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Summary. Some conditions for existence of Lipschitz selections of multifunctions with
decomposable values are given.

1. Introduction. The definition of a decomposable set was formulated
in the 1960’s. Decomposability is an essential property in many problems
associated with differential inclusions. This notion appears in papers of
Cz. Olech, F. Hiai–H. Umegaki and A. Fryszkowski. The characteristic fea-
ture of decomposable sets is their similarity to convex sets. It appears that
we can replace convexity by decomposability in many classical theorems. In
this paper we consider the problem of existence of a Lipschitz selection of a
multifunction with decomposable values.

2. Preliminaries. In this section we give basic definitions and quote
some known facts needed in this paper. Let (X, ‖ · ‖) be a separable Banach
space, (Ω,Σ, µ) be a measure space with a complete measure and Lp(Ω,X)
be the Banach space of equivalence classes of Σ-measurable functions f :
Ω → X with the norm ‖f‖Lp = (

	
Ω ‖f‖

p dµ)1/p < ∞ for 1 ≤ p < ∞. We
denote the characteristic function of a set A ∈ Σ by χA.

Definition 1. A set K ⊂ Lp is called decomposable if for any u, v ∈ K
and each A ∈ Σ, χAu+ χΩ\Av ∈ K.

F. Hiai and H. Umegaki showed that a decomposable set can be repre-
sented as a set of selections of some multifunction [4].
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Theorem 1 . Let (Ω,Σ, µ) be a σ-finite measure space and 1 ≤ p <∞.
If K ⊂ Lp(Ω,X) is a nonempty closed and decomposable set , then there
exists a weakly measurable multifunction F : Ω → 2X with nonempty and
closed values such that K = {f ∈ Lp(Ω,X) : f(ω) ∈ F (ω) a.e. in Ω}.

Sets of selections of multifunctions have several obvious properties:

Theorem 2. Let (Ω,Σ, µ) be a σ-finite measure space and let F :
Ω → 2X be a weakly measurable multifunction with closed nonempty val-
ues. Then the set {f ∈ Lp(Ω,X) : f(ω) ∈ F (ω) a.e. in Ω} is bounded if and
only if there exists ρ ∈ L1(Ω,R) such that supx∈F (ω) ‖x‖p ≤ ρ(ω) for every
ω ∈ Ω.

Theorem 3. Let (Ω,Σ, µ) be a σ-finite measure space and F : Ω → 2X

be a weakly measurable multifunction with closed nonempty values. Then the
set {f ∈ Lp(Ω,X) : f(ω) ∈ F (ω) a.e. in Ω} is convex if and only if F (ω) is
convex for almost all ω ∈ Ω.

Now let (T, d), (Z, d1) be metric spaces and F : T → 2Z be a multifunc-
tion with nonempty values.

Definition 2. A selection η of the multifunction F is called a Lipschitz
selection if there exists L > 0 such that d1(η(t1), η(t2)) ≤ Ld(t1, t2) for all
t1, t2 ∈ T .
Definition 3. A multifunction with closed, nonempty and bounded val-

ues is called h-Lipschitz if there exists L > 0 such that

hZ(F (t1), F (t2)) ≤ Ld(t1, t2) for all t1, t2 ∈ T,
where hZ denotes the Hausdorff distance of subsets of Z.

We also have the following theorem due to A. A. and D. A. Tolstono-
gov [7].

Theorem 4. Let (Ω,Σ, µ) be a σ-finite measure space. Let K1,K2 ∈
Lp(Ω,X) be nonempty , closed and bounded decomposable sets. If F1, F2

are weakly measurable multifunctions with closed values such that K1 =
{f ∈ Lp(Ω,X) : f(ω) ∈ F1(ω) a.e. in Ω} and K2 = {f ∈ Lp(Ω,X) :
f(ω) ∈ F2(ω) a.e. in Ω}, then

hLp(K1,K2) ≤
( �
Ω

(hX(F1(ω), F2(ω)))p dµ
)1/p

≤ 21/phLp(K1,K2).

One of the main problems in the theory of multifunctions is the existence
of Lipschitz selections. It is known that every h-Lipschitz multifunction with
nonempty, closed, bounded and convex values in Rn has a Lipschitz selection.
This is no longer true in infinite-dimensional spaces. However, we have the
following theorem [5, Th. 4.33].
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Theorem 5. Let (T, d) be a compact metric space and Z be a normed
space. If F : T → 2Z \ {∅} is a multifunction with convex values such that
F−1({z}) is an open set in T for each z ∈ Z then F admits a Lipschitz
selection.

3. Main results. It turns out that in the space L1(Ω,X), decomposabil-
ity is a good substitute of convexity. We shall prove the following theorem:
Theorem 6. Let (T, d) be a compact metric space. Let (Ω,Σ, µ) be a

maeasure space with a finite nonatomic measure. If F : T → 2L1(Ω,X) \ {∅}
is a multifunction with decomposable values such that the set F−1({v}) is
open in T for every v ∈ L1(Ω,X), then F has a Lipschitz selection.

Before proving Theorem 6 we state a lemma.
Lemma 1. Suppose that (Ω,Σ, µ) is a measure space with a finite mea-

sure and n ∈ N. Let A1, . . . , An ∈ Σ be pairwise disjoint with
⋃n
i=1Ai = Ω.

Similarly , let B1, . . . , Bn ∈ Σ be pairwise disjoint with
⋃n
i=1Bi = Ω. Define

Cs =
⋃s
i=1Ai and Ds =

⋃s
i=1Bi for s = 1, . . . , n. If Cs ⊂ Ds or Ds ⊂ Cs

for each s = 1, . . . , n, then
n∑

i,k=1, i 6=k
µ(Ak ∩Bi) ≤

n∑
i=1

|µ(Di)− µ(Ci)|.

Proof. It is easy to see that
n∑

i,k=1, i 6=k
µ(Ak ∩Bi) = µ(Ω)−

n∑
i=1

µ(Ai ∩Bi).

Moreover,

Ω ⊂
( n⋃
i=1

Ai ∩Bi
)
∪
( n⋃
i=1

Di 4 Ci

)
where A4B = (A \B) ∪ (B \A), and the lemma follows.

To make the proof of Theorem 6 clearer we introduce some notation and
state some simple properties. Fix n ∈ N. Define a norm in Rn by

‖~x‖1 = |x1|+ |x1 + x2|+ · · ·+ |x1 + · · ·+ xn|
for ~x = (x1, . . . , xn) ∈ Rn. Let µ1 be a nonatomic finite measure on Ω, to be
defined later. Set

D =
{

(x1, . . . , xn) ∈ Rn : xi ≥ 0 for i = 1, . . . , n;
n∑
i=1

xi = µ1(Ω)
}
,

D{i1,...,ik} =
{

(x1, . . . , xn) ∈ Rn : xi1 = . . . = xik = 0;

xj ≥ 0 for j 6∈ {i1, . . . , ik};
n∑
i=1

xi = µ1(Ω)
}
,
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where {i1, . . . , ik}  {1, . . . , n}. We allow {i1, . . . , ik} to be an empty set.
It is easy to show directly that D{i1,...,ik} is nonempty and convex for all
{i1, . . . , ik}  {1, . . . , n}.

It is known that there exists a function ξ : [0, µ1(Ω)] → Σ with the
following properties (see [3]):

(i) ξ(0) = ∅,
(ii) ξ(µ1(Ω)) = Ω,
(iii) if α, β ∈ [0, µ1(Ω)] and α < β, then ξ(α) ⊂ ξ(β),
(iv) µ1(ξ(α)) = α for α ∈ [0, µ1(Ω)].

For any ~x = (x1, . . . , xn) ∈ D we define a partition of Ω into subsets

A1,~x = ξ(x1), A2,~x = ξ(x1 + x2) \ ξ(x1),
Ai,~x = ξ(x1 + · · ·+ xi) \ ξ(x1 + · · ·+ xi−1), i = 1, . . . , n,

and define a function H : D → Σn by

H(~x) = (A1,~x, . . . , An,~x) for ~x ∈ D.
Notice that for ~x = (x1, . . . , xn) ∈ D we get:

(w.1) If xi = 0, then Ai,~x = ∅, i = 1, . . . , n.
(w.2)

⋃s
i=1Ai,~x = ξ(x1 + · · ·+ xs) for s = 1, . . . , n.

(w.3) µ1(Ai,~x) = xi for i = 1, . . . , n and µ1(
⋃s
i=1Ai,~x) =

∑s
i=1 xi for

s = 1, . . . , n.

Proof of Theorem 6. Set C = {F−1({g}) : g ∈ F(T )}, where F(T ) =⋃
t∈T F(t). Notice that C is an open cover of T . By compactness there exists

an n ∈ N and g1, . . . , gn ∈ F(T ) such that T =
⋃n
i=1F−1({gi}). Define

h : Ω → R+ ∪ {0} by h(ω) = max{‖gi(ω) − gj(ω)‖ : 1 ≤ i, j ≤ n, }, ω ∈ Ω.
The function h is obviously measurable and
�

Ω

h(ω) dµ ≤
�

Ω

n∑
i=1

n∑
j=1

‖gi(ω)− gj(ω)‖ dµ ≤
n∑
i=1

n∑
j=1

(‖gi‖L1 + ‖gj‖L1) <∞.

Hence h ∈ L1(Ω,R). Consider a nonatomic finite measure µ1 : Σ → R given
by µ1(A) =

	
A h(ω) dµ, A ∈ Σ. Let G : T → 2Rn be a multifunction such

that for t ∈ T ,
G(t) = D{i1,...,ik}

if gi1 , . . . , gik 6∈ F(t) and gj ∈ F(t) for j ∈ {1, . . . , n} \ {i1, . . . , ik}.
Because

⋃n
i=1F−1({gi}) = T the multifunction G is correctly defined and

furthermore it has nonempty and convex values.
We will show that G has a Lipschitz selection. If ~x = (x1, . . . , xn) ∈ D,

where xi1 = · · · = xik = 0 and xj 6= 0 for j ∈ {1, . . . , n} \ {i1, . . . , ik} =
{j1, . . . , js}, then the conditions ~x ∈ G(t) and gj1 , . . . , gjs ∈ F(t) are equiva-
lent for each t ∈ T . Hence G−1(~x) =

⋂s
l=1F−1({gjl}) is an open set in T . If
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~x 6∈ D, then G−1(~x) = ∅ is also an open set. Thus G satisfies the assumptions
of Theorem 5 and hence there exists a Lipschitz selection γ with respect to
the norm ‖ · ‖1.

Now let J : Σn → L1(Ω,X) be defined by

J(A1, . . . , An) =
n∑
i=1

χAigi for (A1, . . . , An) ∈ Σn.

We will show that η = J ◦H ◦ γ is a Lipschitz selection of F .
First we show that η is a selection of F . Let t ∈ T and γ(t) = ~x =

(x1, . . . , xn) ∈ D, where xi1 = · · · = xik = 0, xj1 , . . . , xjs 6= 0, {i1, . . . , ik} ∪
{j1, . . . , js} = {1, . . . , n}. Then gj1 , . . . , gjs ∈ F(t). Notice that H(γ(t)) =
(A1,~x, . . . , An,~x) is a measurable partition of Ω, and only the sets Aj1,~x, . . . ,
Ajs,~x are nonempty (property (w.1)). Thus J(H(γ(t))) =

∑s
l=1 χAjl,~x

gjl ∈
F(t) and so η is a selection of F .

It remains to show that η is a Lipschitz function. Let t1, t2 ∈ T, γ(t1) =
~x ∈ D, γ(t2) = ~y ∈ D. Then η(t1) =

∑n
i=1 χAigi and η(t2) =

∑n
i=1 χBigi,

where (A1, . . . , An) = H(~x) and (B1, . . . , Bn) = H(~y) are measurable parti-
tions of Ω (we allow some of these sets to be empty). We get

‖η(t1)− η(t2)‖Lp =
�

Ω

∥∥∥ n∑
i=1

χAigi −
n∑
i=1

χBigi

∥∥∥ dµ
=

n∑
i=1

n∑
j=1

�

Ai∩Bj

‖gi − gj‖ dµ =
n∑

i,j=1, i 6=j

�

Ai∩Bj

‖gi − gj‖ dµ

≤
n∑

i,j=1, i 6=j

�

Ai∩Bj

h(ω) dµ =
n∑

i,j=1, i 6=j
µ1(Ai ∩Bj).

Denoting ~x = (x1, . . . , xn) ∈ D, ~y = (y1, . . . , yn) ∈ D, Cs =
⋃s
i=1Ai,

Ds =
⋃s
i=1Bi, s = 1, . . . , n, we conclude that

Cs = ξ(x1 + · · ·+ xs), Ds = ξ(y1 + · · ·+ ys)

(property (w.2)), hence Cs ⊂ Ds or Ds ⊂ Cs (condition (iii)). Thus by
Lemma 1,

‖η(t1)− η(t2)‖L1 ≤
n∑
i=1

|µ1(Di)− µ1(Ci)|.

Simultaneously from the definition of ‖·‖1 and property (w.3) it follows that

‖γ(t1)− γ(t2)‖1
= |x1− y1|+ |(x1 +x2)− (y1 + y2)|+ · · ·+ |(x1 + · · ·+xn)− (y1 + · · ·+ yn)|

=
n∑
i=1

|µ1(Ci)−µ1(Di)|.
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Hence ‖η(t1)−η(t2)‖L1 ≤ ‖γ(t1)−γ(t2)‖1. Because γ is a Lipschitz function,
so is η, which completes the proof.

From Theorem 6 we obtain the following corollary.

Corollary 1. Under the assumptions of Theorem 6 for each point (t, v)
belonging to the graph of the multifunction F , there exists a Lipschitz selec-
tion η of F such that η(t) = v.

Proof. Fix t0 ∈ T and v ∈ F(t0). It is enough to notice that a multifunc-
tion F1 : T → 2L1(Ω,X) such that F1(t0) = v, F1(t) = F(t) for t ∈ T \ {t0}
satisfies the assumptions of Theorem 6. Thus F1 has a Lipschitz selection η.
Obviously η(t0) = v.

As stated earlier, closedness, boundness and convexity of values of an
h-Lipschitz multifunction in an infinite-dimensional space do not guarantee
that the multifunction has a Lipschitz selection. It turns out that it is enough
to assume additionally that the values of F are decomposable in Lp(Ω,Rn)
to deduce the existence of such a selection.

Theorem 7. Let (Ω,Σ, µ) be a σ-finite measure space and (T, d) be a
metric space. If F : T → 2Lp(Ω,Rn), n ∈ N, is an h-Lipschitz multifunction
with nonempty , closed , convex , bounded and decomposable values, then F
has a Lipschitz selection.

Let P be the space of all compact nonempty subsets of (Rn, ‖·‖) with the
Hausdorff distance, and Pc be the space of compact nonempty and convex
subsets of Rn with the same distance.

Let s(A) denote the Steiner point of a set A ∈ Pc. To prove Theorem 7
we are going to use the following properties of Steiner points [6]:

(x) s(A) ∈ A for A ∈ Pc.
(xx) There exists L ∈ R+ such that ‖s(A)− s(B)‖ ≤ LhRn(A,B) for all

A,B ∈ Pc.
Proof of Theorem 7. Let F : T × Ω → 2Rn be a multifunction with

nonempty and closed values such that for each t ∈ T , F(t, ·) is a weakly
measurable multifunction and F(t) = {f ∈ Lp(Ω,X) : f(ω) ∈ F (t, ω) µ-a.e.
in Ω}. Such an F exists (Th. 1), and without loss of generality, we can
assume that its values are compact and convex (Ths. 2, 3). Fix t ∈ T and
define gt : Ω → Rn by

gt(ω) = s(F (t, ω)), ω ∈ Ω.
We have gt(ω) ∈ F (t, ω) for each ω ∈ Ω (property (x)).

We will show that gt is a measurable function. Let U be a fixed open
subset of Rn. Define ∆ : Pc → Rn by ∆(A) = s(A) for A ∈ Pc, and Γ : Ω →
Pc by Γ (ω) = F (t, ω) for ω ∈ Ω. Thus gt = ∆ ◦ Γ . By the property (xx) it
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follows that the function ∆ is continuous and so ∆−1(U) is open in Pc. Let
B(A, ε) denote the open ball in P with center A ∈ P and radius ε > 0, and
Bc(A, ε) the open ball in Pc. Let V ∈ P be the union of all balls B(A, ε) such
that Bc(A, ε) ⊂ ∆−1(U). Notice that V is open in P and V ∩ Pc = ∆−1(U).
Thus g−1

t (U) = Γ−1(∆−1(U)) = Γ−1(V ). Because the multifunction F (t, ·)
is weakly measurable and has compact values, the function Γ is measurable
[1, Th. III.2] and Γ−1(V ) ∈ Σ. These facts imply that gt is a measurable
function.

Hence, by Theorem 2, gt ∈ Lp(Ω,Rn) and consequently gt ∈ F(t). Now
define η : T → Lp(Ω,Rn) by η(t) = gt. Fix t1, t2 ∈ T . Using the definition
of η, property (xx) and Theorem 4 we obtain

‖η(t1)− η(t2)‖Lp =
( �
Ω

‖gt1(ω)− gt2(ω)‖p dµ
)1/p

≤
( �
Ω

(LhRn(F (t1, ω), F (t2, ω)))p dµ
)1/p

≤ 21/pLhLp(F(t1),F(t2)).

Because the multifunction F is h-Lipschitz the above inequalities mean that
the function η is a Lipschitz selection.
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