected value, provided that m is large enough.

Naturally, our main tool is bounds for exponential sums. For any integer
m ≥ 2 and any real z we put

em(z) = exp(2πiz/m)
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and consider the exponential sums

Sm(a;N) =
∑

s/r∈F(N)
gcd(r,m)=1

em(as/r), a ∈ Z.

(Note that each fraction s/r ∈ F(N) is reduced modulo m before it is used
in the sum Sm(a;N).)

We remark that for larger values of N , namely for N ≥ m1/2+ε, one can
use the results in [12, 13] to show that almost all residue classes from the
reduced residue system modulo m are represented by the elements of F(N)
asymptotically the same number of times. A variant of such a result is also
given in [5].

We write V = Uo(1) to indicate the quantity which satisfies

lim
U→∞

log V
logU

= 0.

Theorem 1. For any integer a 6≡ 0 (mod m),

|Sm(a;N)| ≤ N(Nm)o(1) as N,m→∞.

Combining Theorem 1 with some standard technique, we also derive the
following asymptotic formula for Rm(N, I).

Theorem 2. Uniformly over the intervals I = [k, k+h−1] ⊆ [0,m−1],∣∣∣∣Rm(N, I)− 6
π2

∏
p|m

(
1 +

1
p

)−1 h

m
N2

∣∣∣∣ ≤ N(Nm)o(1)

as N,m→∞, where the product is taken over all primes p |m.

2. Double sums. Here we obtain a rather general statement which may
be of independent interest.

We use the notations U = O(V ) and U � V to indicate that |U | ≤ cV
for some absolute constant c > 0.

Lemma 3. Let Y ≥ 1 be an arbitrary integer. Assume that for each
integer x we are given two integers Lx and Ux with 0 ≤ Lx < m and
Ux ≤ Y . Then for any integer a 6≡ 0 (mod m),∣∣∣ X∑

x=1
gcd(x,m)=1

Ux∑
y=Lx+1

em(ay/x)
∣∣∣ ≤ (X + Y )(Xm)o(1)

as X,m→∞.
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Proof. Let

W =
X∑

x=1
gcd(x,m)=1

Ux∑
y=Lx+1

em(ay/x).

We may assume that
0 < a ≤ m− 1.

For a rational number α = u/v with gcd(v,m) = 1, we denote by ρ(α) the
unique integer w with

w ≡ u/v (mod m) and −m/2 < w < (m+ 1)/2.

Using the bound

L+H∑
y=L+1

em(αy)� min
{
H,

m

|ρ(α)|

}
,

which holds for any rational α and integers L and H (see [10, Bound (8.6)]),
we obtain

W �
X∑

x=1
gcd(x,m)=1

min
{
Y,

m

ρ(a/x)

}
.

We now put J = dlog(m/2)e and define the sets

Xj = {x : 1 ≤ x ≤ X, gcd(x,m) = 1, ej ≤ |ρ(a/x)| < ej+1},

where j = 0, . . . , J . Therefore

(1) W �
J∑

j=0

#Xj min
{
Y,
m

ej

}
� Y

J0∑
j=0

#Xj +m

J∑
j=J0+1

#Xje
−j ,

where J0 is the largest j ≤ J with ej ≤ m/Y .
To estimate #Xj we note that if ej ≤ |ρ(a/x)| < ej+1, then xz ≡ a

(mod m) for some integer z with 0 < |z| < ej+1. Thus xz = a+mk for some
integer k with |k| < ej+1X/m + 1. Hence there are at most O(ejX/m + 1)
possible values of k and for each fixed k � ejX/m there are

τ(|a+mk|) = (Xm)o(1)

nonzero integers x and z with xz = a + mk, where τ(u) is the number of
positive integer divisors of an integer u 6= 0 (see [9, Theorem 317]). Therefore
we obtain the estimate

#Xj ≤ (ejX/m+ 1)mo(1),
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which after inserting into (1) gives

(2) |W | ≤ Y
J0∑

j=0

(ejX/m+ 1)mo(1) +m1+o(1)
J∑

j=J0+1

(ejX/m+ 1)e−j .

We now have
J0∑

j=0

(ejX/m+ 1)� eJ0X/m+ J0 � X/Y +mo(1)

and also
J∑

j=J0+1

(ejX/m+ 1)e−j ≤ JX/m+ e−J0 ≤ Xm−1+o(1) + Y/m.

Substituting the above bounds into (2), we obtain the desired result.

3. Proof of Theorem 1. For an integer d ≥ 1 we use µ(d) to denote
the Möbius function. We recall that µ(1) = 1, µ(d) = 0 if d ≥ 2 is not
square-free, and µ(d) = (−1)ω(d) otherwise, where ω(d) is the number of
prime divisors of d. Then by the inclusion-exclusion principle,

Sm(a;N) =
N∑

d=1

µ(d)
N∑

r=1
gcd(r,m)=1

d|r

∑
s=r+1

d|s

em(as/r)

=
N∑

d=1

µ(d)
bN/dc∑
x=1

gcd(x,m)=1

bN/dc∑
y=x+1

em(ay/x).

Now, for each d = 1, . . . , N we apply Lemma 3 with Lx = x and Ux = bN/dc,
and after a short calculation we obtain the desired result.

4. Proof of Theorem 2. For any integer N ≥ 1, let

Fm(N) = {s/r ∈ F(N) : gcd(r,m) = 1}.

Now using the Erdős–Turán inequality (see [6, 11]), which links the dis-
crepancy with exponential sums, we immediately deduce from Theorem 1
that ∣∣∣∣Rm(N, I)− h

m
#Fm(N)

∣∣∣∣ ≤ N1+o(1)mo(1).

It remains to approximate #Fm(N). We follow the proof of the well-known
asymptotic formula for #F(N) given in [9, Theorem 330].
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We have

#Fm(N) =
N∑

r=1
gcd(r,m)=1

ϕ(r) =
N∑

r=1
gcd(r,m)=1

r
∑
d|r

µ(d)
d

,

where ϕ(r) is the Euler function (see [9, Equation (16.3.1)]). Interchanging
the order of summation, we obtain

#Fm(N) =
N∑

r=1
gcd(r,m)=1

ϕ(r) =
N∑

d=1
gcd(d,m)=1

µ(d)
d

N∑
r=1

gcd(r,m)=1
r≡0 (mod d)

r.

Then replacing r with dt, we deduce

(3) #Fm(N) =
N∑

d=1
gcd(d,m)=1

µ(d)
N∑

1≤t≤N/d
gcd(t,m)=1

t.

We note that by the inclusion-exlusion principle, for any real T ,∑
1≤t≤T

gcd(t,m)=1

t =
∑
e|m

µ(e)
N∑

1≤t≤T
e|t

t =
∑
e|m

µ(e)e
N∑

1≤u≤T/e

u

=
∑
e|m

µ(e)e
(
T 2

2e2
+O(T/e)

)
=

1
2
T 2
∑
e|m

µ(e)
e

+O(Tτ(m)).

Using [9, Theorem 317 and Equation (16.3.1)], we obtain∑
1≤t≤T

gcd(t,m)=1

t =
ϕ(m)
2m

T 2 +O(Tmo(1)),

which after substitution into (3) yields

#Fm(N) =
N∑

d=1
gcd(d,m)=1

µ(d)
(
ϕ(m)
m
· N

2d2
+O

(
Nmo(1)

d

))

=
ϕ(m)
2m

N2
N∑

d=1
gcd(d,m)=1

µ(d)
d2

+O(Nmo(1))

=
ϕ(m)
2m

N2
∞∑

d=1
gcd(d,m)=1

µ(d)
d2

+O(Nmo(1)).
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Obviously
∞∑

d=1
gcd(d,m)=1

µ(d)
d2

=
∏
p-m

(
1− 1

p2

)
=

m

ϕ(m)

∏
p|m

(
1 +

1
p

)−1∏
p

(
1− 1

p2

)
,

where the product is taken over all primes p (see [9, Theorem 285]). Then
recalling that ∏

p

(
1− 1

p2

)
=

∞∑
d=1

gcd(d,m)=1

µ(d)
d2

= ζ(2)−1 =
6
π2

(see [9, Theorem 287 and Equation (17.2.2)]), we obtain

#Fm(N) =
6
π2

∏
p|m

(
1 +

1
p

)−1

N2 +O(Nmo(1)).

This completes the proof of the theorem.
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